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We study the generalized Chaplygin gas model (GCGM) using Gamma-ray bursts as cosmological probes. 
In order to avoid the so-called circularity problem we use cosmology-independent data set and Bayesian 
statistics to impose constraints on the model parameters. We observe that a negative value for the 
parameter α is favoured in a flat Universe and the estimated value of the parameter H0 is lower than 
that found in literature.
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1. Introduction

One of the most important problems of Modern Cosmology is 
the determination of the matter content of the Universe. The rota-
tion curve of spiral galaxies [1], the dynamics of galaxy clusters [2] 
and structure formation [3], indicate that there is about ten times 
more pressureless matter in the Universe than can be afforded by 
the baryonic matter. The nature of this dark matter component re-
mains unknown. Moreover, the type Ia supernovae (SNe Ia) data 
indicates that the Universe is accelerating [4]. Models consider-
ing matter content dominated by an exotic fluid whose pressure 
is negative [5], modified gravity theories such as f (R) [6] and the 
evolution of an inhomogeneous Universe model described in terms 
of spatially averaged scalar variables with matter and backreaction 
source terms [7] are some of the proposals to explain this current 
phase of the Universe. At the same time, the position of the first 
acoustic peak in the spectrum of CMB anisotropies, as obtained by 
WMAP, favours a spatially flat Universe [8]. Combining all these 
data and if we consider the matter content of the Universe domi-
nated by a fluid with negative pressure we have a scenario with a 
proportion of Ωm ∼ 0.27 and Ωde ∼ 0.73, with respect to the crit-
ical density, for the fractions of the pressureless matter and dark 
energy, respectively. This scenario is usually called as the concor-
dance cosmological model.

The question is to know what is the nature of the dark mat-
ter and dark energy components. For dark matter many candidates 
have been suggested such as axions, a particle until now unde-
tected which would be a relic of a phase where the grand unified
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theory was valid [9], the lightest supersymmetric particle (LSP) like 
neutralinos [10] and the Kaluza–Klein particles [11] that are stable 
viable Weakly Interacting Massive Particles (WIMPs) and arise in 
two frameworks: In Universal Extra Dimensions [12] and in some 
warped geometries like Randall–Sundrum [13]. For the dark en-
ergy, in the hydrodynamical representations of matter, the most 
natural candidate is a cosmological constant, but there is a dis-
crepancy of some 120 orders of magnitude between its theoretical 
and observed values [14]. For this reason, other candidates have 
been suggested like quintessence models that involve canonical 
kinetic terms of the self-interacting scalar field with the sound 
speed c2

s = 1 [15] and k-essence models that employ rather exotic
scalar fields with non-canonical (non-linear) kinetic terms which 
typically lead to a negative pressure [16]. More recently, a string-
inspired fluid has been evoked: The Chaplygin gas [17], that ap-
pears as a promising candidate for the dark sector of the Universe.

The Chaplygin gas is represented by the equation of state

pc = − A

ρc
, (1)

where pc represents the pressure, ρc the fluid density and A is a 
parameter connected with the sound speed. This equation of state 
is suggested by a brane configuration in the context of string the-
ories [18]. However, a more general equation of state has been 
suggested [19]:

pc = − A

ρα
c

, (2)

where again pc and ρc stand for the generalized Chaplygin gas 
component and α is a new parameter, which takes the value 1 
for the traditional Chaplygin gas but values larger than 1, or even 
negative may be considered. This is the so-called generalized Chap-
lygin gas.
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Much observational data that has been used for comparison
with the theoretical cosmological models like the generalized
Chaplygin gas model (GCGM). The spectra of anisotropy of cos-
mic microwave background radiation [20], baryonic acoustic os-
cillations [21], the integrated Sachs–Wolfe effect [22], the matter
power spectrum [23], gravitational lenses [24], X-ray data [25]
and ages estimates of high-z objects [26] have been used in this
sense. Also, constraints from combined data sources have been ob-
tained in [27]. Another tool used to make this comparison is the
Hubble diagram, the plot of redshift z versus luminosity distance
dL = √

L/4π F , where L is the luminosity (the energy per time
produced by the source in its rest frame) and F is the measured
flux, i.e., the energy per time per area measured by a detector. Nor-
mally, the SNe Ia data are considered good standard candles and
are used to construct the Hubble diagram, because their luminosity
are well known [4,28]. In particular, constraints on the generalized
Chaplygin gas have been studied in [29]. These assumptions rest
on a foundation of photometric and spectroscopic similarities be-
tween high- and low-redshift SNe Ia. But this discussion is not yet
finished [30]. The other problem comes from the fact that there
still does not exist SNe Ia data with z > 1.8. To know the prop-
erties and behavior of dark energy for high values of z we will
have to wait for new data of the SNe Ia or to find other distance
indicators. In this sense, to extend the comparison between ob-
servational data and theoretical models at very high redshift we
propose to use Gamma-ray bursts (GRBs) due to the fact that they
occur in the range of high z beyond the SNe data found today [31].

The GRBs are jets that release ∼ 1051–1053 ergs or more for a
few seconds and becomes, in this brief period of time, the most
bright object in the Universe. They were discovered in the sixties
by the Vela satellites in the “Outer Space Treaty” that monitored
nuclear explosions in space [32]. Launched in 1991 The Burst and
Transient Source Experiment on the Compton Gamma-Ray Obser-
vatory (BATSE on the Compton GRO) [33] observations concluded
that the angular distribution of the GRBs on the sky is isotropic
within statistical limits. This study ruled out the idea that the
GRBs are galactic objects, but it is consistent with the bursts being
extra-galactic sources at cosmological distances. More recently, the
SWIFT mission (launched in 2004) has provided the most accurate
GRB data, available in the Swift BAT Catalog.

The search for a self-consistent method to use the GRBs in
cosmological problems is intense and promising. But the possibil-
ity of using GRBs as standard candles is not a simple question.
GRBs are known to have several light curves and spectral prop-
erties from which the luminosity of the burst can be calculated
once calibrated, and these can make GRBs into standard candles.
Just as with SNe Ia, the idea is to measure the luminosity indi-
cators, deduce the source luminosity, measure the observed flux
and then use the inverse-square law to derive the luminosity dis-
tance. The difficulty arises when these indicators are a priori es-
tablished through some cosmological model like the concordance
one. This means that the parameters of the calibrated relations of
luminosity/energy are still coupled to the cosmological parame-
ters derived from a given cosmological model. This is the so-called
circularity problem. This problem appears in several works that
have made use of these GRBs luminosity indicators as standard
candles at very high redshift [34]. It is possible to treat the circu-
larity problem with a statistical approach [35]. On the other hand,
many papers have dealt with the use of so-called Amati relation,
or the Ghirlanda relation for this purpose [36]. However, as argued
recently in [37], these procedure involve many unjustified assump-
tions which if not true could invalidate the results. In particular,
many evolutionary effects can affect the final outcome. However,
recently Liang et al. [38–40] made a study considering SNe Ia as
first-order standard candles for calibrating GRBs, the second-order
standard candles. The sample in Ref. [38] was calibrated from the
192 supernovae obtained in [41]. The updated sample used in
[39,40] has been obtained and calibrated cosmology-independently
from the Union2 (557 data points) compilation [42] released by the
Supernova Cosmology Project Collaboration. In these articles the
authors found relevant constraints on the Cardassian and Chap-
lygin gas model by adding to the GRB data the SNe Ia (Union2),
the Shift parameter of the Cosmic Microwave Background radiation
from the seven-year Wilkinson Microwave Anisotropy Probe and
the baryonic acoustic oscillation from the spectroscopic Sloan Dig-
ital Sky Survey Data Release galaxy sample. The sample obtained
in [39] will be used in our analysis. These authors obtain the dis-
tance moduli μ of GRB in the redshift range of SNe Ia and extend
this result to very high redshift GRB (z > 1.4) in a completely cos-
mological model-independent way. This approach has been also
studied in [43].

Some analysis have been made with the GCGM and the GRBs
as distant markers [44]. In Ref. [45] the authors build a specific
distribution of GRB to probe the flat GCGM and the XCDM model.
While the GCGM has an equation of state given by expression (2)
the XCDM model is considered in terms of a constant equation of
state ω = p/ρ < 0. The main conclusion of this Letter is that the
use of GRBs as a dark energy probe is more limited when com-
pared to SNe Ia. We anticipate that we shall arrive at a similar
conclusion. Moreover the XCDM model is better constrained than
the GCGM. On the other hand, in [46] the GCGM and the �CDM
model are compared by using the GRB and SNe Ia data to build the
Hubble diagram. These authors show through the statistical analy-
sis that the Chaplygin gas model (they use α = 1) have the best fit
when compared with the data. Also they verify that the transition
redshift between the decelerated and the accelerated state of the
Universe occurs at z ∼ 2.5–3.5 rather than z ∼ 0.5–1 based on the
analysis made with the SNe Ia. Here, for our purpose, we will as-
sume the plausible assumption that GRBs are standard candles and
we will use the data from Liang et al. [39], calibrated cosmology-
independently from the Union2 compilation of SNe Ia, to constraint
the cosmological parameters of the GCGM. We want to show how
GRB data could constraint different Chaplygin cosmologies.

This Letter is organized as follows. In next section, we described
a brief review of GCGM. In Section 3 the luminosity distance dL is
obtained for the GCGM and compared with the observational data.
Finally, in Section 4 we present our discussion and conclusions.

2. The generalized Chaplygin gas model

We consider here an homogeneous and isotropic Universe de-
scribed by the Friedmann’s equation

(
ȧ

a

)2

+ k

a2
= 8πG

3
(ρm + ρc), (3)

where the density ρ has the subscripts m for the matter pressure-
less fluid and c for the generalized Chaplygin gas with equations
of state pm = 0 and pc = −A/ρα

c , respectively. Dot means deriva-
tive with respect to the cosmic time t . Flat, closed and open spatial
sections correspond to k = 0,1,−1 for the constant of the curva-
ture.

In our case, each fluid obeys separately the energy conservation
law. The equations and the respective solutions are given by

ρ̇m + 3
ȧ

a
ρm = 0 → ρm = ρm0

a3
, (4)

ρ̇c + 3
ȧ
(
ρc − A

α

)
= 0
a ρc
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→ ρc = ρc0

(
Ā + 1 − Ā

a3(1+α)

)1/(1+α)

, (5)

where ρm0 = ρm(a0), ρc0 = ρc(a0) = (A + B)1/(1+α) with a(t = 0) =
a0 = 1 being the scale factor today. The new definition of the con-
stant A is given by Ā = A/ρ1+α

c0 and it is connected to the sound
velocity today in the gas by the expression vs0 = √

∂ pc/∂ρc|t0 =√
α Ā.

Initially, the GCGM behaves like a dust fluid, with ρ ∝ a−3,
while at late times the GCGM behaves as a cosmological constant
term, ρ ∝ A1/(1+α) . Hence, the GCGM interpolates a matter dom-
inated phase (where the formation of structure occurs) and a de
Sitter phase. At the same time, the pressure is negative while the
sound velocity is positive, avoiding instability problems at small
scales [47].

In order to proceed with data comparison we need to calcu-
late the luminosity distance in the GCGM. Using the expression for
the propagation of light and the Friedmann’s equation (3), we can
express the luminosity distance as

dL = a2
0

a
r1 = (1 + z)S

[
f (z)

]
, (6)

where r1 is the co-moving coordinate of the source and

S(x) = x for (k = 0),

S(x) = sin x for (k = 1),

S(x) = sinh x for (k = −1). (7)

The function f (z) is given by

f (z) = 1

H0

z∫
0

(
dz′)/({Ωm

(
z′ + 1

)3

+ Ωc
[

Ā + (1 − Ā)
(
z′ + 1

)3(1+α)]1/(1+α)

− Ωk
(
z′ + 1

)2}1/2)
, (8)

with the definitions

Ωm = 8πG

3

ρm0

H2
0

, Ωc = 8πG

3

ρc0

H2
0

, Ωk = − k

H2
0

, (9)

and Ωm0 + Ωc0 + Ωk = 1. The final equations have been also ex-
pressed in terms of the redshift z = −1 + 1

a .
In our numerical calculations we relax the restriction that

the pressureless matter component is entirely given by baryons.
We consider the nucleosynthesis results for the baryonic com-
ponent of the Universe and assume the total pressureless mat-
ter density as Ωm = Ωb + Ωdm , where Ωbh2 = 0.0223 and H0 =
100 h km s−1 Mpc−1. Then, in our notation Ωdm means the extra
dark matter contribution.

3. The numerical results

The observational data set used in this Letter is composed by
42 GRBs from [39,40]. As told in the introduction, this sample
has been obtained and calibrated cosmology-independently from
the Union2 compilation. This fact is of crucial importance to ad-
mit GRBs as cosmological probes since the circularity problem de-
scribed above is avoided. At the same time, this data set allow us
to analyse the free parameters of the GCGM for a redshift range
larger than the available data from SNIa reaching up to z ≈ 6. It is
important to emphasize that with this sample the authors of [39,
40] have obtained stark constraints on the Cardassian and Chaply-
gin gas model by combining the GRB data with other cosmological
probes.
If we want to have a reliable sample of GRBs to make our
analysis, the Hubble diagram for the GRBs should be calibrated
from the SN at z � 1.4. This allows to obtain the following lumi-
nosity/energy relations: The τlag –L relation, the V –L relation, the
L–E p relation, the Eγ –E p relation, the τRT –L relation, the Eiso–E p

relation, and the Eiso–E p–tb relation. In general these relations
can be written as log(y) = a + b log(x) (two-variable relations) and
log(y) = a + b1 log(x1) + b2 log(x2) (multi-variable relation). In this
relations y is the luminosity in units of erg s−1 or energy in units
of erg and x is the GRB parameter measured in the rest frame;
in the latter expression x1 and x2 are E p(1 + z)/(300 keV) and
tb/(1 + z)/(1 day) respectively, and b1 and b2 are the slopes of
x1 and x2 respectively. The calibration’s process is achieved using
two methods: linear interpolation (the bisector of the two ordinary
least-squares) and the cubic interpolation (the multiple variable re-
gression analysis). The variables a and bi are determinated with
1 − σ uncertainties. With the linear interpolation, the error of the
interpolated distance modulus can be calculated by σμ = ([(zi+1 −
z)/(zi+1 −zi)]2ε2

μ,i +[(z−zi)/(zi+1 −zi)]2εe
μ,i+1)

1/2, where μ is the

interpolated distance modulus of a source at redshift z, ε2
μ,i and

εe
μ,i+1 are errors of the SNe, μi and μi+1 are the distance moduli

of the SNe at nearby redshifts zi and zi+1, respectively. In the case
of the cubic interpolation method the error can be estimated by
the expression σμ = (A2

0ε
2
μ,i + A2

1ε
2
μ,i+1 + A2

2ε
2
μ,i+2 + A2

3ε
2
μ,i+3)

1/2,
where εμ,i+ j are errors of the SNe and μi+ j are the distance mod-
uli of the SNe at nearby redshifts zi+ j (index j run from 0 to 3)
with:

A0 = [(zi+1 − z)(zi+2 − z)(zi+3 − z)]
[(zi+1 − zi)(zi+2 − zi)(zi+3 − zi)] ;

A1 = [(zi − z)(zi+2 − z)(zi+3 − z)]
[(zi − zi+1)(zi+2 − zi+1)(zi+3 − zi+1)] ;

A2 = [(zi − z)(zi+1 − z)(zi+3 − z)]
[(zi − zi+2)(zi+1 − zi+2)(zi+3 − zi+2)] ;

A3 = [(zi − z)(zi+1 − z)(zi+2 − z)]
[(zi − zi+3)(zi+1 − zi+3)(zi+2 − zi+3)] . (10)

The results obtained by the cubic interpolation method are almost
similar to the results obtained by the linear interpolation method.
It is important to emphasize again that the calibration results are
completely independent of cosmological models used (for further
discussion, see [38]).

In order to compare the GCGM with the observational data, the
first step is to compute the theoretical luminosity distance μ,

μth = 5 log

(
dL

Mpc

)
+ 25, (11)

with the relations for the GCGM described above. Here, as in [39,
40], by using only linear interpolating we have the 27 GRBs at
z � 1.4 from the Union SNe Ia data and the 42 GRBs at z > 1.4 ob-
tained with the five relations (τlag –L, V –L, L–E p , Eγ –E p , τRT –L)
calibrated with the sample at z � 1.4 that uses also the linear
interpolation method. It is assumed that the GRBs luminosity re-
lations do not evolve with redshift, so we could get the luminos-
ity (L) or energy (Eγ ) of each burst at high redshift (z > 1.4).
The weighted average distance modulus from the five relations
for each GRB is μ = (

∑
i μi/σ

2
μi

)/(
∑

i σ
−2
μi

), with its uncertainty

μi = (
∑

i σ
−2
μi

)−1/2, where the summations run from 1 to 5 over
the five relations described above.

Considering a set of free parameters {p} the agreement between
theory and observation is measured by minimizing the quantity,
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Table 1
For the different Chaplygin-based cosmologies in the first column we show the final 1D estimation for the free parameters. The errors are computed at 1σ level.

Case α Ā Ωdm0 H0 Ωk0

CGM (α = 1) → Fig. 2 1 0.96+0.04
−0.61 0.04+0.59

−0.04 51.3+9.5
−5.8 0

GCGM (h = 0.72) → Fig. 4 	 0 0.98+0.02
−0.59 0.01+0.56

−0.01 72.0 0

GCGM (0 � α � 1) → Fig. 6 −4.3+4.8
−15.2 0.88+0.12

−0.54 0.10+0.52
−0.10 51.9+9.8

−5.6 0

GCGM (α � 0) → Fig. 6 −4.3+4.8
−15.2 1.00+0.0

−0.34 0.00+0.61
−0.00 48.2+9.2

−5.3 0

GCGM Ωk 
= 0 (0 � α < 1) → Fig. 7 1.2+5.9
−7.4 0.64+0.24

−0.25 0.31+0.44
−0.20 56.2+10.1

−6.5 −0.26+0.25
−0.26

GCGM Ωk 
= 0 (α � 0) → Fig. 7 1.2+5.6
−7.3 1.00+0.00

0.61 0.00+0.51
−0.00 52.3+8.9

−6.0 −0.53+0.29
−0.28

Table 2
Best fit values for the 2D PDFs.

Figure Ωdm × H0 Ā × H0 Ā × Ωdm0 Ā × α Ωdm × α H0 × α

1 (1.0,47.9) (0,48.1) (0.86,0.27) – – –
3 – – (0.86,0.27) (0.86,0.25) (0.23,−20) –
5 (49.8,1.0) (0,48.1) (0.86,0.26) (0.86,0.2) (0.23,−12.0) (50,+10.0)
χ2(p) =
42∑

i=1

[μth
i (p) − μobs

i (p)]2

σ 2
i

, (12)

where μth and μobs are the theoretical value and the observed
value of the luminosity distance for our model, respectively, and σ
means the error for each data point. We use Bayesian analysis to
obtain the parameters estimations through the probability distri-
bution function (PDF)

P = Be− χ2(p)
2 , (13)

where B is a normalization constant. A full Bayesian analysis is
made by considering all free parameters of the model. However,
we will study some particular Chaplygin configurations before a
detailed analysis with 5 free parameters. With this strategy we
hope to gain some intuition about the GRB data from the partial
outcomes. Below, we will describe different Chaplygin-based cos-
mologies investigated in the present work. We show our results in
Tables 1–2 and in Figs. 1–7.

Our first step is to study the Chaplygin gas (α = 1). We re-
member that this equation of state, as cited above, has also raised
interest in particle physics thanks to its connection with string the-
ory and its supersymmetric extension [18]. We shall consider the
prior information: 0 � Ā � 1, 0 � Ωdm � 0.957 and 0 � H0 � 100.
The curves in Fig. 1 represent the 99.73%, 95.45% and 68.27% con-
tours of maximum likelihood after the first marginalization, i.e.,
integration of the likelihood function over the non-required param-
eter. However, the most robust parameter estimation is the central
value for the parameter obtained in the maximum of the one-
dimensional PDF as in Fig. 2. From Fig. 2 we can obtain the final
parameter estimation. We found Ωdm = 0.04+0.59

−0.04, Ā = 0.96+0.04
−0.61

and H0 = 51.3+9.5
−5.8 at 1σ level. However, the dispersion in the

GRB data is quite high. We compute these same estimatives us-
ing the Supernovae Constitution sample [48] in order to compare
the dispersion of these two samples. For the SN we found Ωdm =
0.00+0.40

−0.00, Ā = 0.99+0.01
−0.41 and H0 = 59.7+2.1

−1.5 at 1σ level. Some con-
straints on the generalized Chaplygin gas have been placed using
the Constitution data set [49]. This allows a comparison between
some of our results and the ones from Supernovae. In general,
GRBs recover the results from SNe but with a high dispersion.

In our next analysis we relax the prior information about the
Hubble parameter and leave it free to vary. We show the two-
dimensional PDFs in Fig. 5. In Fig. 6 the solid lines are the cor-
responding one-dimensional probabilities.
The above choice for the priors in the parameter α is conser-
vative. With this choice we want to avoid a super luminal propa-
gation in the sound speed formula. However, as argued in [50] the
formula v2

s = α Ā represents the group sound velocity. Actually, in
order to violate causality the wavefront velocity should exceed 1
[51]. Considering this possibility we assume now α � 0 and com-
pute the one-dimensional PDF as showed in dashed lines in Fig. 6.

Until now we have considered a flat Universe in our analysis. In
order to have a more general statistical analysis we allow a non-
vanishing curvature in our model. The complete five-dimensional
analysis is computationally hard but still feasible. We assume as
prior information that our Universe deviates slightly from the flat
model assuming Ωk to vary between [−0.6,0.6]. For this case, we
show the results in Fig. 7.

4. Discussion and conclusions

In this study we have analyzed the Chaplygin gas model with
a sample of 42 GRBs. Although the use of GRBs as a cosmologi-
cal tool is a promising way to probe cosmology at high redshifts
we have verified that the available data is still insufficient to im-
pose precise constraints in cosmological models. As observed in
our analysis, the dispersion is still high when compared with oth-
ers observational data sets. However we hope that with the future
data from the final Swift BAT Catalog we will be able to put strong
constraints on the dark energy/matter properties.

In our analysis, the unification scenario was not imposed from
the beginning. This means that we allow an extra dark matter con-
tribution (Ωdm) in our calculations in order to probe whether the
unification scenario is favoured. In our first analysis the free pa-
rameters ( Ā,Ωdm and H0) of the Chaplygin gas (α = 1) were well
constrained. Our results are in agreement with the Supernova re-
sults [52]. The only difference is that we find a lower value for the
Hubble parameter, H0 = 51.3+9.2

−5.7 (1σ ). However, it is possible to
find in the literature similar results for the parameter H0 [53].

In our second analysis, in order to check the behaviour of the
model when H0 = 72 km s−1 Mpc−1 we leave α free, that is the
so-called generalized Chaplygin Gas Model. From Figs. 3 and 4 the
unification scenario is again favoured. However, the uncertainties
are still high. The parameter α assumes a large negative value.
There is no any peak in the parameter α distribution and the prob-
ability remains constant for negative values. For the background
dynamics the region (α < −1) represents a behavior different from
the matter dominated phase when structures start to form. On the
other hand, negative values for α imply an imaginary sound ve-
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Fig. 1. Two-dimensional probability distribution function (PDF) for the free parameters in the CGM. The curves represent 99.73%, 95.45% and 68.27% contours of maximum
likelihood. The darker the region, the smaller the probability.

Fig. 2. One-dimensional PDFs for the three free parameters of the CGM.

Fig. 3. Two-dimensional PDFs for the GCGM fixing H0 = 72 km s−1 Mpc−1. The curves represent 99.73%, 95.45% and 68.27% contours of maximum likelihood. The darker the
region, the smaller the probability.
locity, leading to small scale instabilities at the perturbative level.
Rigorously, the general situation is more complex: such instabili-
ties for fluids with negative pressure may disappear if the hydro-
dynamical approach is replaced by a more fundamental description
using, e.g., scalar fields. However, this is not true for the Chaply-
gin gas: even in a fundamental approach, using for example the
Born–Infeld action, the sound speed may be negative if α < 0. Per-
haps the restriction α � 0 must be imposed for all observational
tests.

We work also with a set of four free parameters. Varying
all four parameters, the preceding results are confirmed. Leaving
the parameter H0 free to vary, we confirm that the hypersurface
H0 = 72 km s−1 Mpc−1 doesn’t represent the maximum probabil-
ity in the 4-D parameters phase space. Chaplygin gas models show
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Fig. 4. One-dimensional PDFs for the three free parameters of the GCGM when H0 = 72 km s−1 Mpc−1.

Fig. 5. The same as Fig. 1 but considering four free parameters for the GCGM and the prior 0 � α � 1.
values lower than H0 = 72 km s−1 Mpc−1 [52]. We observe also
that there is a significant difference in the final parameter estima-
tion when we consider the prior α � 0, instead of 0 � α < 1. For
instance, the unification scenario (Ωdm = 0) is favoured only with
the choice α � 0. Moreover, there is now a peak in the α distribu-
tion at α = −4.3+4.8

−15.2 but with a high dispersion. Again, negative
values for α are favored, despite the two-dimensional PDF (α× H0)
in Fig. 5 indicates a high probability for α > 6. Such a contradic-
tion seems to be an artifact of the marginalization process as can
be seen also in the two-dimensional PDFs (Ωdm × H0) and ( Ā × H0)
in Fig. 5. These plots confirm that the final 1D estimation can be
very different from the partial 2D ones. This difference is due to
the integration of the probability function over the adopted prior
values of the remaining parameters.

The analysis with five free parameters confirm some of the pre-
vious results. Negative curvature is preferred as well as Sn data
[52]. Also, the parameter α is now estimated with a positive value,
in contrast with the previous results.

The Chaplygin gas parameters have been estimated in many pa-
pers, considering different analysis and several observational data
sets. Constraints critically depend on whether one treats the Chap-
lygin gas as true quartessence (replacing both dark matter and
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Fig. 6. One-dimensional PDF for the GCGM free parameters when H0 is free to vary. The solid lines correspond to the prior choice 0 � α � 1 while dashed lines correspond
to the prior α � 0. The final estimation for the parameter α does not depend on its prior information.

Fig. 7. One-dimensional PDF for the GCGM free parameters when we allow a non-vanishing curvature. The solid lines correspond to the prior choice 0 � α < 1 while dashed
lines correspond to the prior α � 0. The final estimation for the parameter α does not depend on its prior information.
dark energy) or if one allows it to coexist with a normal dark mat-
ter component. The former situation is widely considered in the
literature. As we leave the density parameter Ωdm free to vary in
all the cases analysed here, it is not possible to directly compare
our results with unified Chaplygin cosmologies unless we assume
the prior Ωdm = 0. This case has been studied using GRBs and
other probes in Ref. [40]. For a comparison with this reference,
Fig. 8 shows the two-dimensional probability for the free param-
eter of the unified (Ωdm = 0) GCG model. The best fit occurs at
(α = 0.15, Ā = 0.75). This result agrees (at 1σ ) with the joint anal-
ysis showed in [40].

The analysis of Section 3 can be compared with [52], where the
influence of a free Ωdm parameter on the final estimations was
taken into account. Our results have high confidence with the re-
sults obtained in [52].
Finally, we remark that, perturbative analysis of Chaplygin mod-
els, for instance, reveals a large positive value (α � 200) for the
parameter α [54] while kinematic tests show values negatives or
close to zero. At the background level, the crossing of different data
sets (including for example SNe, CMB, BAO, H(z) data and galaxy
cluster mass fraction) will provide a more accurate scenario for
each Chaplygin-based cosmology studied in this work. We leave
this analysis, including the perturbative study, for a future work.
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