
Journal of Functional Analysis 211 (2004) 508–524

Concentration of norms and eigenvalues of
random matrices

Mark W. Meckes�,1

Department of Mathematics, Case Western Reserve University, Cleveland, OH 44106, USA

Received 9 May 2003; accepted 12 May 2003

Communicated by Dan Voiculescu

Abstract

We prove concentration results for cn
p operator norms of rectangular random matrices and

eigenvalues of self-adjoint random matrices. The random matrices we consider have bounded

entries which are independent, up to a possible self-adjointness constraint. Our results are

based on an isoperimetric inequality for product spaces due to Talagrand.
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1. Introduction

In this paper we prove concentration results for norms of rectangular random
matrices acting as operators between cn

p spaces, and eigenvalues of self-adjoint

random matrices. Except for the self-adjointness condition when we consider
eigenvalues, the only assumptions on the distribution of the matrix entries are
independence and boundedness. Our approach is based on a powerful isoperimetric
inequality for product probability spaces due to Talagrand [20].
Throughout this paper X ¼ Xm;n will stand for an m � n random matrix with real

or complex entries xjk: (Specific technical conditions on the xjk’s will be introduced as

needed for each result below.) If 1pp; qpN and A is an m � n matrix, we denote by
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jjAjjp-q the operator norm of A : cn
p-cm

q :We denote by p0 ¼ p=ðp � 1Þ the conjugate
exponent of p: For a real random variable Y we denote by EY the expected value
and by MY any median of Y : Our first main result is the following.

Theorem 1. Let 1opp2pqoN: Suppose the entries xjk of X are independent

complex random variables, each supported in a set of diameter at most D. Then

P½j jjX jjp-q �MjjX jjp-qjXt
p4 exp � 1

4

t

D

� �r
� �

ð1Þ

for all t40; where r ¼ minfp0; qg:

To prove Theorem 1 we show that Talagrand’s isoperimetric inequality, which at
first appears adapted primarily to prove normal concentration for functions which
are Lipschitz with respect to a Euclidean norm, actually implies sometimes stronger
concentration for functions which are Lipschitz with respect to more general norms.
In particular, as we show in Corollary 4 below, one obtains concentration of the kind
in (1) for convex functions which are Lipschitz with respect to cr norms for rX2:
Since such functions are automatically Lipschitz with respect to the Euclidean norm,
one can apply the known r ¼ 2 case of this fact directly, but would then obtain the
upper bound with r replaced by 2 in the r.h.s. of (1). Since the conclusion of Theorem
1 is trivial when t=Dp1; estimate (1) is stronger than the estimate one would obtain
this way.
To put Theorem 1 in perspective, we consider the particular case in which p ¼ q0;

m ¼ n; and P½xjk ¼ 1
 ¼ P½xjk ¼ �1
 ¼ 1=2 for all j; k: In this situation,

n1=qpMjjX jjq0-qpCn1=q;

where C40 is a universal constant. Theorem 1 implies that, while jjX jjq0-q achieves

values as large as n2=q; it is comparable to its median except on a set whose
probability decays exponentially quickly as n-N: Furthermore, in this situation the

estimate in (1) is sharp as long as n�1=qt is sufficiently large and n�2=qt is sufficiently
small. These observations apply more generally; see the remarks in Section 3
following the proof of Theorem 1.
If A is a self-adjoint n � n matrix, we denote by l1ðAÞXl2ðAÞX?XlnðAÞ the

eigenvalues of A; counted with multiplicity. Our second main result is the following.

Theorem 2. Suppose m ¼ n and the entries xjk; 1pjpkpn; of X are independent

complex random variables such that:

(i) for 1pjpn; xjj is real and is supported on an interval of length at most
ffiffiffi
2

p
D; and

(ii) for 1pjokpn; either xjk is supported on a set of diameter at most D; or

xjk ¼ wjkðajk þ ibjkÞ; where wjkAC is a constant with jwjkjp1; and ajk; bjk

are independent real random variables each supported in intervals of length at

most D;
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and that xjk ¼ xkj for koj: Then

P½jl1ðXÞ �Ml1ðXÞjXt
p4e�t2=8D2 ð2Þ

for all t40; and the same holds if l1ðXÞ is replaced by lnðXÞ: Furthermore, for each

2pkpn � 1; there exists an MkAR such that

P½jlkðXÞ � MkjXt
p 8 exp � t

2
ffiffiffi
2

p
ð
ffiffiffi
k

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
ÞD

 !2
24 35

o 8 exp � t2

32kD2

� �
ð3Þ

for all t40; and the same upper bound holds if lkðX Þ is replaced by ln�kþ1ðX Þ and Mk

by Mn�kþ1:

Note that Theorem 2 applies in particular to the case of real symmetric random
matrices with off-diagonal entries supported in intervals of length D and diagonal

entries supported in intervals of length
ffiffiffi
2

p
D:

The proof of Theorem 2 is also based on Talagrand’s theorem, in this case
applying it only to functions which are Lipschitz with respect to a Euclidean norm.
Theorem 2 is (up to numerical constants) a sharpening and generalization of a result
of Alon et al. [1]. Their proof is also based on Talagrand’s theorem, although they
apply it in a very different way. For perspective, we note that in the particular case in

which P½xjk ¼ 1
 ¼ P½xjk ¼ �1
 ¼ 1=2; Ml1ðXÞ is of the order
ffiffiffi
n

p
; while l1ðXÞ can

achieve values as large as n: Furthermore, in this situation the estimate in (2) is sharp

when n�1=2t is sufficiently large and n�1t is sufficiently small. (See [1] for a discussion
of this point when X is the adjacency matrix of the random graph Gðn; 1=2Þ:)
However, the estimate in (3) is probably not sharp in its dependence on k: See the
remarks in Section 3 following the proof of Theorem 2 for details.
We emphasize that our results are of interest as bounds for large deviations.

Beginning with the work of Tracy and Widom [22,23], which has been refined and
extended in [2,11,17], it is known that, at least in some situations, the kind of result

contained in (2), while nontrivial, is not sharp when t ¼ oð
ffiffiffi
n

p
Þ:More precisely, it has

been established in [2] that for certain self-adjoint Gaussian random matrices
(normalized in such a way as to be comparable to X in our Theorem 2), one has
concentration of the largest eigenvalue of the form

P½l1ðX Þ � El1ðXÞXt
pC exp½�maxfc1t
2; c2ðn1=6tÞ3=2g
; ð4Þ

where C; c1; c240 are constants. The results of [17], although they do not imply an
estimate of the type in (4) for fixed n; show that such an estimate holds
asymptotically (as n-N) also for more general random matrices; the result is
probably also true for fixed n: A related result for the largest singular value of a
rectangular Gaussian random matrix is proved in [9].
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We also emphasize that aside from the uniform boundedness assumption, the
distributions of the independent entries of X in Theorems 1 and 2 are completely
arbitrary. In particular, there is no assumption of identical distribution of
independent entries, and no assumption about the values of their means. For
example, our approach can be used to study small random perturbations of an
arbitrary fixed matrix.
Talagrand’s theorem was first applied in the context of random matrices by

Guionnet and Zeitouni [8], who used it to prove a concentration result for the
spectral measure of self-adjoint random matrices, and who also remarked that the
same methods give concentration results for other functionals of self-adjoint
matrices. For general discussions of applications of concentration of measure
phenomena to random matrices, see the survey [6] by Davidson and Szarek and
Section 8.5 of the book [13] by Ledoux.
In Section 2, we show how to obtain concentration for Lipschitz functions on cq

sum spaces (and more general sums of normed spaces) from Talagrand’s
isoperimetric inequality. In Section 3, we prove Theorems 1 and 2, and give an
infinite-dimensional version of Theorem 1 and a version of Theorem 2 for singular
values of rectangular matrices. We also compare the results obtained by our methods
with the corresponding results for Gaussian random matrices obtained from the
Gaussian isoperimetric inequality.

2. General concentration results

We first need some notation. Let ðO1;S1; m1Þ;y; ðON ;SN ; mNÞ be probability
spaces, O ¼ O1 �?� ON ; P ¼ m1#?#mN : For x ¼ ðx1;y; xNÞAO; y ¼
ðy1;y; yNÞAO; hðx; yÞARN is defined by

hðx; yÞj ¼
0 if xj ¼ yj;

1 if xjayj :

�
For ADO; xAO; UAðxÞ ¼ fhðx; yÞ : yAAgCRN : Finally, we define the convex hull
distance from x to A by

fcðA; xÞ ¼ inffjzj : zAconv UAðxÞg; ð5Þ

where j � j is the standard Euclidean norm and conv denotes the convex hull. (In fact,
UAðxÞ is usually defined to be the larger set

fhAf0; 1gN : (yAA such that hj ¼ 0 ) xj ¼ yjg;

but this difference does not affect the value of fcðA; xÞ:) Talagrand’s isoperimetric
inequality from [20] is the following.

Theorem 3 (Talagrand). Let ðO;PÞ be a product probability space as above. For any

ADO;
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Z
O
exp

1

4
f 2c ðA; xÞ

� �
dPðxÞp 1

PðAÞ;

which by Markov’s inequality implies

Pðfx : fcðA; xÞXtgÞp 1

PðAÞ e�t2=4

for all t40:

As in [20], we have ignored measurability issues in the statement of Theorem 3. To
be strictly correct, the integrals and probabilities which appear must be replaced
by upper integrals and outer probabilities; however, this issue is irrelevant in
applications, since one typically applies such a result to estimate expressions in which
all the functions and sets which appear are measurable.

Let E ¼ ðRN ; jj � jjEÞ be such that the standard basis of RN is 1-unconditional for

jj � jjE : (We will refer to such E as a 1-unconditional space.) For normed vector

spaces ðVj; jj � jjVj
Þ; j ¼ 1;y;N; we denote by

VE ¼
MN
j¼1

Vj

 !
E

the direct sum of vector spaces with the norm

jjðv1;y; vNÞjjVE
¼ jjðjjv1jjV1

;y; jjvN jjVN
ÞjjE :

Theorems 1 and 2 will be proved using the following consequence of Theorem 3.

Corollary 4. Let ðVj; jj � jjVj
Þ; j ¼ 1;y;N be normed vector spaces and V ¼ VcN

q
for

qX2: For j ¼ 1;y;N; let mj be a probability measure on Vj which is supported on

a compact set of diameter at most 1. Let P ¼ m1#?#mN : Suppose F :V-R is

1-Lipschitz and quasiconvex, that is, F�1ðð�N; a
Þ is convex for all aAR: Then

P½jF �MF jXt
p4e�tq=4 ð6Þ

for all t40:

We will postpone the proof of Corollary 4 until after some remarks. The q ¼ 2
case of Corollary 4 has been widely noted and applied in various degrees of
generality already; see [13,16,20,21] and their references. As observed in the
introduction, if F is 1-Lipschitz with respect to the cq sum norm on V ; then F is also

1-Lipschitz with respect to the c2 sum norm, so the q ¼ 2 case of Corollary 4 applies,

but yields directly only the weaker upper bound 4e�t2=4 in inequality (6).
Corollary 4 can be applied in the case that F is L-Lipschitz and each mi is

supported on a set of diameter at most D; by replacing t with t=LD in the r.h.s. of (6).
This fact is used implicitly in the proofs in Section 3. Although it is not immediately
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obvious from Theorem 3, the statement of Corollary 4 allows the formal replacement
of F by �F ; thus Corollary 4 also applies when F is quasiconcave, that is, when

F�1ð½a;NÞÞ is convex for all aAR: In particular, Corollary 4 applies to both convex
and concave Lipschitz functions. Talagrand gives an example which shows that some
form of convexity assumption in Corollary 4 cannot be removed in general in [19], in
which the special case of Theorem 3 for the uniform measure on the discrete cube
was first proved.
The conclusion of Corollary 4 does not hold in general for functions which are

only Lipschitz with respect to an cp sum norm for 1ppo2 without the introduction

of dimension-dependent constants, even if the bound 4e�tp=4 is replaced by any other
dimension-independent function which approaches 0 at infinity. To see this, let
fYj: jANg be independent random variables with P½Yj ¼ 0
 ¼ P½Yj ¼ 1
 ¼ 1=2 for

each j; and Sn ¼
Pn

j¼1 Yj : Then S
1=p
n ¼ jjðY1;y;YnÞjjp; and ðn=2Þ1=p is a median for

S
1=p
n : Suppose we have a concentration result which implies there exists a function f

with limt-N f ðtÞ ¼ 0 such that for all n and for all t40;

P½S1=p
n �MS1=p

n Xt
pf ðtÞ: ð7Þ

Then by Taylor’s theorem,

P
Sn � n=2ffiffiffi

n
p

=2
Xt

� �
¼P S1=p

n X
n

2
þ

ffiffiffi
n

p

2
t

� �1=p
" #

¼P S1=p
n � n

2

� �1=p

X
1

21=pp
n
1
p
� 1

2t þ Oðn1
p
�1Þt2

� �
p f

1

21=pp
n
1
p
�1
2t þ Oðn1

p
�1Þt2

� �
;

which implies that for any t40;

lim
n-N

P
Sn � n=2ffiffiffi

n
p

=2
Xt

� �
¼ 0;

which contradicts the central limit theorem.

It is also not difficult to see that for the examples of S
1=q
n with qX2; the

concentration result of Corollary 4 is sharp, up to the values of numerical constants,

when c ¼ cðqÞpn�1=qtp1� 2�1=q: Moreover, by gluing together copies of S
1=q
n for

different values of 1pnpN; one obtains an example of a Lipschitz function on RN

for which Corollary 4 is sharp for the entire nontrivial range of t:
It is more typical to state results of the type in Corollary 4 in terms of deviations of

a random variable from the mean rather than the median. This difference is
inessential, since this level of concentration implies that the median and mean cannot
be too far apart. For example, in the situation of Corollary 4, we have
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jEF �MF jp EjF �MF j ¼
Z

N

0

P½jF �MF jXt
 dt

p 4

Z
N

0

e�tq=4 dt ¼ 41þ
1
qG 1þ 1

q

� �
:

We now turn to the proof of Corollary 4. Rather than proving Corollary 4 directly
from Theorem 3, we will deduce it as a special case of Proposition 5 below, which
uses Theorem 3 to derive concentration for functions which are Lipschitz with
respect to an arbitrary 1-unconditional norm, in terms of a modulus function for the
norm. Theorem 3 bounds the size of the set of points which are far from a set A in
terms of the convex hull distance fcðA; �Þ from A: Thus it provides concentration for
functions which satisfy a Lipschitz type condition with respect to the convex hull
distance. However, since in general this distance is not induced by a metric, some
care is needed in its application.

Let E ¼ ðRN ; jj � jjEÞ be a 1-unconditional space. We define

KEðtÞ ¼ inffjxj : jjxjjEXt; jjxjj
N
p1g

for t40; where we use the convention that inf | ¼ N:

Proposition 5. Let VE be as described before Corollary 4 and let KE be as above. For

j ¼ 1;y;N; let mj be a probability measure on Vj which is supported on a compact set

of diameter at most 1. Let P ¼ m1#?#mN : Suppose F : VE-R is 1-Lipschitz and

quasiconvex. Then

P½jF �MF jXt
p4 exp½� 1

4
ðKEðtÞÞ2
 ð8Þ

for all t40:

It is easy to verify that KcN
q
ðtÞXtq=2 for qX2 and any NAN (cf. Lemma 6 below),

so that Corollary 4 follows immediately from Proposition 5.

Proof of Proposition 5. First we show that

KEðdistðx; conv AÞÞpfcðA; xÞ ð9Þ

for x ¼ ðx1;y; xNÞAsuppðPÞ and |aADVE ; where dist is the distance in the

normed space VE : Let yk ¼ ðyk
1 ;y; yk

NÞAA-suppðPÞ and 0pykp1 for k ¼ 1;y; n

such that
Pn

k¼1 yk ¼ 1: Then for each j ¼ 1;y;N;

xj �
Xn

k¼1
ykyk

j

�����
�����

�����
�����
Vj

p
Xn

k¼1
ykjjðxj � yk

j ÞjjVj
p
Xn

k¼1
ykhðx; ykÞj
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since xj; yk
j AsuppðmjÞ for each j; k: Then by unconditionality,

distðx; conv AÞp x �
Xn

k¼1
ykyk

�����
�����

�����
�����
VE

p
Xn

k¼1
ykhðx; ykÞ

�����
�����

�����
�����
E

;

and so

KEðdistðx; convAÞÞp
Xn

k¼1
ykhðx; ykÞ

�����
�����;

since KE is nondecreasing. Inequality (9) now follows since the r.h.s. of (5) is

precisely the infimum of this last expression over all such finite sequences yk; yk;
k ¼ 1;y; n: Therefore, by Theorem 3, for any ADVE ;

PðAÞPðfx : KEðdistðx; convAÞÞXtgÞpe�t2=4

for all t40: Thus if F is quasiconvex and 1-Lipschitz on VE ; we have that for any
aAR; t40;

P½FXa þ t
pPðfx : KEðdistðx;F�1ðð�N; a
ÞÞXKEðtÞgÞ

p
1

P½Fpa
 exp � 1

4
ðKEðtÞÞ2

� �
:

The proposition follows by applying this in turn with a ¼ MF and a ¼ MF � t: &

In order to apply Proposition 5, one needs to estimate the function KE : This is of
most interest if one can bound KEj

uniformly for some family of spaces Ej for which

supj dimðEjÞ ¼ N: This is not difficult to do for certain classes of spaces. For

a nonincreasing sequence w ¼ ðw1;w2;yÞ of positive numbers and pX1; the

N-dimensional Lorentz space cN
w;p is RN with the norm

jjxjjw;p ¼
XN

j¼1
wja

p
j

 !1=p

;

where faj : 1pjpNg is the nonincreasing rearrangement of fjxj j : 1pjpNg: For an
Orlicz function c; that is, a convex nondecreasing function c :Rþ-Rþ such that

cð0Þ ¼ 0 and limt-N cðtÞ ¼ N; the N-dimensional Orlicz space cN
c is RN with the

norm

jjxjjc ¼ inf r40 :
XN

j¼1
c

jxjj
r

� �
p1

( )
:

ARTICLE IN PRESS
M.W. Meckes / Journal of Functional Analysis 211 (2004) 508–524 515



Observe that cN
p ¼ cN

w;p if wj ¼ 1 for j ¼ 1;y;N; and cN
p ¼ cN

c if cðtÞ ¼ tp; pX1:

For these two classes of spaces, we have the following elementary estimates, which
we state without proof.

Lemma 6. If pX1 and wAcr for some r such that maxf1; 2=pgpr0oN; then

KcN
w;p
ðtÞXjjwjj�r0=2

r tpr0=2:

If c is any Orlicz function, then

KcN
c
ðtÞX inf

0oup1

uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðu=tÞ

p :

In particular, KcN
q
ðtÞXtq=2 for qX2:

Note that the estimates in Lemma 6 may be trivial and are not necessarily optimal,
but when they are nontrivial, they are valid in all dimensions. By considering vectors

xAf0; 1gN ; one can see that the estimate KcN
q
ðtÞXtq=2 for qX2 is sharp for t ¼ k1=q;

k ¼ 1;y;N:
Observe that the proof of Proposition 5 actually gives separate tail estimates for

deviations of F above and below its median; the same is therefore true of Corollary 4
as well. The full generality of Proposition 5 can in fact be derived with some amount
of argument from the (known) q ¼ 2 case of Corollary 4, using these bounds
separately; however, we find it simpler to argue directly from the isoperimetric
inequality of Theorem 3 as above. One could alternatively prove Corollary 4 by
proving an cq version of Theorem 3, by defining an cq convex hull distance fqðA; xÞ ¼
inffjjzjjq: zAconv UAðxÞg and mimicking the proof of Theorem 3; or as a corollary

to the more general and abstract Theorem 4.2.4 in [20]. However, this approach
would result only in a slight sharpening of the constant 1=4 which appears in the
exponent.
We remark that to use Proposition 5 to full advantage for non-Euclidean norms,

one must use a nonlinear lower bound on KE and make use of the restriction
jjxjj

N
p1: If, for example, one uses only the fact that jjxjjqpjxj for all x when qX2;

then one is using no more than the fact that a function which is 1-Lipschitz with
respect to the cq norm is 1-Lipschitz with respect to the c2 norm, which, as we have
observed already in the introduction, leads to a weaker concentration result.
It is instructive to compare the general concentration results above and the

applications in the next section with the corresponding results for Gaussian
measures. We begin by recalling the functional form of the Gaussian isoperimetric
inequality, due independently to Borell [4] and Sudakov and Tsirel’son [18]. Let gN

be the standard Gaussian measure on RN defined by dgNðxÞ ¼ ð2pÞ�N=2
e�jxj2=2 dx;

where j � j is again the standard Euclidean norm.
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Theorem 7 (Borell, Sudakov-Tsirel’son). Let F :RN-R be 1-Lipschitz with respect

to the Euclidean norm on RN : Then

gNðfx : FðxÞXMF þ tgÞp1� g1ðð�N; t
Þo1

2
e�t2=2

for all t40:

Observe that by composing F with an affine contraction, one obtains the same
conclusion in Theorem 7 if the standard Gaussian measure gN is replaced by the
product of one-dimensional Gaussian measures with arbitrary means and variances
at most 1. Thus the q ¼ 2 case of Corollary 4 provides a level of concentration for
quasiconvex Lipschitz functions of independent bounded random variables
comparable to the concentration of Lipschitz functions of independent Gaussian
random variables with bounded variances.
Recall that a similar normal concentration principle is obeyed by any probability

measure which satisfies a logarithmic Sobolev inequality, and that products of such
measures also satisfy a logarithmic Sobolev inequality (see [12]). In particular,
whenever we state concentration results below for random matrices with Gaussian
entries, similar results hold under the weaker assumption of entries with uniformly
bounded logarithmic Sobolev constants. We remark that Guionnet and Zeitouni [8]
also proved a concentration result for the spectral measure in the case that the matrix
entries satisfy a logarithmic Sobolev inequality.

3. Norms and eigenvalues of random matrices

Since any norm is a convex function, Proposition 5 can be applied directly to
obtain concentration of norms of a random matrix X ; all that is necessary is to
estimate the function KE ; or the Lipschitz constant of the given norm with respect to
one for which a bound on KE is known. Note that by the triangle inequality, in order
to estimate the Lipschitz constant of one norm with respect to another norm, it
suffices to estimate the appropriate equivalence constant.

Proof of Theorem 1. For an m � n matrix A; let AjACn denote the jth row of A: Then

Hölder’s inequality implies

jjAjjp-qpjjðjjA1jjp0 ;y; jjAmjjp0 ÞjjqpjjðajkÞjjr; ð10Þ

where ðajkÞ represents the matrix A thought of as an element of Cmn; and we recall

that r ¼ minfp0; qg: The claim follows by using this estimate and taking Vj ¼ C for

each j in Corollary 4. Alternatively, inequality (10) and Lemma 6 imply that

KLðcn
p;c

m
q ÞðtÞXtr=2;
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where Lðcn
p; c

m
q Þ is identified with Cmn; so that the claim follows from

Proposition 5. &

Observe that for p; q in other ranges, one can derive concentration for jjX jjp-q by

comparing the cn
p0 or c

m
q norm to the c2 norm of the appropriate dimension. In this

case one will obtain normal concentration on a scale which depends on m or n:
We remark that Theorem 1 can be extended to more general norms on Mm;nðCÞ by

using Proposition 5 together with estimates on the corresponding function KE : In
particular, as long as one has the appropriate Lipschitz estimates, the underlying
normed spaces need not be unconditional, nor must the norm on matrices even be an
operator norm.
Now for comparison, we let G ¼ Gm;n be an m � n random matrix whose entries

are independent Gaussian random matrices with arbitrary means and variances at
most 1. For 1ppp2pqpN; jjAjjp-qpjjAjj2 for any m � n matrix A; where jjAjj2 is
the Hilbert–Schmidt norm of A: Then Theorem 7 implies that

P½jjjGjjp-q �MjjGjjp-qjXt
oe�t2=2

for all t40: Observe that this is comparable to what one would obtain in the cases of
independent bounded entries by using only the q ¼ 2 case of Corollary 4.
Theorem 1 implies that the order of fluctuations of jjXm;njj about its median is

Oð1Þ; independent of m and n: In typical situations, the median itself grows without
bound as m or n does. Suppose for example that EjxjkjXc40 for all j; k: (In the

situation of Theorem 1, this will be the case for example if each xjk is real, jxjkjp1;

Exjk ¼ 0; and xjk has variance at least c:) Then

EjjX jjp-qXEjjXe1jjqXm1=q�1EjjXe1jj1 ¼ m1=q�1
Xm

j¼1
Ejxj1jXcm1=q:

Since jjX jjp-q ¼ jjX �jjq0-p0 ; we obtain EjjX jjp-qXcmaxfm1=q; n1=p0 g: As re-

marked earlier, MjjX jjp-q will also have at least this order when the hypotheses

of Theorem 1 are satisfied.
A similar upper estimate is possible in the case p ¼ q0: Suppose that each xjk is a

symmetric real random variable such that jxjkjp1: We note first that by the Riesz

convexity theorem,

jjX jjq0-qpjjX jj
2
q

2-2jjX jj1�
2
q

1-N
pjjX jj

2
q

2-2:

By the contraction principle (see [14, Theorem 4.4]),

EjjX jj2-2pEjj eXX jj2-2;

where eXX ¼ eXXm;n is an m � n matrix whose entries are independent Rademacher

random variables; that is, P½exxjk ¼ 1
 ¼ P½exxjk ¼ �1
 ¼ 1=2 for all j; k: By standard
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comparisons between Rademacher and Gaussian averages and Chevet’s inequality
[5] (see also [14]),

Ejj eXX jj2-2pCðm1=2 þ n1=2Þ;

where C40 is an absolute numerical constant. Combining these estimates with
Jensen’s inequality, we obtain

EjjX jjq0-qp2C maxfm1=q; n1=qg:

(The argument above is entirely standard and the estimate is probably known,
although we could not find a reference in the literature.)

The example of eXX above can be used to show that the estimate in Theorem 1 is
sharp for large enough values of t up to numerical constants in the case that p ¼ q0:
For 1papm; 1pbpn;

P½jj eXX jjq0-qXðabÞ1=q
XP½ eXX has an a � b all-1 submatrix
X2�ab;

so that

P½jj eXX jjq0-qXt
X2�tq

for t ¼ ðabÞ1=q; a ¼ 1;y;m; b ¼ 1;y; n: Together with the above upper bound on

Ejj eXX jjq0-q; this implies that in this situation, the concentration result of Theorem 1

is sharp when ðmaxfm; ngÞ�1=q
t is sufficiently large, up to the values of numerical

constants.
Since the conclusion of Theorem 1 is independent of dimension, one can derive the

following infinite-dimensional version for kernel operators from cp to cq:

Corollary 8. Let 1opp2pqoN; and let cjkX0; j; kAN; be constants such that

XN
j¼1

XN
k¼1

c
p0

jk

 !q=p0
0@ 1A1=q

oN: ð11Þ

Suppose that xjk; j; kAN are independent complex random variables each supported in

a set of diameter at most D, such that jxjkjpcjk for all j; k: Define the random operator

X : cp-cq by setting XðejÞ ¼
P

N

k¼1 xjkek: Then

P½jjjX jj �MjjX jjjXt
p4 exp � 1

4

t

D

� �r
� �

for all t40; where jjX jj is the operator norm of X and r ¼ minfp0; qg:

We remark that when p ¼ q0; the l.h.s. of (11) was shown by Persson [15] to
coincide with both the q-summing norm pqðTÞ and the q-nuclear norm nqðTÞ
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of the kernel operator T : cq0-cq given by TðejÞ ¼
P

N

k¼1 cjkek: The same method of

proof in this case gives the same conclusion in Corollary 8 if jjX jj is replaced by
pqðX Þ ¼ nqðX Þ:

Proof of Corollary 8. The fact that jxjkjpcjk implies that jjX jjoN always. Apply

Theorem 1 to the n � n upper-left corner of the infinite matrix ðxjkÞ; and use (11) and
the estimate jxjkjpcjk to pass to the limit n-N: &

Note that by taking cjk ¼ 0 when j4m or k4n in Corollary 8, we recover

Theorem 1, so that these two statements are formally equivalent.
We now specialize to the case in which m ¼ n and consider X as an operator on cn

2;
so that we use only the q ¼ 2 case of Corollary 4. Guionnet and Zeitouni [8] noted
that this concentration theorem implies normal concentration for any function on
(self-adjoint) matrices which is convex and Lipschitz with respect to the Hilbert–
Schmidt norm. For example, we have the following. Let the entries xjk of X all be

independent, and satisfying condition (ii) in the statement of Theorem 2, and for
simplicity let D ¼ 1: For 1pppN; we denote by jjAjjp the Schatten p-norm of an

n � n matrix A (see, e.g., [3]). Then for all t40;

P½j jjX jjp �MjjX jjpjXt
p4e�t2=4

for 2pppN; and

P½j jjX jjp �MjjX jjpjXt
p4 exp � t2

4n
2
p
�1

� �

for 1ppo2: (In particular, we observe that when p ¼ q ¼ 2; the conclusion of
Theorem 1 holds when the matrix entries xjk satisfy condition (ii) in the statement of

Theorem 2.) Furthermore, since jjjAjjjpjjAjj1p
ffiffiffi
n

p
jjAjj2 for any unitarily invariant

norm jjj � jjj on MnðCÞ satisfying jjjE11jjj ¼ 1; it follows that

P½j jjjX jjj �MjjjX jjjjXt
p4e�t2=4n

for all t40 for any such norm. Each of these observations is in fact a special case
of the tail inequalities for norms of sums of independent vector-valued random
variables which were the original motivation for Talagrand’s development of
Theorem 3 and related concentration theorems.
We now consider eigenvalues of a self-adjoint random matrix. Although these are

not (except in the extreme cases) quasiconvex or quasiconcave functions, Corollary 4
can still be used to derive concentration.
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Proof of Theorem 2. For simplicity, we assume D ¼ 1: First observe that

jjX jj2 ¼
Xn

j;k¼1
jxjkj2

 !1=2

¼
ffiffiffi
2

p Xn

j¼1

xjjffiffiffi
2

p
���� ����2þ X

1pjokpn

jxjkj2
 !1=2

:

We suppose for simplicity that each of the upper-diagonal entries xjk for jok is

supported in a set of diameter at most 1. Note that
xjjffiffi
2

p ; j ¼ 1;y; n; and xjk;

1pjokpn; are independent random variables in R or C; each supported in a set of

diameter at most 1. jjX jj2 is
ffiffiffi
2

p
times the c2 sum norm of the direct sum of n copies

of R and nðn � 1Þ=2 copies of C spanned by these variables.
Recall also that

jjX jj2 ¼
Xn

k¼1
lkðX Þ2

 !1=2

;

which implies that each lkðX Þ is a 1-Lipschitz function of X with respect to jjX jj2:
The first claim now follows directly from Corollary 4 with Vj ¼ C or Vj ¼ R for each

j; since l1 is a convex function, and ln is concave.
To prove the second claim, we introduce the following functions for a self-adjoint

matrix A: For k ¼ 1;y; n; let

FkðAÞ ¼
Xk

j¼1
ljðAÞ;

GkðAÞ ¼
Xk

j¼1
ln�jþ1ðAÞ ¼ Tr A � FkðAÞ:

Then Fk and Gk are
ffiffiffi
k

p
-Lipschitz with respect to the Hilbert–Schmidt norm.

Moreover, Fk is convex and Gk is concave for each k; this follows from Ky Fan’s
maximum principle (see, e.g., [3]) or Davis’s characterization [7] of all convex
unitarily invariant functions of a self-adjoint matrix. Let Mk ¼ MFk �MFk�1: Then
by Corollary 4, for any 0pyp1;

P½jlkðXÞ � MkjXt
 ¼P½jðFkðXÞ �MFkðXÞÞ � ðFk�1ðX Þ �MFk�1ðXÞÞjXt


pP½jFkðX Þ �MFkðX ÞjXyt


þ P½jFk�1ðXÞ �MFk�1ðX ÞjXð1� yÞt


p 4 exp � yt

2
ffiffiffiffiffiffi
2k

p
� �2

" #
þ 4 exp � ð1� yÞt

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk � 1Þ

p !2
24 35:
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Estimate (3) now follows by letting y ¼
ffiffiffi
k

p
=ð

ffiffiffi
k

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
Þ: (This is not the optimal

value of y; but optimizing at this point would only result in a slight sharpening of the
constants, and not of the dependence on t or k:) The claim for ln�kþ1ðXÞ follows
similarly, using GkðXÞ in place of FkðXÞ; or as a formal consequence by replacing X

with �X : &

Now, for comparison, we let Hn be an n � n random matrix with entries hjk;

1pj; kpn; such that:

(i) the entries hjk; 1pjpkpn are independent Gaussian random variables,

(ii) the variance of hjk for 1pjokpn is at most 1,

(iii) the variance of hjj is at most
ffiffiffi
2

p
for 1pjpn; and

(iv) hjk ¼ hkj for koj:

Then for each 1pkpn; Theorem 7 implies that

P½jlkðHnÞ �MlkðHnÞjXt
oe�t2=4

for all t40: This is comparable to the result of Theorem 2 for l1ðX Þ and lnðXÞ; but
the same level of concentration holds for eigenvalues in the bulk of the spectrum,
which is not the case in Theorem 2.
The result of Theorem 2 for l1ðXÞ and lnðXÞ (stated in less generality) was shown

by Krivelevich and Vu [10]. After a preliminary version of this paper was written, we
learned that Alon et al. [1] showed that for 1pkpn;

P½jlkðXÞ �MlkðX ÞjXt
p4 exp � t2

8k2D2

� �

for all t40; and that the same holds if lkðXÞ is replaced by ln�kþ1ðXÞ: The approach
in [1] handles the lack of convexity of lk not by using the q ¼ 2 case of Corollary 4,
but instead applying Theorem 3 by directly estimating the convex hull distances
involved. Our Theorem 2 improves the order of fluctuations of lkðXÞ from OðkÞ (as
in [1]) to Oð

ffiffiffi
k

p
Þ: It is also conjectured in [1] that lkðXÞ should be concentrated at

least as strongly as l1ðXÞ; as one obtains from Theorem 7 in the Gaussian case. We
emphasize again that we are dealing only with large deviations here. As we have
already indicated in the introduction, the tail estimate (2) for the extreme eigenvalues

is probably not sharp for t ¼ oð
ffiffiffi
n

p
Þ; furthermore, it is likely that concentration is

even tighter for eigenvalues in the bulk of the spectrum.
It follows as in the discussion following Corollary 4 that Theorem 2 implies that

ElkðXÞ differs by at most Oð
ffiffiffi
k

p
Þ from the number Mk which appears in the

statement of the theorem. One can also show that the number Mk which appears in

the statement of the theorem differs by at most Oð
ffiffiffi
k

p
Þ fromMlkðX Þ: Specifically, by

using the separate bounds for deviations above and below the median in the
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situation of Corollary 4, we have

jMk �MlkðX Þjp2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log 2

p
ð
ffiffiffi
k

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
ÞD:

We can also obtain a similar result to Theorem 2 for singular values in the
rectangular case. Let l ¼ minfm; ng: For an m � n matrix A; we denote by
s1ðAÞXs2ðAÞX?XslðAÞX0 the singular values of A; counted with multiplicity;

that is, skðAÞ ¼ lkððA�AÞ1=2Þ:

Theorem 9. Suppose the entries xjk of X are independent complex random variables,

each satisfying condition (ii) in the statement of Theorem 2. Then

P½js1ðXÞ �Ms1ðXÞjXt
p4e�t2=4D2

for all t40: Furthermore, for each 2pkpminfm; ng; there exists an MkAR such that

P½jskðXÞ � MkjXt
p8 exp � t

2ð
ffiffiffi
k

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
ÞD

 !2
24 35o8 exp � t2

16kD2

� �

for all t40:

The proof is similar to the proof of Theorem 2, using in place of the functions Fk

the Ky Fan k-norms, defined by

jjAjjðkÞ ¼
Xk

j¼1
sjðAÞ

for 1pkpminfm; ng:
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