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Abstract 

An inver’sion formula for incidence functions is given. This formula is applied to certain types 
of number-theoretic identities, for example, to the arithmetical evaluation of Ramanujan’s sum 
and to the identical equation of a class of multiplicative functions. 

1. Introduction 

It is well known that Ramanujan’s sum C(m,n) has the arithmetical evaluation 

Chn) = 1 dAnl4. 
4Cm.n) 

Most generalized Ramanujan sums also have similar evaluations. For example, the 
unitary analogue of Ramanujan’s sum C*(m, n) can be written as 

C*(m, n) = 1 dp*(n/d). 
dim 
d II n 

On the other hand, it is well known that the divisor function ok satiifies the identity 

ok(m = c cr,(mn/d2)dk. 
4tm.n) 

An effort to understand better the above identity led to the study of the identity 

f(m)f(n) = d,(~n,f(mn/d2M4. 
m, 

The functions f satisfying this identity are said to be specially multiplicative. Some 
inverse forms of the above identities have also been studied in the literature. For 
further information on all these identities, see e.g. [S, Chs. 1 and 21. It should be 
emphasized that Ramanujan discovered the arithmetical evaluation of C(m, n) [8] and 
an identity that may be referred to as an inverse form of the above identity for go [7]. 
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The aim of this paper is 
(i) to point out that the above identities, and also some other number-theoretic 

identities, have a common structure, 
(ii) to unify the treatment of inverse forms, 

(iii) to provide some new insight into this structure, and 
(iv) to develop an efficient tool for manipulations of this structure. 
We present the common structure and its inverse form in an inversion theorem. 

This inversion theorem is given in Section 2. A lattice-theoretic approach provides 
a deeper understanding of this structure. The inversion theorem involves incidence 
functions of (S x S, c 6 ) and (S, < ), where (S, c ) and (S, G ) are locally finite 
partially ordered sets. In the usual terminology this theorem may be called an abstract 
Mobius inversion formula (see e.g. [l, Ch. IV, 91). 

Section 3 introduces the concept of Narkiewicz’s regular arithmetical convolution, 
which is needed in Sections 4-6. 

In Section 4 the highly abstract inversion theorem of Section 2 is specialized to 
a more concrete form. The applications to Ramanujan’s sum and to its generalizations 
and to specially multiplicative functions are also given there. 

Section 5 provides a further example of the present structure in number theory. This 
example is an expression that counts the number of solutions of a restricted congruence. 

In Section 6 the concepts of convolutions and principal functions are used in 
developing an efficient tool to manipulate the concrete form of the structure. This 
method makes it possible to present the structure in a very concise form and to 
interpret the inverse structure algebraically. It is pointed out that there are, unfortun- 
ately, some difficulties in generalizing this efficient method to the abstract setting of 
the structure. 

2. An inversion theorem for incidence functions 

Let (S, G ) be a locally finite partially ordered set. Then a complex-valued function 
fon S x S is said to be an incidence function of (S, < ) iff(x, y) = 0 unless x < y, The 
set of all incidence functions of (S, < ) is denoted by I(S, < ). The convolution off, g 
(E Z(S, ,< )) is defined by 

The inverse off E Z(S, < ) is defined by 

f*f_’ =f-’ *f= 6, 

where 6 E Z(S, < ) is the identity function given by 

&x, Y) = 
1 if x = y, 
0 otherwise. 
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It can be verified that the inverse off E Z(S, < ) exists if and only if f(x, X) # 0 for all 
x E S. The zeta function of I(S, d ) is defined by 

i(x, Y) = 
1 if x < y, 
0 otherwise. 

The inverse of c is denoted by p and is called the Mobius function of I(S, < ). 
Let E be another locally finite partial order on S. Then (S x S, c < ) is a locally 

finite partially ordered set, where 

(u,x) E < (u, y) 0 u E u, x < y. 

A complex-valued functionfon (S x S) x (S x S) is said to be an incidence function of 
(S x S, G < ) if f((u,x),(u, y)) = 0 unless (u, x) G < (u, y). The set of all incidence 
functions of (S x S, c < ) is denoted by I(S x S, E < ). 

We are now in a position to present the abstract Mobius inversion formula 
of this paper. 

Theorem 1. Let (S, G ) and (S, d ) be locally finite partially ordered sets such that 

xby =G= xsy. 

Suppose that f, g E Z(S x S, G < ) and h E I(S, < ) with h(x,x) # Ofor all x E S. Then 

.0(x, x), (u, Y)) = C h(x, M(z, z),h Y)) (1) 
XSZ<Y 

ZC” 

for all u, x, y E S, if and only if 

dkx),(u,y)) = 1 h-‘(x,z)f((z,z),(u,y)) 
X<Z<Y 

ZE” 

(2) 

for all u, x, y E S, where h VI is the inuerse of h in I(S, < ). 

Proof. Suppose that (1) holds. Then 

c h-‘(x,z)f((z,z),(u,y))= c h-‘(x,4 C h(z,w)g((w,w),(u,y)) 
.X<Z<Y X<Z<Y .Z<W$Y 

ZC” ZE” WE” 

= ..c,,(,L h- ‘(x, zP(z, 4 g((w, 4, (u, y)) 
WE” 

= c w, wM(w w),(u, Y)) 
XGW4Y 

WC” 

= d(x, x),(u, Y)). 

Thus (2) holds. The converse is proved similarly. 0 
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Corollary 1. Let (S, E ) and (S, Q ) be locally jnite partially ordered sets such that 

x<y * x5y. 

Suppose that 1; g E I(S x S, c < ). Then 

_I-((% 4, (4 Y)) = c !7((z, 4 h Y)) 
x<.zsy 

ZC” 

for all v, x, y E S, if and only if 

d(x, 4, (GY)) = c PC% z)f((z, 4, (u, Y)) 
XSZ<Y 

ZE” 

for all u, x, y E S, where ,u is the Miibius function of I(S, < ). 

Corollary 2. Let (S, d ) be a locally finite partially ordered set. Suppose that 
f; g E Z(S, < ). Then 

f(X,Y) = c dZ*Y) 
X$Z<Y 

for all x, y E S, if and only if 

dx, Y) = c PC% z)f (z, Y) 
XGZ<Y 

for all x,y E S, where p is the Miibius function of I(S, d ). 

Corollary 1 follows from Theorem 1 by taking h = [, and Corollary 2 from 
Corollary 1 by taking u = y. Note that Corollary 2 is a form of the classical Mobius 
inversion formula for incidence functions. 

3. Regular arithmetical convolutions 

For each n, let A(n) be a subset of the set of positive divisors of n. The elements of 
A(n) are said to be the A-divisors of n. The A-convolution of two arithmetical 
functions f and g is defined by 

(f *A g)(n) = C f (d)g(nld). 
deA(n) 

Narkiewicz [6] defined an A-convolution to be regular if 
(a) the set of arithmetical functions forms a commutative ring with unity with 

respect to the ordinary addition and the A-convolution; 
(b) the A-convolution of multiplicative functions is multiplicative; 
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(c) the function z 1 has an inverse pLA with respect to the A-convolution, and 
pA(n) = 0 or - 1 whenever n is a prime power. 

The inverse of an arithmetical function f such that f(1) # 0 with respect to the 
A-convolution is defined by 

where 6(l) = 1 and 6(n) = 0 for n > 1. 
It can be proved (see [6]) that an A-convolution is regular if and only if 
(i) A(W) = {de: d E A(m), e E A(n)} whenever (m,n) = 1, 

(ii) for each prime power p” > 1 there exists a divisor t = am of a such that 

A(P”) = {LP’,PZ’, . . ..py , 

where rt = a, and 

A(pi’)= (l,p’,p2’,..., p”}, 06 i< 1. 

For example, the Dirichlet convolution D, where D(n) is the set of all positive divisors 
of n, and the unitary convolution U, where 

U(n)= {d >O: d(n,(d,n/d)= l} = {d >O: dlln}, 

are regular. 
The following more specialized properties are needed in the applications. Here 

A always denotes a regular arithmetical convolution. 
A positive integer n is said to be A-primitive if A(n) = { 1, n}. The generalized 

Miibius function pA is the multiplicative function given by 

. LI . . 
o- 1 tf P (.> 1) 1s A-pnmltlve, 

if p” IS non-A-pnmltlve. 

In particular, one denotes pD = p and pu = p*. 
The symbol (m,n), denotes the greatest divisor of m which belongs to A(n). In 

partidar, one denotes (m, n)D = (w, n) and (m, n)” = (m, n)*. 
A positive integer n is said to be an A-square if for each p” Ij n, a is of the form 

a = 2st, where t = ra(p”). The generalized Liouville function I, is defined to be the 
multiplicative function given by I,(p”) = ( - l)*, where a = bt, t = zA(pa). Note that 
ALi = ,u* and &, = 2, the classical Liouville function. (The connection between the 
concepts of A-square and AA is pointed out in [3, Example 21.) 

Let k be a positive integer. A positive integer n is then said to be kth power free with 
respect to A-convolution if for each pa 11 n, we have s < k, where a = st, f = zA(pa). The 
generalized Miibius function p A,k is defined to be the multiplicative function given by 
.~~,~(p’) = - 1 if a = kt, t = am, and = 0 otherwise. Note that pD,k is the Klee 
function, pA, 1 = PA, and pU,k (k > 1) is the identity function 6, where 6(l) = 1 and 
6(n) = 0 for n > 1. 
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4. An inversion theorem for arithmetical functions of two variables 

Let A and B be regular convolutions, and define the relation c < on N x N by 

(u,x) c 6 (u,y) * U E B(u), x E A(y). 

Let f(m,n) be an arithmetical function of two variables. Then we can associate with 
fan incidence function f’ of (N x N, c ,< ) defined by 

f’((% x)9 (Q Y)) = f(rla, Y/X) 

if u E B(o), x E A(y), and = 0 otherwise. It is easy to see that the mappingf+f’ is 
one-one. 

Theorem 1 can be specialized for arithmetical functions as follows. 

Theorem 2. Let A and B be regular convolutions such that for each n E IV, A(n) is 
a subset of B(n). Let h(n) be an arithmetical function with h(1) # 0. Then 

f (m, n) = 1 h(d)g(mld, n/d) 
dell(m) 
deA(n) 

for all m, n E N, if and only if 

(3) 

shn) = 1 h-‘(d)f(mld,n/d) 
de&n) 
deA(n) 

(4) 

for all m, n E N, where h- ’ is the inverse of h with respect to the A-convolution. 

In the next examples we present applications of Theorem 2 to number-theoretic 
expressions. Throughout the examples B(m) = D(m), the set of all positive 
divisors of m. 

Example 1. The generalized Ramanujan’s sum CA(m, n) is defined by 

CA(m, 4 = C exp(2ltimxfn) 
x(mod n) 

cc,n)a = 1 

(see [S, p. 1641). It is known that 

C,hn) = c 4Gl4. 
deA(n) 

dim 

(5) 

Thus CA(m, n) satisfies (3) with h(n) = n and g(m, n) = PA(n). Therefore application of 
(4) gives 

(6) 
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In particular, in the unitary case, we obtain 

p*(n) = 2 p*(d)dC*(mld,nld), 
dlln 
dim 

(7) 

where C*(m, n) is the usual notation for the unitary analogue of Ramanujan’s sum. In 
the case of the Dirichlet convolution (6) reduces to 

(8) 

where C(m,n) is the classical Ramanujan sum. It should be noted that Ramanujan 
discovered the structure of (5) in the fundamental case A = D in his celebrated 

paper Cgl. 

Example 2. Let 

bA(m, n) = C exp(2ximx/n), 
x 

where the sum is over all integers x such that x (mod n) and (x, r& is an A-square. It 
can be proved that 

B.&n) = 1 dLW4 
daA(n) 

dim 

(9) 

(cf. [3, Theorem 91). Thus flA(m,n) Sat&it% (3) with h(n) = n and g(m, n) = n,.,(n). 
Therefore application of (4) gives 

&(n) = dE;& PA(d) dfl,(m/d, n/d). 
dim 

(10) 

In the unitary case, (10) reduces to (7), and in the case of the Dirichlet convolution, (10) 
reduces to 

44 = 1 A4 4W4 n/d). 
dl0n.n) 

(11) 

Note that p is the function B of Sivaramakrishnan [lo, p. 2023. 

Example 3. Let 

cA,k(m, fl) = xexp(2&x/n)imxln), 
X 

where the sum is over all integers x such that x(mod n) and (x, n)A is kth power free 
with respect to A-convolution. It can be proved that 

CA,dm, n) = c dh.,(n/d) 
deA(n) 

dim 

(12) 



94 P. Haukkanen / Discrete Mathematics 142 (1995) 87-96 

(cf. [3, Theorem 9)). Thus C.&n,n) satisfies (3) with h(n) = n and g(m,n) = ,uA,Jn). 
Therefore application of (4) gives 

pA,kb) = d~~(n,ll(d)dCA,k(m/d,nld). 
dim 

(13) 

Example 4. An arithmetical functionfis said to be specially multiplicative [4] if there 
exists a completely multiplicative function g such that 

fbW(n) = c f(mnld2M4 
dl0n.n) 

(14) 

for all m,n E N. Thus f(m)f(n) satisfies (3) with h(n) = g(n) and g(m,n) =f(mn). 
Therefore application of (4) gives the following well-known identity 

fb) = 1 fW4fW)h4s(d) 
d1tm.n) 

(15) 

for all m, n E N (see e.g. 15, p. 191). Equations of the types (14) and (15) are also 
termed Busche-Ramanujan equations, since the study of these equations arose from 
the observations of Busche [2] and Ramanujan [7] that the divisor functions bk 
possess this structure (see also [5, p. 25)). 

5. A congruence 

Theorem 3. Let aI, a2, . . . . a, be integers such that ((Uj), n) = 1, where (Uj) is the g.c.d. of 
al,a2, . . ..a.. Let Q(m, n,s) denote the number of solutions (x1,x2, . . ..xS) of the 
congruence 

m = alxl + a2x2 + . -. + a,x, (mod n) (16) 

such that ((Xj),n)A = 1. Then 

Q(m, n, s) = c UWW-’ (17) 
deA(n) 

dim 

and 

(18) 

Proof. Let p:‘, i = 1,2, . .., r, be the A-primitive prime powers such that pii E A(n), 
$(m, and let Ni, i = 1,2, . . . , I, be the set of solutions of the congruence such that 
pi’((xj), where (xj) is the g.c.d. of ~1, . . . , x,. Then Q(m, n, s) is the number of solutions of 
(16) which do not belong to Nr u .-+ u N,. 
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If 1 < ii < -.+ < ik < r, then card(Ni, n ... n Ni,) is the number of unrestricted 
solutions of 

m/M: . ..pf.) = aiyi + ... + a,y,(modn/(p:y . ..p.z)). 

Since ((aj), n/(pi:l . ..p.;)) = 1, then 

card(Ni, n ..+ n Nc) = [n/(Piy ~.*p~~)]“-’ 

(see [IS, Proposition 3.11). Thus, by the inclusion-exclusion principle (see [5, p. 12]), 
I 

Q(m, n, s) = rr-’ + c ( - l)k 
k=l 

This proves (17). Further, application of Theorem 2 gives (18). 0 

Remark. Eq. (17) is known in the case A = D (see [S, p. 1271). 

6. Principal functions 

For an arithmetical function h(n), Vaidyanathaswamy [ll] defined the principal 
function Ph(m, n) equivalent to h as follows: 

Pdm,n) = 
h(n) if m = n, 
o otherwise. 

Vaidyanathaswamy also connected this concept to the theory of the Dirichlet convo- 
lution. Here we show that principal functions connected to regular convolutions is 
a very efficient tool in the context of the number-theoretic structure of this paper. 

Let A and B be regular convolutions such that for each n E N, A(n) is a subset of B(n). 
The BA-convolution of arithmetical functions f(m, n) and g(m, n) is then defined by 

U*BA s)h 4 = 1 1 f(d eMml4 n/e). 
dell(m) esA(n) 

The identity A under the BA-convolution is given by d(m, n) = 1 if m = n = 1, 
and = 0 otherwise. It can be verified that 

ph, *,A Phz = P(h,*Ahz, 7 
P8 = A, (p,,-’ = P,,-1, 

where (Ph) -’ is the inverse of Ph with respect to the BA-convolution and h-i is the 
inverse of h with respect to the A-convolution. Therefore, by simple algebraic manip- 
ulations, we obtain 

f = (Ph) *BA g * 9 = tPh-‘) *BA f, 

which is Theorem 2 in a very concise form. 
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The question naturally arises whether this efficient tool can be extended for use with 
the incidence functions. Unfortunately, we encounter difficulties, which we point out 
here. For h E I(S, < ) we define the principal function P,, E Z(S x S, G < ) by 

Pido x),04 Y)) = 
h(u,v) if u = x, v = y, 
() otherwise. 

The convolution off and g E I (S x S, c SG )) is defined by 

(fo d((4 4, (VT Y)) = c f(k xl, (WY z)M(w, 4 (v, VI). 
UGWE” 

XGZ4Y 

It can be verified that under the assumptions of Theorem 1, 

phi ’ Phz = P(hl*hz) 3 

where * is the convolution in Z(S, < ). Unfortunately, however, 

PJ#A, 

where A is the identity under the convolution in Z(S x S, E < ). To be more precise, Pd 
has the property 

(Pa of)((u, x), (v, y)) = 
i 

{(@, x)9 (vY y)) ;t;e;w;;e 

for all f E I(S x S, c < ), while A has the property 

Aof=foA=f 

forallfCZ(SxS, C <). 
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