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a b s t r a c t

Citrus tristeza virus (CTV), the largest and most complex member of the family Closteroviridae, encodes a
unique protein, p33, which shows no homology with other known proteins, however, plays an important
role in virus pathogenesis. In this study, we examined some of the characteristics of p33. We show that
p33 is a membrane-associated protein that is inserted into the membrane via a transmembrane helix
formed by hydrophobic amino acid residues at the C-terminal end of the protein. Removal of this
transmembrane domain (TMD) dramatically altered the intracellular localization of p33. Moreover, the
TMD alone was sufficient to confer membrane localization of an unrelated protein. Finally, a CTV variant
that produced a truncated p33 lacking the TMD was unable to infect sour orange, one of the selected
virus hosts, which infection requires p33, suggesting that membrane association of p33 is important for
the ability of CTV to extend its host range.

& 2015 Elsevier Inc. All rights reserved.

Introduction

Citrus tristeza virus (CTV), the largest and most complex member
of the family Closteroviridae, is a phloem-limited virus, which infects
Citrus spp. and close relatives (Bar-Joseph et al., 1979; Dolja et al.,
1994, 2006; Agranovsky, 1996; Karasev, 2000). CTV has significantly
impacted citrus industries in many different countries all over the
world by causing two types of disease—quick decline and stem
pitting, which led to dramatic losses of fruit yield and death of
millions of trees (reviewed in Moreno et al., 2008). CTV has a 19.3 kb
positive-sense RNA genome organized into 12 open reading frames
(ORFs; Fig. 1), which encode proteins that function at different stages
of the virus life cycle (Pappu et al., 1994; Karasev et al., 1995; Karasev,
2000). ORFs 1a and 1b are expressed from the genomic RNA and
encode polyproteins involved in virus replication. The other ten
genes in the 30 half of the genome are expressed by 30 co-terminal
subgenomic RNAs (sgRNA; Hilf et al., 1995; Karasev et al., 1997). Five
of these genes represent a signature gene block conserved among the
members of the Closteroviridae and encode a hydrophobic protein p6,
p65 (or HSP70h), which is a homolog of the cellular heat shock
proteins, p61, and two coat proteins, the major and the minor coat
proteins (CP and CPm, respectively). The latter four proteins are

involved in virion assembly and also are needed for virus movement
along with p6 (Alzhanova et al., 2000; Satyanarayana et al., 2000,
2004; Peremyslov et al., 2004; Tatineni et al., 2010). The remaining
five genes that encode p33, p18, p13, p20, and p23 proteins are not
found in other members of the Closteroviridae (Dawson et al., 2013).
Among those, p20 and p23 proteins are absolutely required for
infection of plants and have been shown to be involved in suppres-
sion of host RNA silencing along with CP (Lu et al., 2004; Tatineni
et al., 2008). Three nonconserved proteins, p33, p18, and p13, are
dispensable for systemic infection of most Citrus spp. CTV mutants
with deletions of the corresponding genes are able to infect, multiply,
and spread systemically throughout plants of several citrus varieties
similarly to the wild type virus (Tatineni et al., 2008). On the other
hand, the presence of these genes, and p33 in particular, in the virus
genome is required for infection of a few other varieties (Tatineni
et al., 2011). Interestingly, the p33 gene product appears to have a
major role in extending the virus host range. Thus, acquisition of the
p33 gene allowed systemic infection of sour orange, lemon, grape-
fruit, and calamondin. The products of the other two genes appear to
carry out some redundant functions in the latter two hosts: in the
absence of p33, p18 permits infection of grapefruit, while p13 allows
the virus to infect calamondin (Tatineni et al., 2011).

In addition to extending the ability of CTV to interact with
multiple hosts, p33 plays a crucial role in virus superinfection
exclusion, a phenomenon in which an initially established viral
infection blocks a secondary infection with the same or closely
related virus. As we showed recently, mutations within the p33
ORF, which prevented production of the functional protein, resulted
in a loss of virus ability to exclude superinfection by the wild type
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CTV (Folimonova et al., 2010). Moreover, the p33 protein appeared to
function in a homology-dependent manner such that its substitution
with a cognate protein from a heterologous strain did not confer
exclusion, suggesting the existence of precise interactions of p33
with other viral factors involved in this phenomenon (Folimonova,
2012). In spite of an apparent role of p33 in CTV pathogenesis, the
protein, however, has not been characterized nor the mechanism of
its action is not yet elucidated. The p33 protein appears to be unique
and does not share a significant homology with other known
proteins, which complicates further understanding of how it
functions.

In this study, we examined some of the biochemical properties
of the p33 protein along with its subcellular localization. We show
that p33 is a membrane protein and is inserted into the membrane
via a transmembrane (TM) helix formed by a highly conserved
array of hydrophobic amino acid (aa) residues at the C-terminal
end. Removal of this TM domain (TMD) dramatically altered the
subcellular localization of the protein and also affected virus
ability to infect an extended host range.

Results

The p33 protein of CTV contains a putative TMD

Analysis of the aa sequence of the p33 protein encoded in the
genome of the T36 isolate of CTV using computer programs MPEx
and TMpred (see Materials and methods) revealed presence of a
highly hydrophobic region at the C-terminal end of the protein
spanning aa residues 279 to 299 (Fig. 2(A)). The protein structure
prediction programs, which utilized different algorithms (see
Materials and methods), consistently predicted a single α-helical
TMD within this hydrophobic region. The free energy for mem-
brane insertion of the predicted TMD based on a biological
hydrophobicity scale (Hessa et al., 2005) appeared to be negative
enough (ΔGapp¼�1.807 kcal mol�1) for the protein to be effi-
ciently integrated into the endoplasmic reticulum (ER) membrane
by the translocon complex (Woolhead et al., 2004; Elofsson and
von Heijne, 2007). Further examination of the aa array of the
predicted TMD region by the helix structure analysis tool (http://
heliquest.ipmc.cnrs.fr/) showed that all faces of the surface of the
TMD helix are uniformly hydrophobic, which suggested that p33
could be tightly inserted into the membrane (data not shown).
Interestingly, one of the aromatic residues, tyrosine (Y282), was
found toward the N-terminal end of the p33 TMD. Such residues
are presumed to be positioned preferably near the end of the

membrane-integrated helix and to interact with lipid-water inter-
facial layer of the membrane (Ulmschneider and Sansom, 2001;
Beuming and Weinstein, 2004). No proline residues that could
greatly reduce the efficiency of membrane insertion (von Heijne,
1991; Hessa et al., 2005) were found in the p33 TMD. Alignment of
the aa sequences of p33 proteins encoded in the genomes of
isolates from different CTV strains showed that the TMD region is
highly conserved among the cognate proteins of those isolates,
with almost identical aa composition (Fig. 2(B)), indicating that
membrane insertion of the p33 protein has been preserved in all
CTV variants, which could suggest the importance of this region
for the protein function.

p33 is an integral membrane protein

To examine membrane association of p33, we first analyzed
protein extracts obtained from Nicotiana benthamiana plants, which
were infiltrated with Agrobacterium tumefaciens culture transformed
with a binary vector carrying a fusion of the green fluorescent
protein (GFP) gene to the p33 ORF (pGFP:p33) under the 35S

Fig. 1. Schematic representation of the genome of CTV and its derivatives generated in this study. The boxes represent ORFs and their translated products. Pro, papain-like
protease domain; MT, methyltransferase; HEL, helicase; RdRp, RNA-dependent RNA polymerase; HSP70h, HSP70 homolog; CPm, minor coat protein; CP, coat protein. The
derivatives are shown under the enlarged genome segment. CTV-GFP has GFP ORF inserted between the p23 gene and 30 NTR of the CTV genome under the native promoter
of the CTV CP sgRNA. CTVp33nTMD-GFP has a single nucleotide substitution (T to A) at the position 11,729, which converts the cysteine (C280) codon to a stop codon. CTV-
GFP:p33 has the GFP ORF fused to the 50-terminal end of the p33 gene.

Fig. 2. Analysis of the aa sequence of the p33 protein of CTV. (A) Hydrophobicity
plot. Predicted TMD region, which corresponds to the most hydrophobic region, is
shown as a dotted line. (B) Alignment of the p33 aa sequences from various strains of
CTV. The conserved region matching to the predicted TMD is shown as a dotted line.

S.-H. Kang et al. / Virology 482 (2015) 208–217 209

http://www.heliquest.ipmc.cnrs.fr/
http://www.heliquest.ipmc.cnrs.fr/


promoter. Immunoblot analysis of protein extracts subjected to a
differential centrifugation at 30,000� g using antibody against GFP
showed that GFP:p33 was present exclusively in a pellet fraction
(P30), in contrast to the free GFP, which was found mainly in the
soluble fraction (S30), with some minor amounts present in the
pellet fraction (Fig. 3(A), panel “a”). The fact that the p33 protein was
found in the P30 pellet, which represents a crude membrane fraction
according to the earlier studies (McKeel and Jarett, 1970; Schaad
et al., 1997), suggested that p33 is a membrane-associated protein. To
verify whether p33 expressed upon virus infection partitions to the
same fraction, we analyzed extracts from N. benthamiana and Citrus
macrophylla plants infected with the wild type CTV. Immunoblot
analysis with the antibody generated against p33 showed that the
majority of the p33 protein produced upon virus infection was
detected in the respective pellet fraction following centrifugation at
30,000� g, similarly to what was found upon Agrobacterium-
mediated transient expression of the p33 ORF (Fig. 3(A), panels “b”
and “c”). To further characterize the association of p33 with mem-
branes, the P30 fractions from each sample were treated with
sodium carbonate (pH 11.0), 4 M urea or Triton-X114 in order to
determine whether p33 has luminal localization or it is associated
with membrane structures. Sodium carbonate treatment, which
converts microsomes into open membrane sheets and, therefore,
releases soluble luminal proteins (Schaad et al., 1997) did not release
the p33 protein into the soluble fraction (Fig. 3(B)). This suggested

that p33 is tightly associated with membranes. Furthermore, 4 M
urea, which diminishes the hydrophobic interactions by competitive
binding to a protein and releases proteins bound to the membrane
periphery (Schaad et al., 1997; Reichel and Beachy, 1998), did not
release p33 as well, suggesting that the p33 protein is anchored into
the membrane (Fig. 3(B)). This was confirmed by the following
treatment with Triton X-114. As we expected, upon incubation with
Triton X-114, which partitions amphiphilic integral proteins from
hydrophilic proteins into a detergent and an aqueous phases,
respectively (Bordier, 1981; Mathias et al., 2011), the majority of
p33 was detected in the detergent phase, which evidenced that the
p33 is an integral membrane protein (Fig. 3(B)).

Upon expression in a host cell p33 localizes to cellular membranous
structures

In order to assess the intracellular localization of the p33
protein, N. benthamiana leaves expressing GFP:p33 were examined
using confocal laser scanning microscopy. The GFP-tagged p33
produced bright fluorescence allowing evaluation of the distribu-
tion of the protein inside living cells. The observed distribution of
p33 was very distinguishable from that of free GFP (Fig. 4(A) and
(B)). As shown in Fig. 4, GFP:p33 localized to the plasma mem-
brane and was also found in the vesicular bodies distributed
throughout the cytoplasm, but not in the nucleus (Fig. 4(B) and
(C), white arrows), while free GFP appeared to be diffused
throughout the cytoplasm and was seen in the nucleus as well
(Fig. 4(A)). To show that the observed phenotype of the GFP-
tagged p33 is not an artifact due to the protein overexpression
driven by the 35S promoter, we generated a construct in which we
placed a fusion of the GFP and the p33 genes in the native position
of the p33 ORF in the virus genome (CTV-GFP:p33; Fig. 1).
Observations of the distribution of the GFP-tagged p33 produced
upon virus multiplication in the inoculated leaves of N. benthami-
ana showed that the protein exhibited a phenotype similar to that
shown above: the GFP-labeled p33 was found in the association
with the plasma membrane as well as in the cytoplasmic vesicular
bodies (Fig. 4(D)). The level of GFP:p33 production driven by the
native viral promoter in the context of virus infection was slightly
less compared to the amount of the protein produced from a 35S
promoter-based construct. The similarity of the intracellular dis-
tribution of p33 produced under the two conditions validated,
however, the use of the 35S promoter-driven expression approach
to study the localization and properties of the p33 protein.

CTV p33 is anchored to the membrane via C-terminal TMD

To assess a role of the TMD in p33 association with membrane
structures, we generated a construct pGFP:p33ΔTMD in which the
GFP ORF was fused to the truncated p33 ORF such that the latter
contained a deletion of the 30-terminal region that codes for the last 25
aa at the C-terminus of the p33 protein (aa 279–303) (Fig. 5(A)). The
computer algorithms predicted no putative TMD in the resulted
protein, and the calculated free energy value for the membrane
insertion was positive, suggesting that this deletion would abolish
membrane localization of the protein. To determine whether deletion
of the TMD affected the association of p33 with membranes, protein
extracts from N. benthamiana plants expressing GFP:p33ΔTMD were
subjected to a differential centrifugation followed by immunoblot
analysis as described above. As we expected, GFP:p33ΔTMD was
found only in the soluble fraction (S30) resembling a pattern found
with free GFP (Fig. 5(B)), in a contrast to the GFP-tagged wild type p33,
which as we showed above, partitioned to the pellet fraction (Fig. 3
(A)). The subcellular localization of the mutant p33 lacking the TMD
significantly differed from that of the parental protein. The fluores-
cence of GFP:p33ΔTMD was observed throughout the cytoplasm and

Fig. 3. Subcellular fractionation and immunoblotting analysis of the p33 protein
expressed ectopically as a fusion with GFP (GFP:p33) or produced during the course
of virus infection as the wild type protein in N. benthamiana (a) and (b) or C.
macrophylla (c). (A) Tissue extracts were subjected to SDS-PAGE followed by
immunoblotting using anti-GFP (a) or anti-p33 (b) and (c) antibodies. S3, super-
natant following centrifugation of extracts at 3000� g; S30 and P30, supernatant
and pellet, following the centrifugation of S3 at 30,000� g, respectively; GFP, plants
expressing free GFP; GFP:p33, plants expressing the respective fusion protein; H,
healthy, non-inoculated plants; CTV, virus-infected plants. Black triangle pointer
indicates the position of the GFP-tagged p33; gray triangle pointer indicates the
position of the free GFP. (B) The P30 fractions subjected to treatments with sodium
carbonate, urea or Triton X-114 were separated into supernatant (“S”) and pellet
(“P”) or aqueous (“AP”) and detergent (“DP”) fractions following centrifugation at
30,000� g. Equivalent amounts of fractions were subjected to SDS-PAGE followed
by immunoblotting using anti-GFP (a) or anti-p33 (b) and (c) antibodies.
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in the nucleus, similar to that produced by free GFP (Fig. 5(B)). No
vesicle-like structures characteristic of the wild type p33 (Fig. 4(B) and
(C)) were found with the p33ΔTMDmutant. These observations along
with the results of the immunoblot analyses indicated that the
deletion of the TMD completely abolished membrane association of
the p33 protein.

In addition to the assays described above, we examined whether
the TMD of p33 alone is capable of targeting another unrelated
protein to the cellular membranes. In order to address this question,
a sequence of the TMD was fused to the 30 terminus of the GFP ORF
(Fig. 5(A); pGFP:TMD). Another construct was created by fusing the
GFP ORF with a mutated version of the TMD, SPTMD, carrying
substitutions of each of the two serines at the aa positions 290 and
295 with the proline (Fig. 5(A); pGFP:SPTMD). Such mutations were
expected to distort the membrane-spanning α-helix by disrupting
the direction of the peptide chain due to the cyclic structure of
prolines (Deber and Therien, 2002; Genovés et al., 2011). Immuno-
blot analysis of the protein extracts obtained from infiltrated leaves
using anti-GFP antibody showed that unlike free GFP the fusion of
GFP to the TMD partitioned to the crude fraction of cellular
membranes, P30 (Fig. 5(B)). In contrast, as we expected, a signifi-
cant proportion of GFP:SPTMD was found in the soluble fraction
(Fig. 5(B)), suggesting that membrane association conferred by the
TM α-helix was affected by the respective change in its topology.
Examination of the subcellular localization of the engineered fusion
proteins revealed that their distribution was distinct from that of
the parental GFP. GFP:TMD was found exclusively along the plasma
membrane confirming the ability of the TMD of p33 target

unrelated proteins to the membrane (Fig. 5(B)), whereas GFP:
SPTMD was evenly distributed in the cytoplasm similarly to GFP:
p33ΔTMD, with some fluorescence seen on the cellular membrane
(Fig. 5(B)). These observations, along with the findings presented
above, confirmed that the predicted hydrophobic α-helix at C-
terminal end of p33 has a key role in anchoring the protein to the
membrane.

Membrane association of p33 confers virus ability to infect an
extended host range

Previously, it has been demonstrated that mutants of CTV that
have a deletion of the p33 ORF were unable to infect certain citrus
hosts (Tatineni et al., 2011). To examine whether membrane associa-
tion of the p33 protein is important for the ability of CTV to establish
infection in an extended host range, we generated a CTV variant,
which produced the TMD-less version of p33 (CTVp33*TMD-GFP;
Fig. 1). This virus variant had also the GFP ORF inserted in the
genome as an extra gene, which allowed monitoring of virus
accumulation in the inoculated plants. While engineering the viral
construct, we avoided deleting the whole nucleotide sequence
encoding the p33 TMD region. This sequence represents a part of
the promoter for the sgRNA that serves as mRNA for translation of
the p6 protein, for which ORF is positioned downstream of the p33
ORF (Fig. 1) (Ayllón et al., 2005). Instead, CTVp33nTMD-GFP was
generated by introducing a single nucleotide substitution (TGT to
TGA) converting the codon for the cysteine, positioned at the
beginning of the predicted TMD, at the aa position 280 into a stop

Fig. 4. Subcellular localization of the p33 protein. Images show confocal projections of N. benthamiana leaves agroinfiltrated with the following constructs: (A) pGFP, (B) and
(C) pGFP:p33, (D) pCTV-GFP:p33. Cell shown in images A and B were stained with DAPI. The white arrows in the enlarged image (C) show accumulation of the GFP-tagged
p33 at the plasma membrane and in the cytoplasmic vesicular structures. Scale bars, 10 μm.
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codon. Immunoblot analysis of protein extracts obtained from N.
benthamiana plants inoculated with CTVp33nTMD-GFP demon-
strated the presence of the truncated p33 protein lacking the TMD
exclusively in the fraction of soluble proteins (Fig. 6(A)), in contrast to
the full-length p33 produced upon infection with the wild type CTV,
which partitions into the fraction of cellular membranes as we
demonstrated above (Fig. 3(A), panel “b”). As the next step,
CTVp33nTMD-GFP was used for inoculation of a series of C. macro-
phylla and sour orange plants. As a control in this experiment, a set of
plants of the same two varieties was inoculated with the GFP-tagged
wild type CTV (Fig. 1; CTV-GFP). As a result in this experiment, both
virus variants successfully established systemic infections in C.
macrophylla plants, which was confirmed by ELISA assays using
CTV-specific antiserum (Fig. 6(B)) and by observation of GFP fluor-
escence produced upon multiplication of the viruses in the inocu-
lated trees (data not shown). Furthermore, sour orange plants
inoculated with CTV-GFP showed virus infection as well (Fig. 6(B)).
The titer of CTV-GFP in plants of this citrus variety was lower than
that found in C. macrophylla plants, which was in the agreement with
the previous observations showing that sour orange is less suscep-
tible to infection by CTV (Folimonova et al., 2008). At the same time,
sour orange plants inoculated with CTVp33*TMD-GFP remained
virus-free, which was confirmed by ELISA assays and lack of GFP
fluorescence in the inoculated plants (Fig. 6(B) and data not shown).
The virus variant expressing the p33 protein lacking the TMD was
unable to infect this citrus variety. Such behavior was similar to that
of the virus mutant containing a deletion of the p33 ORF, which also
could not infect sour orange (Tatineni et al., 2011).

As an alternative strategy to examine the ability of CTVp33nTMD-
GFP to infect sour orange, we used an approach that was successfully
utilized by us and other researchers for the analysis of susceptibility of
different citrus varieties to variants of CTV in the earlier studies
(Folimonova et al., 2008; Tatineni et al., 2011). Small rectangular areas
of bark from the stems of C. macrophylla trees infected with

CTVp33nTMD-GFP or CTV-GFP were replaced with bark patches of
an equal size excised from healthy sour orange or C. macrophylla trees.
The plants were further maintained for ten weeks to allow the
substituted bark patches to establish vascular connections. The exam-
ination of the junction areas of the grafted bark patches using a
fluorescence microscope showed that in all sets the bark tissue of C.
macrophylla trees appeared to be heavily infected (Fig. 6(C)). Abundant
GFP fluorescence was also observed in the C. macrophylla patches
placed into the CTVp33nTMD-GFP- and CTV-GFP-infected trees, show-
ing that the virus was able to successfully infect the introduced tissue
patches (Fig. 6(C)). Significant amount of GFP fluorescence was
observed in the sour orange patches placed into the trees infected
with the GFP-tagged wild type CTV (Fig. 6(C)). However, no GFP
fluorescence was detected in the sour orange patches grafted into the
CTVp33nTMD-GFP-infected trees (Fig. 6(C)). This result demonstrated
that a CTV variant, which produces a truncated p33 protein lacking the
TMD, acts as a previously described mutant containing a deletion of
the p33 protein gene, which also was unable to infect sour orange
variety (Tatineni et al., 2008, 2011) and suggested that membrane
association of p33 conferred by its C-terminal TMD is important for
virus ability to infect an extended host range.

Discussion

Previous studies have shown that the p33 protein of CTV plays
an important role in the virus pathogenesis. The protein is
encoded only in the genomes of CTV isolates and has no significant
homology with other known proteins. To some extent, the unique-
ness of p33 could account for the lack of understanding of the
modes of action of this protein. In this work, we examined some of
the characteristics of the p33 protein along with its intracellular
localization. We show that p33 is a membrane-associated protein
and is inserted into the membrane via a TMD positioned at its C-
terminal end. Immunoblotting assay of protein extracts obtained
from plants expressing p33 showed that p33 partitioned exclu-
sively to the fraction containing cellular membranes. A series of
chemical treatments applied to this fraction confirmed that the
protein is tightly associated with the membrane. Microscopic
observations of plant cells expressing the GFP-tagged p33 revealed
that the p33 protein accumulates at the plasma membrane and
also forms cytoplasmic vesicles. Furthermore, the C-terminal TMD
appeared to play a key role in anchoring p33 to the membrane. A
p33 mutant containing a deletion of TMD lost membrane targeting
and was seen dispersed throughout the cytoplasm similarly to free
GFP. Moreover, the TMD alone was able to convey the tagged GFP
to the membrane as was demonstrated by the analysis of the
fractionated protein extracts from plants expressing GFP:TMD
fusion and by the observation of its intracellular distribution.

The subcellular localization of a protein with a TMD is deter-
mined by the length, hydrophobicity, and the aa composition of
the TMD sequence (Brandizzi et al., 2007; Thomas et al., 2008).
The length of the TMD of p33 appears to be similar to that of TMDs
of other plant viral proteins targeted to the cellular membranes
(Schaad et al., 1997; Han and Sanfaçon, 2003; Peremyslov et al.,
2004; Liu et al., 2005; McCartney et al., 2005; Martínez-Gil et al.,
2010; Genovés et al., 2011). Indeed, GFP:TMD was localized almost
exclusively to the membrane, thus suggesting that TMD of p33 has
an adequate length to confer its membrane anchoring property.
Double-substitution mutations (Ser to Pro) introduced in the
middle of the TMD region altered the free energy value for a
predicted membrane insertion (ΔGapp¼�1.118 kcal mol�1). This
was correlated with a change in the subcellular localization of the
resulted mutant: a significant amount of GFP:SPTMD was found in
the fraction of soluble proteins, indicating that the introduction of
prolines substantially affected the topology of p33 TMD. The effect

Fig. 5. The TMD of p33 confers membrane association of the protein. (A) Schematic
diagram of constructs used in this study. pGFP:p33ΔTMD encodes the GFP-tagged
truncated p33 that lacks TMD. GFP:TMD encodes fusion of GFP with the p33 TMD
encompassing C-terminal aa residues 279–303. GFP:SPTMD encodes fusion of GFP
with the TMD carrying mutations S290P and S295P. (B) Protein extracts obtained from
N. benthamiana plants expressing free GFP, GFP:p33ΔTMD, GFP:TMD or GFP:SPTMD
were subjected to the differential centrifugation as shown in Fig. 3. Fractions were
subjected to SDS-PAGE followed by immunoblotting using anti-GFP antibody. S3,
supernatant following extract centrifugation at 3000� g; S30 and P30, supernatant
and pellet, respectively, following centrifugation of S3 at 30,000� g. The bottom
panel shows confocal projections of mesophyll cells of N. benthamiana leaves
agroinfiltrated with the respective constructs. Scale bars, 10 μm.
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of such substitution is likely to be due to the position of the
mutated residues, which are located in the center of the α-helix
structure (Hessa et al., 2005). A similar situation was reported for
the membrane-associated movement protein of Melon necrotic
spot virus, which also has a single-pass TMD: a proline residue
introduced into the middle of the TMD sequence was shown to
affect the localization as well as the function of the protein
(Genovés et al., 2011).

Membrane association of proteins produced by viruses during
the viral cycle is common. Often such association prompts rear-
rangement of the cellular membranous structures resulting in the
formation of vesicular bodies, which offer a protected and favor-
able environment for virus replication, translation, virion assembly

as well as intra- and intercellular virus movement (reviewed in
Laliberté and Zheng, 2014). Thus, many viral proteins involved in
virus replication and/or movement were shown to associate with
and remodel the cellular membranes. Some examples are P1 and
P2 of Alfalfa mosaic virus (AMV) (van Der Heijden et al., 2001), 1a
and 2a of Brome mosaic virus (Restrepo-Hartwig and Ahlquist,
1999), RNA 1-encoded proteins of Cowpea mosaic virus and Grape-
vine fanleaf virus (GFLV) (Carette et al., 2000; Ritzenthaler et al.,
2002), p27 and p88 proteins of Red clover necrotic mosaic virus
(RCNMV) (Turner et al., 2004) and NTB protein of Tomato ringspot
virus (Han and Sanfaçon, 2003), which were shown to confer virus
genome replication in the association with cellular membranous
structures. Many movement-related proteins are particularly

Fig. 6. Examination of CTVp33nTMD-GFP infection in C. macrophylla and sour orange. (A) Immunoblot analysis showing partitioning of the truncated p33 produced by
GFPp33nTMD-GFP in C. macrophylla following differential centrifugation of the corresponding protein extracts. (B) Examination of virus titer in C. macrophylla and sour
orange plants inoculated with CTV-GFP or CTVp33nTMD-GFP. Analysis was done at twelve weeks after inoculation using ELISA with CTV-specific antibody. CTV titers (A405

values obtained by ELISA) are averages of the results for 5 plants, three wells per plant. (C) Detection of GFP fluorescence in the junction of bark patch. Small rectangular
areas of bark from the stems of C. macrophylla trees infected with CTVp33nTMD-GFP or CTV-GFP were replaced with bark patches of an equal size excised from healthy sour
orange or C. macrophylla trees. Examination was done at ten weeks post grafting. CM, C. macrophylla; SO, sour orange. Scale bars, 0.3 mm.
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known to associate with membranes (reviewed in Harries et al.,
2010). Thus, the AMV MP (Huang and Zhang, 1999), 37 kDa protein
of Chinese wheat mosaic virus (Andika et al., 2013), GFLV MP
(Laporte et al., 2003), the triple gene block proteins of Potato virus
X (Krishnamurthy et al., 2003; Mitra et al., 2003; Ju et al., 2005),
RCNMV MP (Kaido et al., 2011), Turnip crinkle virus p9 protein
(Martínez-Gil et al., 2010), Tobacco etch virus (TEV) 6 kDa protein
(Schaad et al., 1997), 6K2 protein of Turnip mosaic virus (Grangeon
et al., 2012), and Tobacco mosaic virus 30 K MP (Heinlein et al.,
1998) are a few examples. The membrane association of proteins
encoded by viruses from the family Closteroviridae is less studied.
The Hsp70h and the p6 movement protein of Beet yellow virus
(BYV), a type species of the genus Closterovirus, were reported to
localize to the ER membrane, and both were shown to play roles in
facilitating cell-to-cell movement of BYV (Medina et al., 1999;
Peremyslov et al., 2004). Also, the p34 protein encoded by Lettuce
infectious yellows virus, a member of the genus Crinivirus, shown to
be an enhancer of RNA 2 replication, was reported to colocalize
with the ER including the perinuclear region (Yeh et al., 2000;
Wang et al., 2010). Apparently, the p33 protein is not needed for
replication since the virus lacking the respective gene is able to
efficiently multiply in the transfected protoplasts as well as to
infect a number of citrus varieties (Tatineni et al., 2008). On the
other hand, p33 was shown to be required for systemic infection of
a few specific hosts, including sour orange, which led to a
hypothesis that the protein could facilitate CTV movement in
certain species (Tatineni et al., 2011). As we demonstrated in this
work, membrane insertion of p33 was critical for the ability of the
virus to infect sour orange variety, which suggests that association
of this viral protein with the cellular membranes plays a vital role
in mediating systemic infection in the latter and, possibly, the
other hosts for which the presence of p33 is essential.

The p33 protein is not conserved among other closteroviruses.
Interestingly, though, a few viruses in the genus Closterovirus have
an extra gene at the same genomic position as the p33 gene of
CTV. So far, three such genes were identified: the p25 gene of Rose
leaf rosette-associated virus, the p30 gene of Beet yellow stunt virus,
and the p28 gene of Strawberry chlorotic fleck-associated virus are
all positioned between the ORF 1b, which encodes RNA-de-
pendent RNA polymerase, and the ORF encoding the orthologs of
p6 (He et al., 2014). No significant similarity was found between
the four proteins, and none of them shows homology with other
known proteins. On the other hand, they all appear to possess a C-
terminal TMD. More interestingly, not only the length of the
predicted TMDs is similar but also the aa sequences of TMD
regions display up to 61% similarity (Tzanetakis and Martin,
2007; He et al., 2014). Therefore, it would not be unreasonable
to propose that those genes had been acquired by these viruses in
the course of their adaptation to the environment for the same
purpose, which, possibly, is to extend the range of their hosts.
Further research is needed to identify the function(s) of these
proteins in virus infection as well as to gain a better understanding
of the genome complexity of large plant RNA viruses like CTV and
other closteroviruses.#

Materials and methods

In silico sequence analysis

Hydrophobicity plot was analyzed using MPEx (Wimley and
White, 1996) (http://blanco.bio.mol.uci.edu/mpex/) and TMpred
(Hofmann and Stoffel, 1993) (http://www.ch.embnet.org/soft
ware/TMPRED_form.html/) and generated using ProtScale on
ExPASy (Kyte and Doolittle, 1982; http://web.expasy.org/prots
cale/). The prediction of TM helices was performed with Genesilico

Fold Prediction Metaserver (https://www.genesilico.pl/meta2/)
and InterPro (http://www.ebi.ac.uk/interpro/). The free energy
value for membrane insertion was estimated using ΔG predictor
(Hessa et al., 2005) (http://dgpred.cbr.su.se/). The physiochemical
property of the predicted TM helix was analyzed using HeliQuest
(http://heliquest.ipmc.cnrs.fr/). The p33 sequences of the type
isolates of the T36 (EU937521), VT (EU937519), T68 (JQ965169),
T3 (KC525952), and T30 (EU937520) strains were aligned with
ClustalX 1.83 (Thompson et al., 1997) and viewed with GeneDoc
software (Nicholas et al., 1997).

Generation of constructs for transient expression of GFP-tagged p33
or its fragments in plants

The pGFP:p33, pGFP:p33ΔTMD, pGFP:TMD, and pGFP:SPTMD
constructs were created by an overlap-extension polymerase chain
reaction (OE-PCR) using two PCR fragments, one containing a fusion of
the 50 non-translated region (NTR) of TEV (Carrasco et al., 2007) to the
GFP ORF and the other containing the complete or truncated ORF of
p33, which were generated as described below. The first product, TEV-
GFP fragment, was generated by fusing the 50 NTR of TEV in front
of the GFP ORF using PCR with oligonucleotides C-1728 (AACACAA-
CATATACAAAACAAACGAAT) and C-2169 (TTCGCTCGCGAAGGCAAA-
CATTTTGTAGAGCTCATCCATGCCATG). The full-length cDNA clone of
CTV (CTV-GFP) in the binary vector pCAMBIA-1380 (Satyanarayana et
al., 1999, 2001; Gowda et al., 2005; El-Mohtar and Dawson, 2014) was
used to amplify the ORF of the wild type p33 or the different frag-
ments of the latter ORF (p33ΔTMD, TMD or SPTMD) using PCR with
oligonucleotides C-2168 (GGCATGGATGAGCTCTACAAAATGTTTGCCT-
TCGCGAGCGAAAGC) and C-2170 (ATTGGTACCTCATATAAATATAAT-
GGCTAATAAACCGCTCATTAT) to amplify the p33 ORF, C-2168 and C-
2170ΔTMD (ATTGGTACCTCAGCGTATTAATGAGACGCGCGAGCGTGCAT-
TCTC) to amplify p33ΔTMD, C-2168 and SHK-129 (GACAATGGTACC
TCATATAAATATAATGGCTAATAAACCGCTCATTATAAGAACGGACACCAC-
TAAAACGCAAACGGCGTAACAACAGACCCGTTTGTAGAGCTCATCCATGC-
CATG) to amplify TMD, C-2168 and SHK-142 (GACAATGGTACC
TCATATAAATATAATGGCTAATAAACCGGGCATTATAAGAACGGGCACCAC-
TAAAACGCAAACGGCGTAACAACAGACCCGTTTGTAGAGCTCATCCATGC-
CATG) to amplify SPTMD. The OE-PCR was performed using C-1728
and C-2170 to create pGFP:p33, C-1728 and C-2170 to create pGFP:
p33ΔTMD, C-1728 and SHK-129 to create pGFP:TMD, C-1728 and
SHK-142 to create pGFP:SPTMD. The PCR products were digested with
KpnI restriction endonuclease. The digested products were substituted
for the corresponding fragment in the pCASS-4N plasmid, which was
also digested with StuI (generating a blunt end at the position of the 50

end insertion) and KpnI restriction endonucleases.

Generation of pCTVp33nTMD-GFP

pCTVp33nTMD-GFP carrying a single nucleotide substitution intro-
ducing a stop codon in front of the sequence encoding TMD of p33 was
generated using a primer embedding the substitution. Two PCR
products were generated using a set of oligonucleotides C-FW8100
(GGGTTGGTTCCTTGCCCGGGTTCTCAGAAATATGATTATGCTTTG) and C-
P33sRV (CTAAAACGCAAACGGCGTAACATCAGACCCGGCGTATTAATGA-
GAC) and another set of oligonucleotides C-P33sFW (GTCTCATTAA-
TACGCCGGGTCTGATGTTACGCCGTTTGCGTTTTAG) and C-RV11900 (CA-
GTCCATTAAACCCCGTTTAAACAGAGTCAAACGGCGAGTCTTAAG). The two
products were used to generate OE-PCR product using C-FW8100 and
C-RV11900, which was subsequently digested with XmaI and PmeI
restriction endonucleases. The digested fragment with the stop codon
was substituted for the corresponding fragment of pCTV-GFP, which
was digested with the same enzymes (XmaI and PmeI).
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Generation of pCTV-GFP:p33

The GFP ORF was fused to the 50 end of the p33 ORF in the CTV
genome. Two PCR products were generated by using a set of oligonu-
cleotides SHK-122 (GTTGGTTCCTTGCCCGGGTTCTCAG) and SHK-123
(AAGTTCTTCTCCTTTGCTAGCCATCCTGACTCAACTACCCACATTAGC) and
another set of oligonucleotides SHK-124 (AGAGCTAATGTGGGTAGTT-
GAGTCAGGATGGCTAGCAAAGGAGAAGAACTTTTC) and SHK-125 (CAT-
TAAACCCCGTTTAAACAGAGTCAAACGGCGAGTCTTAAGTAAGTAATTGTAC-
CTTATGAGTTACTACACTAAATCATATAAATATAATGGCTAATAAACC). The
two products were used to generate OE-PCR product using SHK-122
and SHK-125, which was subsequently digested with XmaI and PmeI
restriction endonucleases. The digested fragment was substituted for the
corresponding fragment of the wild type CTV digested with the same
enzymes.

Agroinfiltration of CTV constructs into N. benthamiana

Agroinfiltration of constructs was conducted as previously
described (Ambrós et al., 2011; El-Mohtar and Dawson, 2014).
Briefly, plasmids were introduced by heat shock into A. tumefaciens
EHA105, and the resulting transformants were selected on the
Luria–Bertani agar plates containing two antibiotics (50 mg/ml
rifampicin and 25 mg/ml kanamycin). Cells collected from an over-
night culture of a selected single colony were gently resuspended
in a buffer containing 10 mM 2-(N-morpholino) ethane sulfonic
acid (MES, pH 5.85), 10 mM MgCl2 and 150 mM acetosyringone at
O.D.600nm¼1.0. Following three-hour incubation at room tempera-
ture without shaking the suspension was infiltrated into three-
weeks-old N. benthamiana plants using needless syringe.

Virus purification and inoculation of citrus trees

CTV virions were purified from leaves of N. benthamiana plants
infected with CTVp33nTMD-GFP and CTV-GFP by ultra-centrifugation
using sucrose cushion and used for inoculation of one year-old C.
macrophylla plants as described previously (Robertson et al., 2005).
CTVp33nTMD-GFP and CTV-GFP have been further maintained in the
citrus plants under greenhouse condition along with plants infected
with the wild type CTV (Folimonova et al., 2010). These plants were
used for subsequent graft inoculations of additional receptor trees as
described (Folimonova et al., 2010). Retention of the introduced single-
nucleotide mutation by CTVp33nTMD-GFP multiplying in the inocu-
lated citrus was confirmed by sequencing the DNA fragments obtained
by reverse transcription-PCR using nucleic acid extracts from the
infected plants and oligonucleotide primers amplifying the p33 ORF.
When the graft healed, the upper flushes of leaves were trimmed to
induce growth of a new flush, which was then evaluated for the ability
of virus to establish infection in plants.

Production of anti-p33 antibody

Three regions of the p33 aa sequence were selected for anti-
peptide antibody production (15–33 aa: KWFRRRTYHRKYFGDVVKD,
185–199 aa: SVATDDVEDVKYIRK, and 264–280 aa: EYNENARSRV-
SLIRRVC) based on the hydrophilicity plot. Custom antibody produc-
tion using rabbits was completed by Genemed Synthesis Inc.
(San Antonio, TX, USA).

Subcellular fractionation and immunoblotting analysis

Both N. benthamiana and C. macrophylla samples were ground in a
lysis buffer (50 mM Tris–HCl, 1 mM EDTA, 150mM NaCl, 5% glycerol)
containing protease inhibitor cocktail (AEBSF, Bestatin, E-64,
Leupeptin, Pepstatin A and 1,10-Phenanthroline; SIGMA), and the
homogenate was clarified by centrifugation at 3000� g for 10 min

at 4 1C. The supernatant (S3) was centrifuged again at 30,000� g for
30 min at 4 1C to separate the soluble (S30) and the microsomal (P30)
fractions. The P30 fractions were resuspended in 0.1 M Na2CO3 (pH
11.0) or 4 M urea followed by incubation on ice for 30 min. The soluble
(S30) and membrane-enriched pellet (P30) fraction were separated by
centrifugation at 30,000� g for 30 min at 4 1C, then the pellet was
resuspended in the lysis buffer. Treatment of P30 with Triton X-114
was performed separately. The P30 fraction was resuspended in the
lysis buffer containing 1% Triton X-114 followed by incubation on ice
for 30 min. Mixture was clarified by centrifugation at 10,000� g for
20 min at 4 1C, then the supernatant was incubated at 37 1C for 10 min
followed by subsequent centrifugation at 5000� g for 10 min at room
temperature to separate the aqueous and the hydrophobic phase. The
hydrophobic, detergent-enriched fraction was mixed with the lysis
buffer. For immunoblot analysis, all fractions were mixed with the
equal volume of the 2X sample loading buffer (125 mM Tris–HCl, 4%
SDS, 20% glycerol, and 0.01% bromophenol blue) with dithiothreitol
and boiled for 10 min. Mixtures were briefly centrifuged prior to
loading and electrophoresed through 10% SDS-polyacrylamide gels
and electro-transferred to polyvinylidene difluoride membrane. The
membrane was blocked with 1X TBS-T (137 mM NaCl, 27 mM KCl,
250 mM Tris–HCl, and 1% Tween-20) containing 5% (w/v) skim milk
for an hour at room temperature prior to be probed by anti-GFP
(dilution: 1:1000; Santa Cruz Biotechnology) or anti-p33 antibody
(dilution: 1:500) with 1X TBS-T for another hour. Anti-rabbit IgG
conjugated to horseradish peroxidase was used as a secondary anti-
body (dilution: 1:20,000; Santa Cruz Biotechnology), and the signal
was visualized on chemiluminescence film (X-OMAT LS) in a dark
room (Carestream Kodak, Sigma-Aldrich, USA).

Serological assays

Double-antibody sandwich ELISA of tissue extracts was per-
formed as described previously (Folimonova, 2012) to confirm the
infection of primary infection. Briefly, 0.25 g of citrus bark tissue
was ground in 5 ml of the extraction buffer per sample. Purified
IgG from rabbit polyclonal antiserum CTV-908 (1 ug/ml) was used
as a coating antibody, then a broadly reactive CTV monoclonal
antibody, ECTV172, was used for detection.

Examination of fluorescence in citrus plants infected with GFP-tagged
CTV

Bark tissues from trees inoculated with CTVp33nTMD-GFP or
CTV-GFP were examined for GFP fluorescence at ten weeks after
graft-inoculation using a Leica MZ 10F UV fluorescence dissecting
microscope (Leica Micro- systems, Bannockburn, IL, USA).

DAPI staining

N. benthamiana leaves were cut in small pieces and dipped in
10 ug/ml of 40,6-diamidino-2-phenylindole (DAPI) solution (Sigma-
Aldrich) for two hours at room temperature.

Laser-scanning confocal microscopy

Mesophyll cells of N. benthamiana leaves were observed after
four days post-infiltration using Leica TCS SP5 confocal laser
scanning microscope system (Leica Micro-systems, Bannockburn,
IL, USA). GFP fluorescence was detected with excitation at 488 nm
and emission capture at 490–530 nm. The DAPI was excited with a
405 nm laser, and emission was collected from 405–500 nm.
Images were captured using a 20� objective or a 63� oil-
immersion objective.
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