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Aims: The aims of this study were to examine the role of endothelin-1 (ET-1), a pleiotropic peptide found at
elevated levels in a number of malignancies and which has been shown to influence oral cancer cell behav-
iour via paracrine signalling pathways, on the phenotype of oral fibroblasts.
Main methods: The effect of ET-1 on proliferation and migration of human primary oral fibroblasts was
assessed using MTS and scratch assays, respectively. The ability of ET-1 to affect fibroblast contractility was
analysed using type-I collagen gels. Changes in gene expression in oral fibroblasts exposed to ET-1 were ex-
amined using quantitative PCR. The invasiveness of oral cancer cells in the presence of conditioned media col-
lected from ET-1 treated fibroblasts was determined using 2D Matrigel assays.
Key findings: Here we provide evidence that ET-1 increases the migration of oral fibroblasts and induces a
more contractile phenotype which is not associated with changes in gene expression indicative of myofibro-

blast transdifferentiation. In addition we provide evidence that conditioned medium of ET-1-stimulated oral
fibroblasts promotes invasion of OSCC cells in vitro.
Significance: In oral squamous cell carcinoma, a frequently fatal and increasingly common epithelial malig-
nancy of the oral cavity, ET-1 is known to contribute to pro-migratory paracrine signalling between stromal
fibroblasts and cancer cells. The ability of ET-1 to modulate the phenotype of human oral stromal fibroblasts,
however, has not previously been reported. The findings presented here suggest that targeting the stromal
endothelin system may be a viable and novel therapeutic strategy for invasive oral cancer.
© 2012 Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

Endothelin 1 (ET-1) is a pleiotropic 21 amino acid peptide pro-
duced by the action of endothelin converting enzyme-1 on the pre-
cursor peptide, big endothelin-1 (Kawanabe and Nauli, 2010). It
mediates its effects by binding to one of, or both, G-protein coupled
receptors, ETAR and ETBR. ET-1 and its receptors are widely expressed
and aberrant production or activity is associated with a wide range of
pathologies, including cancer (Nelson et al., 2003). Elevated levels of
ET-1 have been observed in ovarian, prostate, colon and oral cancer,
where it is thought to promote a pro-tumourigenic phenotype, acting
both on the epithelial cells and the surrounding stroma (Lambert et
al., 2008; Rosano et al., 2005).

The significance of the tumour stroma in carcinogenesis and progres-
sion of disease is increasingly recognised, and represents an attractive tar-
get for emerging therapeutic approaches (Pietras andOstman, 2010). The
predominant cell type in the stroma, fibroblasts, frequently undergo a
number of changes in response to signals released bymalignant epithelial
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cells including increased proliferation, migration and acquisition of a con-
tractile, myofibroblastic phenotype (Kalluri and Zeisberg, 2006). This
myofibroblastic transdifferentiation is associated with changes in the
gene expression profile, including increased expression of α-smooth
muscle actin andmembers of thematrixmetalloproteinase family. Fibro-
blasts displaying these characteristics (sometimes termed ‘cancer-
associated fibroblasts’) are commonly prominent in the reactive stroma
surrounding the invasive front of tumours and are often associatedwith
a poor prognosis (Kalluri and Zeisberg, 2006). In oral squamous cell car-
cinoma (OSCC), the presence of myofibroblasts in the tumour stroma
was recently identified as the strongest negative prognostic indicator,
and myofibroblasts were shown to promote cancer cell invasion
(Marsh et al., 2011).

ET-1 is known to promote myofibroblast transdifferentiation in a
number of pathologies including lung fibrosis (Teder and Noble,
2000) and cardiac fibroblast remodelling following myocardial infarc-
tion (Nambi et al., 2001). In the OSCC tumour stroma, TGF-β has been
identified as a major mediator of myofibroblast transdifferentiation
(Kellermann et al., 2008), but nothing is known of the role of ET-1
in this process, or the implications of this for the neighbouring cancer
cell phenotype.

Here, we addressed the hypothesis that ET-1 stimulates paracrine
signalling between oral fibroblasts and malignant epithelial cells by
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modifying the fibroblast phenotype. We show that ET-1 stimulation of
fibroblasts increases their migration and confers on them a more con-
tractile phenotype. This is associatedwith an increased ability to stimu-
late oral cancer cell invasion but is not concomitantwith the acquisition
of markers of myofibroblastic transdifferentiation, suggesting ET-1may
synergise with other factors to generate the reactive, myofibroblast rich
stroma associated with aggressive oral malignancies.

Materials and methods

Materials

Dulbecco's modified Eagle's medium (DMEM), foetal bovine
serum (FBS), L-glutamine and trypsin/EDTA were all purchased from
Bio Whitaker (Wokingham, UK). Chemicals routinely used were pur-
chased from Sigma-Aldrich (UK), unless otherwise stated, and were
of the highest analytical grade.

Cell culture

The human OSCC-derived cell line SCC4 and primary oral fibro-
blasts (collected with South Sheffield NHS Trust ethics committee ap-
proval and used within passage 3–10, as described in Hearnden et al.
(2009)) were routinely cultured in DMEM supplemented with 2 mM

L-glutamine and 10% (v/v) FBS. All cells were grown in antibiotic-
free media at 37 °C and 5% (v/v) CO2.

Cell treatments

Oral fibroblasts and OSCC cells were serum starved for 24 h prior
to experimentation. Cells were treated with either ET-1 (10 nM),
TGF-β (20 ng/ml) and thrombin (0.5 U/ml) and incubated for the
times indicated at 37 °C and 5% (v/v) CO2. Where indicated, fibro-
blasts were pre-treated with an ETAR antagonist, an ETBR antagonist
(BQ-123 and BQ-788, respectively, both 1 μM) individually or in com-
bination, for 30 min before addition of ET-1.

Invasion assay

SCC4 at 90% confluency were serum starved for 24 h prior to ex-
perimentation, trypsinised and resuspended in DMEM containing
0.1% (w/v) BSA at 1×105 cells/ml. A 200 μl cell suspension was
added to the top of a transwell chamber containing 200 μl of growth
factor depleted Matrigel (BD Biosciences) and 500 μl of DMEM con-
taining conditioned media from fibroblasts (treated as described in
individual figure legends) was added to the lower chamber. After
40 h, cells were swabbed away from the inside of the invasion cham-
ber and cells adhering to the underside of the chamber fixed for
10 min in 100% (v/v) methanol. Migrated cells were stained with
0.1% (w/v) crystal violet and counted by light microscopy. Three
fields of view from each insert were counted.

Proliferation assay

Oral fibroblasts were seeded at 2000 cells/well and allowed to incu-
bate overnight. Cells were washed in phosphate buffered saline (PBS)
before addition of ET-1 and/or ET-1 receptor antagonists (added
30 min prior to addition of ET-1). MTS reagent (Sigma) was added
and fluorescence recorded at 492 nm using a fluorescent spectropho-
tometer (Tecan) following incubation at 37 °C, 5% (v/v) CO2 for 48 h.

Migration assay

Oral fibroblasts were seeded at 100,000 cells/well and allowed to
incubate overnight. Cells were then serum starved for 24 h. A scratch
was made in each well using a 200 μl pipette tip. Media was removed,
and cells were washed in PBS before the addition of ET-1, serum and/
or antagonists of ETAR and ETBR (added 30 min before the addition of
ET-1). Mitomycin C (Sigma) at 1 μg/ml was added to each well to pre-
vent proliferation. Each well was photographed at two points along
the scratch at 0 h and 24 h. The distance between each edge of the
scratch was measured.

Gel contraction assay

Oral fibroblasts (250,000 cells/well) were mixed with rat tail col-
lagen (7.5 mg/ml) in DMEM and pH adjusted to 7 using NaOH. The
cell:collagen mixture was added to 24 well plates and incubated for
24 h. The gels were then loosened from the edges of the well and
were incubated with serum free medium containing thrombin, ET-1
and/or ET-1 receptor antagonists (added 30 min before addition of
ET-1) for 30 min. Collagen lattices were photographed and the dis-
tance contracted by the gels measured.

Real-time PCR

Total RNAwas isolated from oral fibroblasts using the RNeasymini kit
(Qiagen). RNA from each sample was quantified using a NanoDrop spec-
trophotometer (Thermo). High capacity cDNA reverse transcription kit
(Applied Biosystems) was used for synthesis of cDNA according to the
manufacturer's instructions. cDNA was subsequently analysed by SYBR
green qPCR using the 7900HT Fast thermocycler (Applied Biosystems).

Primers used for SYBR green quantification were as follows: U6
forward 5′ CTCGCTTCGGCAGCACA 3′, U6 reverse 5′ AACGTTCACGAA
TTTGCGT 3′; alpha-SMA forward 5′ GAAGAAGAGGACAGCACTG 3′,
alpha-SMA reverse 5′ TCCCATTCCCACCATCAC 3′. Taqman chemistry
was used to detect MMP-2 and beta-2-microglobulin using primers/
probes obtained from Applied Biosystems. All values were normalised
to U6 (SYBR) or beta-2-microglobulin (Taqman) expression levels.

Immunoblotting

Cells were washed twice with PBS and protein extracted using triple
detergent lysis buffer (0.1 M Tris–HCl pH 7.4, 0.15 M NaCl, 1% (v/v) Tri-
ton X-100, 0.1% (v/v) Nonidet P-40) containing Complete Mini Protease
Inhibitor Cocktail (Roche) and Benzonase (Sigma; used according to
manufacturer's instructions). Protein concentration was measured
using BCA Protein Assay Kit (Thermo). Total protein extracts (50 μg)
were separated by 3–8% (v/v) SDS-PAGE and transferred to nitrocellu-
lose membrane. Following blocking of non-specific protein binding,
membranes were incubated with antibodies directed to α-SMA
(1:1000, Sigma) or β-actin (1:4000, Sigma). Horseradish peroxidase-
conjugated secondary antibodies (Sigma) were diluted 1:2000. All anti-
bodies were diluted in 5% (w/v) dried milk and 3% (w/v) bovine serum
albumin in Tris-buffered saline containing 0.5% (v/v) Tween 20. Immu-
noreactive proteins were visualised by enhanced chemiluminescence
(ECL, Pierce). Densitometry was performed using Adobe Photoshop.

Statistical analyses

Data are expressed as the mean±SEM. Normal distribution of data
was assessed using the Shapiro–Wilk test; statistical analyses were
made between two groups using the non-parametric Mann Whitney
U test or parametric Student t-test, as appropriate and indicated in
figure legends. A value of pb0.05 was considered significant.

Results

Fibroblasts treated with ET-1 increase invasion of oral cancer cells

Having previously shown that ET-1 is capable of promoting para-
crine signalling between oral fibroblasts and OSCC cells (Hinsley et
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Fig. 1. Endothelin-1 stimulates pro-invasive stromal-epithelial interactions. Condi-
tioned medium (CM) was collected from oral fibroblasts pretreated with an ETAR an-
tagonist (ETARa) or an ETBR antagonist (ETBRa) or vehicle control for 30 min before
the addition of ET-1 for 4 h. CM was added to the lower side of a Matrigel invasion
chamber, and SCC4 cells seeded into the chamber, as described in Materials and
Methods. After 40 h, invaded cells were stained and counted, as described. Results
are plotted relative to untreated control wells, ±SEM of three separate fields of view
from three independent experiments. *pb0.05 compared to untreated, and **pb0.05
compared to ET-1 treated, as assessed by Student t-test.
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al., 2012), we first sought to examine the effect of this signalling path-
way on OSCC cell invasion. Conditioned media collected from oral fi-
broblasts treated with ET-1 significantly stimulated invasion of SCC4
cells through Matrigel, a murine tumour-derived extracellular matrix
substitute (Fig. 1). This stimulation of invasion was blocked by an
ETAR antagonist and an ETBR antagonist, suggesting ET-1 is able to
act through both receptors, which we have previously shown to be
expressed by oral fibroblasts (Hinsley et al., 2012). ET-1 had no signif-
icant effect on SCC4 invasion in the absence of fibroblasts (data not
shown).

ETAR and ETBR influence proliferation of oral fibroblasts

Having established that ET-1 is able to stimulate fibroblasts to re-
lease pro-invasive factors, we next examined the effect of ET-1 on the
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Fig. 2. ET-1 does not significantly alter proliferation of oral fibroblasts. Oral fibroblasts
were pretreated with ETAR and/or ETBR antagonists for 30 min before the addition of
ET-1. MTS was added and fluorescence measured at 48 h, as described in Materials
and Methods. Results are plotted relative to untreated control wells, ±SEM of three in-
dependent experiments, each carried out in triplicate. *pb0.05 compared to untreated,
ns p>0.05 compared to untreated, and **pb0.05 compared to ET-1 treated, as assessed
by Mann Whitney U-test.
growth of oral fibroblasts. Treatment with ET-1 caused a trend of in-
creased proliferation of oral fibroblasts, but this did not reach signifi-
cance (Fig. 2). Both ETAR and ETBR antagonists, however, significantly
reduced proliferation compared to ET-1 treatment (Fig. 2), suggesting
ET-1 signalling may play a role in oral fibroblast proliferation.

ET-1 promotes migration of oral fibroblasts

As activated fibroblasts commonly display a more migratory phe-
notype, we next analysed the effect of ET-1 on the ability of oral
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Fig. 3. ET-1 stimulates migration of oral fibroblasts. A scratch was made in oral fibro-
blasts cultured as a monolayer. Cells were then pretreated with ETAR and/or ETBR an-
tagonists for 30 min before the addition of ET-1 or 10% (v/v) serum. The diameter of
the scratch was measured before treatment, and after 24 h, photographs taken (A)
and the extent of wound closure relative to control calculated (B). The data represent
the mean values, ±SEM, of three independent experiments, each carried out in dupli-
cate. *pb0.05 compared to untreated, **pb0.05 compared to ET-1 treated, as assessed
by Mann Whitney U-test.
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fibroblasts to migrate into a simulated wound in vitro. In the presence
of mitomycin C (to prevent proliferation), ET-1 was found to signifi-
cantly increase the migration of oral fibroblasts, almost to the same
extent as that observed in response to serum (Fig. 3A,B). The stimula-
tion of migration by ET-1 was abrogated by antagonists of ETAR and
ETBR, both alone and in combination.

ET-1 stimulates contraction of oral fibroblasts

ET-1 treatment of oral fibroblasts seeded in collagen resulted in a
significant contraction of gels (~30%) compared to untreated controls,
and was of a similar magnitude to that provoked by thrombin, a well
documented stimulator of fibroblast contraction (Bogatkevich, et al.,
2001; Fig. 4A,B). The ET-1-mediated contraction was not significantly
blocked by antagonism of ETAR but was completely ablated by an ETBR
antagonist or with antagonism of both ETAR and ETBR (Fig. 4A,B).

Effect of ET-1 on myofibroblast transdifferentiation

It was recently reported that TGF-β mediated transdifferentiation
of oral fibroblasts into myofibroblasts increased their ability to pro-
mote cancer cell motility (Kellermann et al., 2008; Marsh et al.,
2011). In light of our finding that ET-1 is able to promote fibroblast-
mediated pro-invasive signalling, we next examined the ability of
ET-1 to promote two markers of myofibroblast transdifferentiation,
α-smooth muscle actin (α-SMA) and matrix metalloproteinase-2
(MMP-2). TGF-β treatment of oral fibroblasts increased the expres-
sion levels of α-SMA transcript and protein (Fig. 5A,B) and MMP-2
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Fig. 4. ET-1 provokes oral fibroblast contraction. Oral fibroblasts were seeded into col-
lagen as described in Materials and Methods. Following overnight incubation in serum
free medium, oral fibroblasts were pretreated with ETAR and/or ETBR antagonists (BQ-
123 and BQ-788, respectively) for 30 min before the addition of ET-1 or thrombin for
30 min. The gels were photographed (A; representative gels shown) and the distance
contracted measured (B). Results are plotted relative to untreated control wells, with
values representing the mean, ±SEM, of three independent experiments, carried out
in duplicate. *pb0.05 compared to untreated, **pb0.05 compared to ET-1 treated,
and ns p>0.05 compared to ET-1 treated, as assessed by Mann Whitney U-test.

Fig. 5. ET-1 does not stimulate markers of myofibroblast transdifferentiation. Oral fi-
broblasts were treated with ET-1 or TGF-β for 48 h before cells were harvested and
RNA extracted or lysates prepared as described in Materials and Methods. α-SMA (A)
and MMP-2 (C) transcript levels were assessed by qPCR; values are shown normalised
to U6 expression levels in the same samples. Results are plotted relative to untreated
control wells, with values representing the mean, ±SEM, of three independent experi-
ments, each carried out in triplicate. *pb0.05, as assessed by Mann Whitney U-test.
Cell lysates were separated by SDS-PAGE and immunoblotted for α-SMA and β-actin
(as a loading control). A representative blot is shown (B), and the intensity of the
band corresponding to α-SMA, determined by densitometry and normalised to β-
actin levels in the same sample, is indicated under each lane.
transcript levels (Fig. 5C); ET-1, however, did not significantly in-
crease the expression of either gene (Fig. 5 A–C).

Discussion

Cancers of the head and neck, predominantly oral squamous cell
carcinoma, are the sixth most common malignancy worldwide. Sur-
vival rates remain stubbornly low, with surgery and radiotherapy
the mainstay of treatment options. There exists, therefore, a pressing
need for novel therapeutic strategies. It is becoming apparent that the
tumour microenvironment may be a viable target for a new genera-
tion of therapeutic approaches (Joyce and Pollard, 2009). Cancer
cells are surrounded by a stroma comprising extracellular matrix
components, soluble proteins and peptides, and a number of different
cell types, of which fibroblasts are the most numerous (Kalluri and
Zeisberg, 2006). In the tumour microenvironment, fibroblasts fre-
quently have an altered morphology and phenotype, resembling the
myofibroblast phenotype found in post-insult tissue remodelling.
These myofibroblasts (often termed cancer-associated fibroblasts)
display increased proliferative and migratory capacity, and have a
contractile phenotype. They exhibit over-expression of a number of
genes such as the archetypal myofibroblast marker,α-smooth muscle
actin, and matrix metalloproteinases (Kalluri and Zeisberg, 2006). In
oral cancer, the presence of myofibroblasts in the tumour stroma is
a strongly negative prognostic indicator, and myofibroblasts in cul-
ture were recently shown to increase invasion of cancer cells by a
paracrine signalling mechanism (Marsh et al., 2011).
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Although the source of cancer-associated fibroblasts remains con-
troversial, there is a weight of evidence suggesting that conversion
from ‘normal’ fibroblasts, provoked by factors present in the tumour
microenvironment, is a key aetiological mechanism. A number of fac-
tors are known to promote transdifferentiation of fibroblasts into
myofibroblasts, including TGF-β (Desmouliere et al., 1993) and pep-
tides such as ET-1 (Leask, 2010). ET-1 plays a key role in the genera-
tion of myofibroblasts, and resulting fibrosis, in lung and cardiac
disease and wound healing (Leask, 2010; Guo et al., 2011), but its
role in modulating the behaviour of fibroblasts in the tumour micro-
environment is not known. This study shows that ET-1, which is ele-
vated in a number of malignancies including oral cancer, alters the
phenotype of oral fibroblasts to provoke elevated invasion of oral
cells in a paracrine manner. ET-1 treatment of fibroblasts increased
the migration of primary human oral fibroblasts, congruent with pre-
vious findings examining the effect of ET-1 on rabbit, guinea pig and
rat gingival fibroblasts (Ohsawa et al., 2005; Ohuchi et al., 2009,
2002), suggesting this function may be well conserved. ET-1 stimulat-
ed these effects in fibroblasts by acting through both of its receptors,
ETAR and ETBR, in keeping with our previous findings (Hinsley et al.,
2012). The stimulation of a contractile phenotype in oral fibroblasts
by ET-1 appeared to be predominantly mediated by ETBR, with antag-
onism of ETAR only having a minor effect. Interestingly, this predilec-
tion for different receptors in invoking distinct phenotypic sequelae
was also observed in colonic fibroblasts (Knowles et al., 2011). In
this case, antagonism of ETAR was sufficient to abrogate the effects
of ET-1 on colonic fibroblast growth and proliferation, but ETBR antag-
onism was necessary to block ET-1-mediated contraction.

The mechanism by which ET-1 stimulates phenotypic changes in
oral fibroblasts remains unclear. In this study we found that, unlike
TGFβ, a well characterised stimulant of myofibroblast transdifferen-
tiation (Sobral et al., 2011), ET-1 did not significantly alter the expres-
sion of α-SMA and MMP-2, two ‘markers’ of myofibroblasts. In other
physiological and pathophysiological settings, such as wound healing
and lung fibrosis, it is well documented that ET-1 acts in concert with
other factors such as TGF-β and angiotensin II to provoke myofibro-
blast transdifferentiation (Porter and Turner, 2009). Studies are ongo-
ing to address whether such synergism exists in the oral cancer
microenvironment, and to further elucidate the pathways by which
ET-1 modulates the oral fibroblast phenotype.
Conclusion

This is the first study to elucidate a role for ET-1 in modulating
stromal–epithelial interactions in oral cancer by influencing the phe-
notype of oral fibroblasts. These data may provide a platform from
which new and existing pharmacological agents targeting the
endothelin system in the tumour microenvironment could be utilised
as a novel therapeutic strategy.
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