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A transgenic mouse model for conditional induction of long-term hibernation via myocardium-specific
expression of a VEGF-sequestering soluble receptor allowed the dissection of the hibernation process into an
initiation and a maintenance phase. The hypoxic initiation phase was characterized by peak levels of K(ATP)
channel and glucose transporter 1 (GLUT1) expression. Glibenclamide, an inhibitor of K(ATP) channels,
blocked GLUT1 induction. In the maintenance phase, tissue hypoxia and GLUT1 expression were reduced.
Thus, we employed a combined “-omics” approach to resolve this cardioprotective adaptation process.
Unguided bioinformatics analysis on the transcriptomic, proteomic and metabolomic datasets confirmed that
anaerobic glycolysis was affected and that the observed enzymatic changes in cardiac metabolism were
directly linked to hypoxia-inducible factor (HIF)-1 activation. Although metabolite concentrations were kept
relatively constant, the combination of the proteomic and transcriptomic dataset improved the statistical
confidence of the pathway analysis by 2 orders of magnitude. Importantly, proteomics revealed a reduced
phosphorylation state of myosin light chain 2 and cardiac troponin I within the contractile apparatus of
hibernating hearts in the absence of changes in protein abundance. Our study demonstrates how combining
different “-omics” datasets aids in the identification of key biological pathways: chronic hypoxia resulted in a
pronounced adaptive response at the transcript and the protein level to keep metabolite levels steady. This
preservation of metabolic homeostasis is likely to contribute to the long-term survival of the hibernating
myocardium.
is; 2-DE, two-dimensional gel
onance spectroscopy; LC-MS/
.
, King's College London, 125
848 5296.

-NC-ND license.
© 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Hibernatingmyocardium as defined by Rahimtoola et al. [1] refers
to resting LV dysfunction due to reduced coronary bloodflow that can
be partially or completely reversed by myocardial revascularization
and/or by reducing myocardial oxygen demand. This endogenous
mechanism of cell survival is a potent cardioprotective response that
preserves myocardial viability under hypoxia [1,2]. Unlike myocar-
dial infarction, the hibernating myocardium does not undergo cell
death, but can be salvaged and its function partially or fully restored
upon reperfusion [3]. The adaptive mechanisms by which hibernat-
ing myocardium survives during chronic ischemia remain to be
elucidated [2,4–6].

Recently, May et al. [7] established a bitransgenic system for
conditional and reversible loss of vascular endothelial growth factor
(VEGF) function in the heart. Inducible cardiac expression of a soluble
decoy receptor sequestered VEGF. As a result of the VEGF blockade,
the myocardium was subject to a reversible microvascular deficit and
experienced chronic hypoxia, which recapitulates all the hallmarks of
long-term myocardial hibernation. Cardiomyocytes showed reduced
contraction, but remained viable and preserved their potential of full
recovery. Importantly, this animal model resembled myocardial
hibernation without accompanying cell death and inflammation,
two confounding factors in models of ischemia that complicate
comparisons with an -omics approach.
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In the present study, we performed a proteomic and metabolomic
analysis of hearts after 6 weeks of VEGF blockade. We have previously
demonstrated the usefulness of this combined approach to assess
enzyme and corresponding metabolite changes in preconditioned [8,9]
as well as cardioprotected hearts [10]. The combination of proteomics
withmetabolomics provides a platform for phenotyping transgenicmice
at a molecular level [11,12] as protein changes tend to complement
alterations in gene expression and metabolite levels provide the
integrated “read-out” of the transcriptomic and proteomic variation.
The mouse model of conditional VEGF blockade now offers an
opportunity to investigate the hibernation programat themRNA, protein
and metabolite level and to demonstrate the feasibility of combining
different “-omics” datasets in unsupervised network analyses.

2. Materials and methods

Detailedmethodology is provided in the online data supplement. A
bi-transgenic system for heart-specific expression of the ligand
binding domain of soluble VEGF receptor 1 (sVEGF-R1) was used for
the present study [7]. For proteomic and metabolomic analysis,
induction of sVEGF-R1 in double-transgenic mice was carried out
postnatally by tetracycline withdrawal for 6 weeks as previously
described [7]. For in vivo inhibition of K(ATP) channels, glibenclamide
(0.3 mg/kg bolus i.p.; Sigma Chemical Corporation) was administered
as a single dose to 2-week-oldmice and RNAwas harvested after 24 h.
Fig. 1. Initiation and maintenance phase. (A) Immunohistochemical staining for hypoxia
7 weeks (7W-ON) of VEGF blockade. Brown staining indicates areas of hypoxia. Reduced
(3W-ON) of VEGF blockade. Images are representative of 3 independent experiments. (B)
(2W-ON, 3W-ON, 5W-ON). Note that the maximum in SUR2A and Kir6.2 expression anted
rectifying channel; *p-valueb0.05, **p-valueb0.01, n≥3 per group. (C) qPCR analysis of F
of glibenclamide, an inhibitor of K(ATP) channels, on GLUT1 gene expression in 2-week-
Key techniques involved adaptations of previously published proto-
cols, including those for difference in-gel electrophoresis (DIGE) [10],
liquid chromatography tandem mass spectrometry (LC-MS/MS) [10],
proton nuclear magnetic resonance spectroscopy (1H-NMR) [13],
immunoblotting [10], real-time PCR (qPCR) [7] and hypoxyprobe™
staining [7]. The Affymetrix Genechip mRNA expression analysis data
were previously described by May et al. [7]. The network represen-
tation with the Cytoscape software and the pathway analysis with the
MetaCore™ systems biology analysis suite (GeneGo Inc., St. Joseph,
MI) is explained online. Protocols for proteomics are available on our
website at http://www.vascular-proteomics.com.

3. Results

3.1. Initiation and maintenance phase

The conditional system of VEGF blockade allowed a dissection of
the hibernation process into two distinct phases: an initiation phase
with induction of K(ATP) channels and GLUT1 and a maintenance
phase with reduced tissue hypoxia (Fig. 1A). K(ATP) channels
represent a union between a member of the inward rectifier Kir
family and the ABC superfamily (ATP binding cassette). The latter
provides two binding sites, one for SUR (sulfonylurea, epitomized by
glibenclamide) and the other for ATP [3]. The subunits SUR2A and
Kir6.2 are particularly abundant in cardiomyocytes. After an initial
(HypoxyprobeTM) in the hibernating subendocardium after 3 weeks (3W-ON) and
hypoxyprobe staining was observed after 7 weeks (7W-ON) compared to 3 weeks

qPCR analysis of GLUT1 and K(ATP) channels after 2, 3 and 5 weeks of VEGF blockade
ates peak levels of GLUT1. SUR2A: ATP-binding cassette; Kir6.2: potassium inwardly
OXO1, a transcription factor regulating K(ATP) channel expression (n=3). (D) Effect
old mice (n≥4 per group).

http://www.vascular-proteomics.com
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upregulation within the first 2 weeks of VEGF blockade, SUR2A and
Kir6.2 showed lower expression during pro-longed hypoxia (Fig. 1B).
This biphasic response was mirrored by the expression pattern of
Foxo1, a key transcription factor regulating K(ATP) channel expres-
sion (Fig. 1 C). Interestingly, peak values of SUR2A and Kir6.2 (2W-
ON) antedated peak levels of glucose transporter 1 expression
(GLUT1, 3W-ON) (Fig. 1B). To explore whether this temporal
association reflects a causal relationship, glibenclamide, a K(ATP)
channel inhibitor was administered to 2-week-old mice (2W-ON). A
single injection of glibenclamide attenuated GLUT1 expression within
24 h (Fig. 1D). Survival was not affected at this time point.
3.2. Proteomics and transcriptomics

The observed reduction of tissue hypoxia during the maintenance
phase may result from decreased oxygen consumption or increased
oxygen supply with the latter being unlikely given the rarefaction of
the microvasculature under VEGF blockade. To provide insights into
protein changes, control and transgenic hearts (6W-ON) were
compared by DIGE. A representative image of the cardiac proteome
as separated by two-dimensional gel electrophoresis (2-DE, pH 3–10
nonlinear) is presented in Fig. 2. Principal component analysis (PCA)
and hierarchical clustering were applied to the entire proteomic
dataset (7 gels per group) to identify the dominant trends and reveal
differentially expressed proteins (Supplemental Figure 1). Examples
illustrating the quantitative accuracy of the DIGE approach are shown
in Supplemental Figure 2. The protein spots were excised, subject to
in-gel tryptic digestion, identified by LC-MS/MS analysis (Table 1 and
Supplemental Table I) and mapped to our previously published
microarray dataset [7] (Fig. 3). Overall, there was a good correlation
between mRNA and protein fold induction (Pearson correlation
coefficient=0.6395, p≤0.0001), in particular for genes displaying a
Fig. 2. Protein expression during the maintenance phase. Protein extracts from control
and hibernating hearts after 6 weeks of VEGF blockade (6W-ON) were quantified
using DIGE. Differentially expressed spots were numbered and identified by LC-MS/MS
(Table 1).
significant change in both the transcriptomic and proteomic datasets
(Supplemental Table II).

3.3. Changes in net expression

The hibernating myocardium was characterized by increased
expressionofHIF target genes, reduced levels ofmitochondrial enzymes
involved in beta-oxidation and adaptive changes in cardiac glucose and
energymetabolism (Fig. 3) [7]. As part of the fetal reprogramming [14],
gene expression of glucose transporter 1 (Glut1, +3.4-fold, FDR 0.003),
natriuretic peptide precursor type A and B (Nppa and Nppb, +3.4
and +2.5-fold, FDR 0.009 and 0.057, respectively), myosin heavy
polypeptide 7 (Myct1, +8.0-fold, FDR 0.033) and pyruvate dehydroge-
nase kinase, isoenzyme 1 (Pdk1, +2.3-fold, FDR 0.036) was induced.
The proteomic investigation confirmed a concordant upregulation of
lactate dehydrogenase (Fig. 4A) and several glycolytic enzymes, among
which fructose-biphosphate aldolase, glyceraldehyde-3-phosphate de-
hydrogenase, and pyruvate kinase are known HIF targets sensitive to
hypoxia. Mitochondrial enzymes related to lipid metabolism, i.e., long-
chain specific acyl-CoA dehydrogenase, short chain specific 3-hydro-
xyacyl-CoA dehydrogenase, and delta3,5-delta2,4-dienoyl-CoA isomer-
ase, were downregulated in the hibernating myocardium alongside
creatine kinase and adenosine kinase, which contribute to energy
homeostasis.

3.4. Changes in post-translational modifications

For two myofilament proteins there was discordant regulation at
the mRNA and protein level (Fig. 3). Myosin regulatory light chain 2
(MLC2) was resolved as a charge train with different isoelectric points
(pI) by 2-DE [15]. The differentially expressed spot (spot 43, Fig. 2)
showed a shift towards a more acidic pI, indicative of phosphoryla-
tion. This was subsequently confirmed by mobility shift detection of
phosphorylated proteins (Phos-tag, Fig. 4B). Similarly, there were no
significant differences in protein abundance of cardiac troponin I (TnI)
as the observed change was due to decreased phosphorylation in
hibernating hearts (Fig. 4C). Other proteins that showed differential
expression on 2-DE gels without corresponding alterations in mRNA
transcripts are known to be susceptible to oxidative stress, i.e., aldose
reductase has a cysteine residue as regulator of its kinetic and
inhibition properties; protein disulfide isomerases are redox-sensitive
chaperones responsible for the rearrangement of disulfide bonds; and
peroxiredoxin 1 and 2 have redox-active cysteins as their main anti-
oxidative component. Oxidation of their cysteine residues makes
these proteins more acidic resulting in a charge shift on 2-DE gels
without altering the net expression of these cytosolic antioxidants
[16,17] (Fig. 4D). In contrast, levels of mitochondrial manganese SOD
(SOD2) were reduced although cytosolic copper–zinc SOD (SOD1)
was similar in control and hibernating hearts (Fig. 4D). Thus, besides
changes in net expression, hibernation was associated with altera-
tions in post-translational modifications of myofilament and redox-
sensitive proteins, which can be interrogated by using a proteomics
approach.

3.5. Metabolomic analysis

Among the differentially expressed spots were proteins with
established links to cardiac K(ATP) channels, including 3 glycolytic
enzymes (pyruvate kinase, triose phosphate isomerase and GAPDH)
known to be physically associated with cardiac K(ATP) channels
[18,19] and contributors to cardiac energy shuttling, including
creatine kinase, adenosine kinase and lactate dehydrogenase [20].
We therefore assessed cardiac metabolism after 6 weeks of VEGF
blockade by 1H-NMR spectroscopy. Representative spectra of cardiac
metabolite extracts are shown in Fig. 5. Quantitative data are provided
in Table 2. Overall, the metabolite changes were not pronounced, but

image of Fig.�2


Table 1
Differentially expressed proteins identifications by tandem mass spectrometry (LC-MS/MS)

No. Protein identity Fold change
hibernating
vs control

P-value
(t-test)

P-value
(FDR)

SWISS PROT
accession
number

Theoretical
pI/MW

Observed
pI/MW

No of identified
peptides

Sequence
coverage (%)

Glucose metabolism
28 Fructose-bisphosphate aldolase A +1.52 4.4e-05 0.0027 ALDOA_MOUSE 8.4 / 39.2 8.7 / 41.6 22 52.50%
40 Triosephosphate isomerase +1.43 0.0001 0.0038 TPIS_MOUSE 7.1 / 26.6 7.5 / 22.0 5 20.50%
41 Triosephosphate isomerase +1.35 0.0002 0.0055 TPIS_MOUSE 7.1 / 26.6 7.9 / 21.8 16 58.20%
42 Triosephosphate isomerase +2.13 1.2e-07 3.1e-5 TPIS_MOUSE 7.1 / 26.6 8.1 / 21.6 12 51.80%
31 Glyceraldehyde-3-phosphate

dehydrogenase
+1.41 1.1e-05 0.0010 G3P_MOUSE 8.1 / 47.7 8.6 / 35.7 9 28.80%

16 Pyruvate kinase, isozyme M1/M2 +1.23 0.040 0.24 KPYM_MOUSE 7.4 / 57.7 7.9 / 60.3 23 37.70%
17 Pyruvate kinase, isozyme M1/M2 +1.54 7.3e-07 9.8e-5 KPYM_MOUSE 7.4 / 57.7 8.1 / 60.0 19 29.90%
18 Pyruvate kinase, isozyme M1/M2 +1.24 0.0002 0.0048 KPYM_MOUSE 7.4 / 57.7 8.2 / 60.2 9 20.00%
24 Pyruvate dehydrogenase E1

component alpha subunit
+1.66 0.0008 0.014 ODPA_MOUSE 8.5 / 43.2 7.7 / 48.7 15 30.00%

29 Aldose reductase +1.24 0.026 0.091 ALDR_MOUSE 6.8 / 35.6 7.8 / 36.0 13 38.60%
33 L-Lactate dehydrogenase A chain +1.29 7.8e-05 0.0038 LDHA_MOUSE 7.6 / 29.5 8.2 / 33.3 11 30.10%

Lipid metabolism
25 Acyl-CoA dehydrogenase, long-chain specific −1.29 0.013 0.061 ACADL_MOUSE 8.5 / 47.9 7.6 / 45.0 2 5.12%
34 Delta3,5-delta2,4-dienoyl-CoA

isomerase, mitochondrial
−1.23 0.003 0.028 ECH1_MOUSE 7.6 / 36.1 7.1 / 29.3 4 10.10%

35 Hydroxyacyl-coenzyme A dehydrogenase,
mitochondrial

−1.22 0.002 0.021 HCDH_MOUSE 8.8 / 34.5 8.6 / 32.0 12 22.00%

Amino acid metabolism
20 Glutamate dehydrogenase 1, mitochondrial −1.23 0.022 0.082 DHE3_MOUSE 8.1 / 61.3 8.0 / 56.9 14 25.10%
7 Methylcrotonoyl-CoA carboxylase

alpha chain, mitochondrial
−1.21 0.0004 0.008 MCCA_MOUSE 7.7 / 79.3 8.0 / 74.1 11 13.80%

23 Ornithine aminotransferase, mitochondrial +1.42 9.8e-08 3.1e-5 OAT_MOUSE 6.2 / 48.3 6.6 / 48.3 2 4.78%

TCA cycle
5 Aconitate hydratase, mitochondrial −1.20 0.021 0.078 ACON_MOUSE 8.1 / 85.4 8.0 / 80.0 6 7.95%
6 Aconitate hydratase, cytoplasmic −1.29 0.034 0.095 ACOC_MOUSE 7.2 / 98.1 8.4 / 84.8 13 14.80%
36 ATP synthase gamma chain, mitochondrial +1.27 0.021 0.078 ATPG_MOUSE 9.1 / 32.8 9.1 /27.1 5 15.10%

Energy metabolism
22 Adenosine kinase −1.25 0.029 0.093 ADK_MOUSE 7.2 / 31.1 6.4 / 46.0 2 3.88%
27 Creatine kinase M-type −1.22 0.002 0.020 KCRM_MOUSE 6.6 / 43.0 8.0 / 43.8 24 54.10%
49 Adenylate kinase 4, mitochondrial +1.24 0.005 0.090 KAD4_MOUSE 7.0 / 25.1 7.9 / 23.5 8 35.00%

Antioxidants
48 Peroxiredoxin 1 +1.35 0.0002 0.0055 PRDX1_MOUSE 8.3 / 22.2 8.7 / 18.3 11 42.20%
44 Peroxiredoxin 2 +1.23 0.011 0.056 PRDX2_MOUSE 5.2 / 21.8 5.0 / 18.4 6 24.70%
9 Protein disulfide-isomerase +1.32 0.001 0.014 PDIA1_MOUSE 4.8 / 57.1 4.6 / 59.9 5 8.64%
14 Protein disulfide-isomerase A3 +1.43 5.7e-06 0.00061 PDIA3_MOUSE 6.0 / 56.6 6.5 / 60.5 6 11.90%

Chaperones
1 78 kDa glucose-regulated protein +2.18 3.8e-10 3.1e-05 GRP78_MOUSE 5.1 / 72.4 5.0 / 73.6 21 33.70%
47 Alpha crystallin B chain +1.46 9.6e-05 0.0038 CRYAB_MOUSE 6.8 / 20.1 8.0 / 17.6 10 45.10%
39 Heat-shock protein beta-1 (27 kDa) +1.36 0.002 0.020 HSPB1_MOUSE 6.1 / 23.0 6.1 / 22.2 2 9.09%
8 T-complex protein 1, zeta subunit +1.25 0.006 0.040 TCPZ_MOUSE 6.7 / 57.8 7.9 / 64.3 10 19.20%

Myofilaments
43 Myosin regulatory light chain 2,

ventricular/cardiac muscle isoform
−1.34 0.018 0.073 MLRV_MOUSE 4.7 /18.8 4.6 / 16.5 11 46.40%

37 Troponin I, cardiac muscle −1.67 0.0003 0.0071 TNNI3_MOUSE 9.6 / 21.2 9.4 / 21.0 2 9.48%

Intermediate filaments, Microtubules
11 Desmin +1.38 3.5e-05 0.0024 DESM_MOUSE 5.2 / 53.4 5.2 / 56.4 26 50.70%
12 Desmin +1.50 3.3e-07 5.8e-05 DESM_MOUSE 5.2 / 53.4 5.3 / 56.4 27 51.60%
10 Tubulin beta-2C chain +1.45 0.011 0.056 TBB2C_MOUSE 4.8 / 50.4 4.9 / 57.4 8 18.40%

Plasma proteins
38 Apolipoprotein A-I +1.70 0.001 0.016 APA1_MOUSE 5.6 / 30.6 5.4 / 20.4 6 19.70%
15 Fibrinogen beta chain +1.75 0.001 0.012 FIBB_MOUSE 6.7 / 54.7 6.8 / 58.9 10 21.00%
13 Fibrinogen gamma chain +1.22 0.02 0.23 FIBG_MOUSE 5.5 / 49.4 5.7 / 53.8 3 6.65%
2 Serotransferrin +1.32 0.003 0.028 TRFE_MOUSE 6.9 / 76.7 77.2 / 7.7 15 24.70%
3 Serotransferrin +1.34 0.001 0.018 TRFE_MOUSE 6.9 / 76.7 77.2 / 7.8 40 57.00%
4 Serotransferrin +1.34 0.002 0.019 TRFE_MOUSE 6.9 / 76.7 77.2 / 7.9 34 45.90%

Mixtures
19 Mixture: −1.32 0.001 0.017

Succinyl-CoA:3-ketoacid-coenzyme
A transferase 1, mitochondrial

SCOT1_MOUSE 8.7 / 60.0 8.0 / 58.5 8 18.70%

(continued on next page)
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Table 1 (continued)

No. Protein identity Fold change
hibernating
vs control

P-value
(t-test)

P-value
(FDR)

SWISS PROT
accession
number

Theoretical
pI/MW

Observed
pI/MW

No of identified
peptides

Sequence
coverage (%)

Cytosol aminopeptidase AMPL_MOUSE 6.7 / 56.0 8.0 / 58.5 5 13.30%
Mixtures

21 Mixture: −1.24 0.008 0.046
Beta-enolase ENOB_MOUSE 6.7 / 47.0 8.1 / 50.3 7 14.50%
Fumarate hydratase, mitochondrial FUMH_MOUSE 9.1 / 54.2 8.1 / 50.3 3 5.72%

26 Mixture −1.23 0.009 0.049
Creatine kinase M-type KCRM_MOUSE 6.6 / 43.0 7.8 / 44.2 22 50.90%
Acyl-CoA dehydrogenase,
long-chain specific

ACADL_MOUSE 8.5 / 47.9 7.8 / 44.2 18 40.90%

30 Mixture: +1.36 0.002 0.0055
Glyoxylate reductase/
hydroxypyruvate reductase

GRHPR_MOUSE 7.6 / 35.3 8.2 / 36.5 10 23.50%

Glyceraldehyde-3-phosphate
dehydrogenase

G3P_MOUSE 8.5 / 35.7 8.2 / 36.5 8 29.10%

32 Mixture: −1.32 0.0008 0.014
Four and a half LIM domains protein 2 FHL2_MOUSE 7.3 / 32.1 8.0 / 33.5
L-Lactate dehydrogenase A chain LDHA_MOUSE 7.6 / 29.5 8.0 / 33.5 6 15.10%

45 Mixture: +1.33 0.008 0.046
NADH dehydrogenase [ubiquinone]
1 beta subcomplex subunit 10

NDUBA_MOUSE 8.4 / 20.9 8.8 / 19.6 8 40.30%

Cysteine and glycine-rich protein 3 CSRP3_MOUSE 8.9 / 20.8 8.8 / 19.6 3 24.70%
46 Mixture: +1.30 0.007 0.043

Cysteine and glycine-rich protein 3 CSRP3_MOUSE 8.9 / 20.8 8.6 / 19.3 6 39.20%
Glutathione S-transferase P1 GSTP1_MOUSE 8.1 / 23.5 8.6 / 19.3 5 37.60%

pI denotes isoelectric point; MW, molecular weight.
Difference in-gel electrophoresis results were reproduced with different biological replicates using reverse-labeling (biological replicates n=4 for control and hibernating hearts,
with technical replicates n=7). P-values for differences between the two groups were derived from unpaired t-tests using Decyder software (v6.5, GE healthcare). Corrections for
multiple testing were performed by the Benjamini–Hochberg equation, yielding False Discovery rates (FDR). The differentially expressed proteins are numbered in Fig. 2.
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the observed reduction of glutamate, glutamine and total creatine in
hibernating hearts by 1H-NMR spectroscopy corresponded to a
decrease of mitochondrial glutamate dehydrogenase and creatine
kinase in the proteomic dataset (Table 1). Consistent with previous
reports in hypoxic rats [21], the observed metabolic differences
(lower glutamine levels, but higher aspartate to glutamate concen-
tration ratios) are indicative of a decreased flux through the malate-
aspartate shuttle under conditions of oxygen limitation. In addition,
choline, taurine, and leucine concentrations were lower in hibernat-
ing hearts. Perturbations of glucose concentrations and the adenosine
pool (ADP+ATP) failed to reach statistical significance.
Fig. 3. Combined proteomic and transcriptomic investigation. Comparison between fold ind
hibernating versus control hearts for proteins detected by DIGE (see Table 1). The proteins
3.6. Network analysis

To enable an unbiased analysis at the network level, interactions
within the transcriptomics data [7]werefirst visualized usingCytoscape
(Fig. 6A). This analysis revealed 2major clusters linked by transcription
factor 4 and synphilin-1, a protein that is encoded by the SNCAIP gene
and contains several protein–protein interaction domains, including
anATP/GTP-bindingmotif. The roleof thesegenes in cardiachibernation
is currently unknown. The proteomic and metabolomic data were
then combined with the transcriptomic data and analyzed at the
pathway level either independently, or in combination using the
uction of mRNA expression (orange bars, log scaled) and protein changes (blue bars) in
are grouped according to the GO annotations.

image of Fig.�3


Fig. 4. Protein expression and post-translational modifications. (A) Western blot analysis
of GLUT1, LDH and IGFBP2 in hibernating and control hearts (6W-ON). (B, C) Phosphate-
affinity gel electrophoresis for mobility shift detection of phosphorylated proteins.
Significant changes were detected in the phosphorylation (upper panel, bands marked
with an arrow) ofmyosin regulatory light chain 2 (MLC2, B) and cardiac troponin I (TnI, C)
without differences in protein abundance (lower panels). Quantitative data are shown in
Supplemental Figure 3. (D) Western blot analysis of anti-oxidant proteins in hibernating
and control hearts. Densitometry data for SOD2 are provided in Supplemental Figure 3.
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systems biology analysis suite MetaCore™. Results are presented in
Supplemental Table III. Although the protein changes were not always
consistent with the mRNA changes, protein changes were in the same
pathway as transcriptomic changes and both datasets contributed
different focus molecules to the pathway analysis (Supplemental
Figure 4). Consequently, the combination of the proteomic and
transcriptomic dataset significantly improved the statistical confidence
of the pathway analysis, with HIF-hypoxia-Akt signaling and glycolysis
being the most significant (Fig. 6B). In addition, the combined
transcriptomic and proteomic data pointed towards the activation of
hydroxyproline production, a pivotal component of collagen synthesis,
providing a direct link to cardiac remodeling. Adding the metabolite
data did not increase the power of the analysis, as the corresponding
metabolite concentrations, i.e., lactate, were kept relatively constant in
the hibernating myocardium. “Cardiomyopathies” and “heart failure”
were returned as the most prominent linked diseases based on the
combined analysis using Metacore™.
4. Discussion

In the present study, a combined transcriptomic, proteomic and
metabolomic approach has been conducted to provide a comprehensive
analysis of molecular changes in a mouse model of chronic myocardial
hibernation. The different analyses explored different aspects of cellular
processes, i.e., microarrays interrogated the transcriptional signal
whereas proteomics related to translational and post-translational
mechanisms. Therefore, setting analytical considerations aside, differ-
ences between the datasets were not only inevitable but also critical in
understanding the various aspects of cellular process mechanism and
regulation. Interestingly, chronic hypoxia resulted in a pronounced
myocardial responseat the transcript and theprotein level but relatively
minor changes in the metabolome indicating that metabolic homeo-
stasis is maintained by adaptive changes in the proteome and the
transcriptome.

4.1. Integrated pathway analysis to combine “-omics” data

Biological systems are organized in scale-free networks [22]. The
promise of systems biology is to characterize these networks and to
finally predict their behavior. Despite the comprehensive coverage
obtained by whole-genome microarray analysis, additional informa-
tion can be gained by combining transcriptomic with proteomic data.
As demonstrated in this study, proteomics contributed different focus
molecules to the protein association networks and the p-value of
the top-ranking HIF signaling pathway improved by 2 orders of
magnitude in the combined analysis, even though HIF was not the
top-ranking pathway in analysis based on the transcriptomic or the
proteomic dataset separately. Moreover, proline metabolism and
collagen metabolism, a key determinant for cardiac remodeling and
cardiomyopathies, had the highest score in the proteomic dataset, but
only ranked 22 based on the transcriptomic data. Thus, the bias of
proteomics towards high abundant components resulted in a re-
arrangement of the top scoring pathways with the final top 3 (HIF
signaling, glycolysis/glycogenesis, proline and collagen metabolism)
being in agreementwith the observed reversible fibrosis in thismouse
model of hibernation. On the other hand, conventional inference
statistics attaches utmost importance to the biggest changes and the
absence of a significant change, i.e., for glucose metabolites despite
the induction of glycolytic enzymes, does not add to the pathway
analysis whereas all that has been shown are differences in net
concentrations at the time of measurement. An integrated assessment
of enzymes and metabolites helps to highlight potential dynamic
adaptations in flux or turnover, but falls short of a metabolic control
and flux analysis, which requires a more detailed treatment with
respect to definition of control and regulation of metabolism [22–24].
Potential pitfalls include stability and turnover of mRNA, rates of
protein synthesis and degradation (peptide chain initiation and
elongation as well as activities of the ubiquitin proteasome system
and autophagy [7]), and rates of metabolite turnover (e.g., ATP
turnover rates). Ultimately, a network of enzyme-catalyzed reactions
and ion transport processes is the platform for the interplay of
energetic, electrical, Ca2+ handling and contractile processes in the
heart [25,26]. Without a systems-wide perspective, network behavior
can be misinterpreted by relying on transcriptomic, proteomic or
metabolomic readouts only.

4.2. Adaptive changes in glycolysis and myofilament phosphorylation

The hallmark of myocardial hibernation is the maintained viability
of the dysfunctional hypoxic myocardium. Metabolic activity is
sustained by a shift from fatty acid metabolism to glycolysis resulting
in an increased glucose uptake with a corresponding accumulation of
glycogen, a critical substrate for the ischemic heart [2]. HIF-1
represents a master switch in the metabolic and functional adaptation
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Fig. 5. High-resolution 1H-NMR spectroscopy of cardiac tissue extracts. Representative spectra of the aliphatic region (−0.05 to 4.2 ppm) from control (bottom) and hibernating
hearts (top). Quantitative metabolite data are presented in Table 2.
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to chronic anaerobic conditions by stimulating glucose metabolism
(through GLUT1) and angiogenesis (through VEGF). Upregulation of
both HIF-target genes has previously been shown in the human
hibernating myocardium [27]. While the recapitulation of known
associations validates our approach, the transgenic mice allow us to
study HIF-mediated metabolic adaptation without concomitant angio-
genic effects. In chronically hibernating myocardium of pigs, persistent
regional downregulation of mitochondrial enzymes and upregulation
of stress proteins was reported, but no induction of glycolytic enzymes
was observed after a 3- to 5-month period [6]. Our study confirms the
repression of mitochondrial enzymes and upregulation of anti-oxidant
and stress proteins. Compared to the former study in pigs [6], our
transgenic mice were subject to shorter periods of ischemia and we
Table 2
Metabolite changes by 1H-NMR in cardiac tissue extracts.

Control
(n=3)

Hibernating
(n=5)

Fold change P (t-test)

Leucine 0.101 (±0.005) 0.075 (±0.005) 0.74 0.016
Isoleucine 0.414 (±0.138) 0.374 (±0.107) 0.90 0.828
Valine 0.105 (±0.011) 0.086 (±0.008) 0.82 0.214
Isovalerate 0.123 (±0.034) 0.143 (±0.048) 1.16 0.774
Beta-OH butyrate 0.145 (±0.030) 0.126 (±0.026) 0.87 0.654
Lactate 10.383 (±0.784) 11.689 (±0.648) 1.12 0.255
Alanine 1.680 (±0.273) 1.719 (±0.106) 1.02 0.878
Acetate 0.337 (±0.053) 0.310 (±0.090) 0.92 0.835
Glutamate 3.752 (±0.258) 2.563 (±0.126) 0.68 0.003
Succinate 1.234 (±0.343) 1.087 (±0.119) 0.88 0.638
Glutamine 2.873 (±0.315) 2.000 (±0.186) 0.69 0.042
Aspartate 0.266 (±0.097) 0.346 (±0.073) 1.30 0.534
Choline 0.077 (±0.005) 0.051 (±0.004) 0.66 0.006
Phosphocholine 0.173 (±0.027) 0.129 (±0.013) 0.75 0.145
Carnitine 0.546 (±0.091) 0.562 (±0.033) 1.03 0.845
Taurine 22.11 (±1.937) 16.01 (±0.936) 0.72 0.018
Glycine 0.572 (±0.033) 0.704 (±0.082) 1.23 0.282
Creatine 8.349 (±0.937) 6.051 (±0.461) 0.72 0.047
Glycolic acid 0.583 (±0.026) 0.572 (±0.055) 0.98 0.882
Glucose 0.218 (±0.100) 0.309 (±0.061) 1.42 0.438
Fumerate 0.085 (±0.023) 0.073 (±0.012) 0.86 0.622
Tyrosine 0.134 (±0.068) 0.036 (±0.004) 0.27 0.098
Phenylalanine 0.051 (±0.005) 0.043 (±0.003) 0.84 0.217
Adenosine pool 3.419 (±0.357) 2.808 (±0.244) 0.82 0.193
NAD+NADH 0.344 (±0.093) 0.360 (±0.047) 1.05 0.875
Formate 0.306 (±0.015) 0.300 (±0.039) 0.98 0.912

Data presented are given in μmol/g wet weight (mean±SE), n=3 for control and n=5
for hibernating hearts. P-values for differences between the two groups were derived
from unpaired t-tests (bold numbers highlight significant differences Pb0.05).
report the induction of an early cardioprotective program characterized
by an upregulation of glycolytic enzymes and transient induction of K
(ATP) channels. We also measured cardiac metabolites rather than
enzymatic activity [6] and demonstrated alterations in the phosphor-
ylation state of myofilmant proteins. Importantly, basal phosphoryla-
tion of MLC2 plays a pivotal role in cardiac muscle contraction, and
reduced phosphorylation may contribute to the self-protecting cessa-
tion of myocardial contraction during hibernation [28]. A decrease in
both TnI and MLC2 phosphorylation correlated with enhanced Ca2+-
responsiveness in human failing hearts, while phosphorylation ofMLC1
and troponin T isoform expression was unaltered [29,30]. Thus, the
cessation of contraction in hibernation is accompanied by a complex
interplay between enzymatic changes and alterations in myofilament
phosphorylation.

4.3. Adaptive changes in K(ATP) channels and energy metabolism

K(ATP) channels are unique nucleotide sensors that adjust
membrane potential in response to intracellular metabolic oscilla-
tions. Kir6.2 and SUR2A are the pore-forming and regulatory subunits
of the K(ATP) channel complex, respectively. Transition of the SUR
subunit from the ATP to the ADP-liganded state promotes K+

permeation through Kir6.2 and defines K(ATP) channel activity,
which serves a cardioprotective role under ischemic insult [31]. Our
data extend these findings by implicating a temporary induction of
these metabolic sensors in the cardiac adaptation to chronic hypoxia.
Their subsequent suppression may be required for the transition into
the maintenance phase of hibernation with reduced metabolic
demand, which is supported by the reduction in GLUT1, a hypoxia
marker, after administration of glibenclamide. It has previously been
proposed that the response of hypoxia tolerant systems to oxygen
lack occurs in two phases. The first lines of defense against hypoxia
include a balanced suppression of ATP-demand and ATP-supply
pathways; this regulation stabilizes (adenylates) at new steady-state
levels even while ATP turnover rates greatly decline [32]. Adenosine
kinase contributes to energy homeostasis by recovering AMP from
adenosine and allows AMP to increase when ATP becomes depleted
[33]. The downregulation of this salvage enzyme in hibernation may
indicate loss of purines possibly with increased extracellular concen-
tration of adenosine. The hydrolysis of AMP to adenosine has been
shown to benefit tissue survival during ischemia by improving the
free energy of ATP hydrolysis [34]. Moreover, inhibition of adenosine
kinase was protective in a rat model of myocardial infarction [35].
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Fig. 6. Bioinformatic analysis. (A) An interaction matrix was constructed using Cytoscape software. The nodes of the differentially expressed transcripts fall into 2 major clusters
linked by transcription factor 4 and SNCAIP. (B) For pathway analysis, the transcriptomic, proteomic and metabolomic datasets were combined using the MetaCore™ systems
biology analysis suite. Collective bioinformatic interrogation of the 3 different -omic datasets improved the statistical significance (visualized as an increase in the -log (p-value)) and
resulted in a rearrangement in the ranking of the top scoring pathways (Supplemental Table III).
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Interestingly, a chain of adenylate kinase-catalyzed phosphotranfer
reactions has been implicated in the communication of mitochondria-
generated signals to K(ATP) channels [20]. Mitochondrial adenylate
kinase 4, identified in this study, contributes to the phosphorylation of
AMP, but can only use GTP or ITP as a substrate [36]. It has recently
been demonstrated to interact with the mitochondrial inner mem-
brane protein adenine nucleotide translocase, which might be
important for its protective benefits under stress conditions [37]. On
the other hand, creatine kinase is known to act as a spatial and
temporal energy buffer and regulator of pH. Over-expression of the
cardiac creatine transporter, however, failed to protect transgenic
mice from heart failure despite achieving supraphysiological creatine
levels [38]. In fact, the increase in the cardiac creatine content was
associated with decreased glycolytic activity [39]. Thus, a reduced
creatine pool might be an adaptive mechanism in response to chronic
hypoxia [12]. Although the concept of homeostasis reaches far back
into the history of experimental physiology [40,41], this is, to our
knowledge, the first time that the net effect of hibernation on oxygen
balance has been experimentally shown.

4.4. Limitations of the study

No technology can currently resolve the entire complexity of the
mammalian proteome and metabolome. While shot-gun proteomic
analyses can mine deeper into the proteome, DIGE allows the reliable
quantification of differences as low as 10% in protein expression and
visualizes the post-translational modifications of intact proteins as shift
in isoelectric point or molecular weight. Membrane proteins, however,
are not well represented by this technique. Despite a pronounced
change in the transcription of the K(ATP) channel components,wewere
unable to detect K(ATP) channels on 2-DE gels. Furthermore, 1H-NMR,
as employed in the present study, allows the quantification of themajor
stable metabolites in cardiac tissue extracts. 31P-NMR would allow the
detection of labile cardiac energetic metabolites, such as phosphocre-
atine, ATP, inorganic phosphate and intracellular pH, to better clarify the
degree of hypoxia.

4.5. Conclusions

In this study, we comprehensively analyze a conditional mouse
model of myocardial hibernation by 3 independent “-omics” method-
ologies. We demonstrate how the integration of corresponding mRNA,
protein and metabolite changes by network analysis aids in the
identification of key biological pathways that underlie this important
cardioprotective phenomenon. The combination of different “-omics”
approaches will be indispensable for an integrated phenotyping of
transgenic animals [12] and addressing the multiple facets of cardio-
vascular diseases in a systems biology approach.
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