
Letter

A Novel Algorithm for Finding Interspersed Repeat Regions

Dongdong Li*, Zhengzhi Wang, and Qingshan Ni

College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha
410073, China.

The analysis of repeats in the DNA sequences is an important subject in bioin-
formatics. In this paper, we propose a novel projection-assemble algorithm to
find unknown interspersed repeats in DNA sequences. The algorithm employs
random projection algorithm to obtain a candidate fragment set, and exhaustive
search algorithm to search each pair of fragments from the candidate fragment
set to find potential linkage, and then assemble them together. The complexity
of our projection-assemble algorithm is nearly linear to the length of the genome
sequence, and its memory usage is limited by the hardware. We tested our algo-
rithm with both simulated data and real biology data, and the results show that our
projection-assemble algorithm is efficient. By means of this algorithm, we found
an un-labeled repeat region that occurs five times in Escherichia coli genome, with
its length more than 5,000 bp, and a mismatch probability less than 4%.

Key words: repeats, random projection, assemble

Introduction

It is known that more than 50% of the human genome
sequences are reiterated ones (1 ). This phenomenon
also appears in many other species. A lot of secrets
are hidden in these repetitive fragments, and many
researchers are studying on this topic. The first step
of this research is to find all repeats under a given
standard in the complete genome.

Repeats in DNA are commonly classified into tan-
dem and interspersed repeats (2 ). The tandem re-
peats are the characters of eukaryotes, which seldom
exist in prokaryotes (2 ). These repeat units con-
nect together and reiterate several thousand times
to form a concentrated region. The units of in-
terspersed repeats usually distribute in the whole
genome. They are further classified into four DNA
elements: long interspersed nuclear elements (LINE),
short interspersed nuclear elements (SINE), long ter-
minal repeats (LTR), and DNA transposon. There
are many distinctions between tandem and inter-
spersed repeats, and the identifying methods are dif-
ferent. A few works have been published to accom-
plish this task. For the problem of tandem repeats
finding, Beason (3 ) realized a program called Tandem
Repeats Finder, whose fundamental idea is similar to
BLAST. It first collects the information of the short

* Corresponding author.
E-mail: li dong dong@yahoo.com.cn

exact repeated fragments (seeds), and then extends
them to approximated tandem repeated units based
on some statistical criteria. There are some other
methods that adopt the similar seed-extending idea
(4 ), but their criteria are of pattern structures. Kol-
pakov et al (5 ) realized a very efficient combinatorial
algorithm named mreps. It can find tandem repeats
in a single run and has no limitation on the size of
patterns. However, on the problem of interspersed
repeats finding, there is very small amount of efficient
methods proposed. A simple algorithm is to find the
diagonal in a dotted graph (6 ). Some heuristic meth-
ods can also find interspersed repeats, however, the
deficiencies of these methods are the huge computer
resource usage and the high miss rate. Kurtz et al
(7 ) developed an efficient program called REPuter
that could find several types of repeats within the in-
terval, which is a polynomial function of time. How-
ever, this method is based on the comparability of two
sub-sequences, while it is hard to find the repeats that
occur many times in the DNA sequences, which is un-
fortunately the style that long interspersed fragments
usually appear.

The repeats finding problem can be treated as the
motif finding problem. Many researchers have been
working on the motif finding problem, and some al-
gorithms have been proposed. The most commonly
used algorithms are TEIRESIAS (8 ), CONSENSUS

184 Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/


Li et al.

(9 ), WINNOWER (10 ), random projection (11 ), and
so on. Their target is to find short conserved frag-
ments in DNA sequences. For example, the typical
problem is to search motifs of length 15 to 20 bp from
sequences of length 600 bp, with the maximum of four
mismatches permitted. However, in typical repeats
finding problems we have to find the fragments with
length of several hundred to several thousand base
pairs from DNA sequences with length of several mil-
lion to several hundred million base pairs. If these
methods are employed directly, the computing is un-
practical. Besides, there are many in-del errors in the
repeats, while the motif finding algorithms are sensi-
tive to in-del errors. These problems also restrict the
application of these algorithms.

Repeats can be considered as the combination of
several short conserved fragments. If we can collect
the information of these segments, we should be able
to find the repeats by assembly. Based on this idea,
we propose the projection-assemble algorithm to find
the long interspersed repeats in DNA sequences. We
tested our algorithm with both simulated and real
genome data. The results show that our algorithm
is efficient and effective.

Algorithm

We define the problem of long interspersed repeats
finding as: given a DNA sequence S of length L, find
the repeat R with its length larger than l; the error
probability should be less than p and occurrence is
larger than m. Our algorithm consists of two steps.
In the first step, we collect all fragments with length
n (less than l), which meet some statistical condi-
tions. In the second step, we assemble the fragments
obtained in the first step and export the repeats.

Fragment Collection

In this stage, we try to get a fragment collection that
includes as many fragments as possible. The frag-
ments in this collection will be part of the repeat R.
We also set some criteria to remove the irrespective
segments. In fact, this is a problem of fixed-length
motif finding. Due to the large length of S, these
motifs are very subtle and are difficult to find.

Usually, the occurrence of fragment A in sequence
S is a binomial distribution, and the expectation value
is (for the convenience, we suppose that the four bases
have the same occurrence probability, noted as q, and

at each position these bases have independent occur-
rence probability):

E (NAS) ≈ (L− n + 1) qn (1)

Here, NAS is the number of occurrence of frag-
ment A in sequence S, L is the length of S, and n is
the length of A. There is small error in formula (1),
however, in most cases L is quite large and n ¿ L, so
this formula is still a good approximation.

If A occurs once in repeat R and, as we have sup-
posed, repeat R occurs m times in sequence S, we can
write the expectation as:

E (NAR) ≈ (L− n + 1) qn + m (1− p)n (2)

Here, NAR is the number of occurrence of frag-
ment A, A appears in repeat R once and R occurs m

times in sequence S, p is the error probability of re-
peat R. Under this condition, the distribution of the
length of fragment A is still a binomial distribution,
and it has the same shape as the previous one.

The only difference in formulas (1) and (2) is the
item m (1− p)n. We use N0 = (NAS+NAR)

2 as the
threshold to distinguish these two distributions. From
formula (2) we can see that the larger the n, the less
difference between the two distributions. Because for
larger n, it needs more computation time and occupies
more memory, so it is necessary to restrict the range
of the fragments’ length. On the other hand, if n is
too small, many random fragments could be added
into the collection so that it increases the computa-
tion dramatically. This is a serious problem when we
plan to assemble these fragments into a long repeat,
while small n can’t guarantee the correctness of the
assembly. We did a simple computation on our com-
puter, which showed that when n was larger than 9,
the memory usage exceeded our computer capacity.
But it is impossible to complete the assembly with
fragments of length less than 9. Therefore, we must
find a method to solve this problem.

Based on Buhler’s random projection algorithm
(11 ), we propose a metabolic method for the repeats
finding problem. We collect fragments of length n0,
which is large enough to perform assembly. When
we do statistics, we do not select these fragments di-
rectly, instead, we randomly select n1 positions from
these fragments and perform statistic calculation for
these projected fragments. For other positions, we use
a position weight matrix to save the bases’ occurrence
time. Figure 1 is a sketch map of such operation.

Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004 185



Algorithm for Finding Interspersed Repeat Regions

Fig. 1 Projection and position weight matrix.

After the projection and statistic, we can divide all
fragments of length n0 in sequence S into 4n1 classes;
each class has an assistant position weight matrix.
So, if most fragments in one class are instances of a
common fragment (with some errors), the assistant
matrices should also have a consensus sequence. On
the other hand, if most fragments in one class do not
belong to a common fragment, the assistant matri-
ces will be the same as the background distribution.
Therefore, we can use these assistant matrices as the
criterion to select the fragments that are more likely
to be part of a repeat. In our algorithm, we use the
following information entropy as criterion:

Entropy =
∑

En (i) (3)

Here, En (i) means the information entropy in po-
sition i, and the sum is for all positions that have not
been projected (in fact, this sum can also be calcu-
lated from all bases in this matrix, because the pro-
jected positions have the same bases and their en-
tropy is 0). Given a threshold Entropy0, we select the
classes with large entropy (as a precondition, each of
these classes must include enough items). They are
the candidates for next step.

The following is the detail of the fragment selec-
tion algorithm:

Begin.
Set candidate collection M to be null.
Reiterate the following steps F times (do F times

random projection)
Set fragment set G to be null.
Generate n1 (1 ≤ n1 ≤ n0) un-repeated numbers

randomly, noting as g.

Inner recycle. For all L − n0 + 1 fragments of S,
do the following operation:

Construct fragments of length n1 (called as B) to
satisfy the equation B [i] = A [g (i)].

If B ∈ G

Modify the statistic parameters and the position
weight matrix.

Else
Add a class into collection G and set the related

parameters.
Inner cycle stops here.
Fragment filtration. For each class in collection

G, if it includes more than N0 items and the entropy
of its position weight matrix is larger than Entropy0,
add it into M .

External cycle stops here.
End.

Assembly

After constructing the candidate collection, we should
find the long repeat units from these fragments. If a
fragment A is part of a repeat R, its neighbors may
also be parts of R, so they should be also included in
this candidate collection, and there should be n0 − 1
positions in fragment A and one of its neighbors is the
same. Therefore, we can assemble them by analyzing
these candidate fragments. This is the assembly from
the content of fragments, and we can use a simple ex-
haustive algorithm to realize it. In other words, for
each fragment, we scan the whole set of fragments ex-
cept that one. If the suffix of a fragment has enough
bases that have the same prefix as another fragment,
they would be assembled together. Using the numbers

186 Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004



Li et al.

of the same and different bases in the two fragments,
we can calculate a quantity named as assemble score.
This score can be used as a criterion to determine if
an assembly can be executed.

There is also another method. If we know each po-
sition of the candidate fragments in the sequence, we
can find the potential assembly relations by checking
the positions. For example, if two fragments always
occur at the similar position, and their related posi-
tion is nearly fixed, they might belong to the same
repeat unit. This is the assembly from the position
of fragments. It also can be realized with a simple
exhaustive algorithm.

Because assembling from position requires very
huge computation (we have to find each fuzzy oc-
currence of each candidate fragment, which is time
consuming. In practice, it is even worse. We usually
have thousands of fragments after the fragment selec-
tion step), we use the following two steps as assem-
bling policy. We first assemble the candidate frag-
ments from their content, and obtain a small-scale
composed fragment collection. Only the composed
fragments whose length is larger than a threshold are
reserved, and the others are discarded as noise frag-
ments. After this step, there are usually tens of com-
posed fragments reserved. Now, we can do assembling
from position fragments and get the final repeat units.

Complexity analysis

In the fragment selection algorithm, the inner cycle
would execute L−n0 +1 times, and in each cycle, we
have to judge if the condition B ∈ G is true. This is
a time consuming operation. We construct a struc-
ture array with 4n1 items, each item corresponding to
a fragment of length n1. Now, only small amount of
computation is needed. In the following fragment fil-
tration step, we do 4n1 comparation at least, and cal-
culate the entropy for the classes satisfying the dimen-
sion condition. Usually, 4n1 is far less than L−n0 +1.
That is to say, the computational complexity of the
fragment selection algorithm is mainly brought by the
inner cycle, O (FL). It is a linear function of the input
sequence length. Here F is the number of iteration
times of inner cycle.

Just as we have motioned, the space complexity of
this algorithm is another important factor to be con-
sidered. We use a structure array with 4n1 items, each
item includes a position weight matrix and a counter.
The algorithm needs at least 4n1 (4n0 − 4n1 + 1) inte-
ger units in memory. Compared with this number, the

other memory usage is ignorable. Therefore, the space
complexity of our projection algorithm is O (4n1). It
is an exponential function of n1, and this is the reason
that we set a strict limit to n1.

The complexity of the assembly step can be cal-
culated as follows:

For the assembly from content, if there are W

fragments in candidate collection, the computational
complexity would be O

(
W 2n2

0

)
. When W and n0 are

small, it is acceptable. After this step, we keep the
composed fragments with length larger than a thresh-
old, and there are usually several dozen reserved frag-
ments.

In the assembly from position, we first label all
the positions of each composed fragments in the se-
quence using the fast fuzzy match search algorithm
proposed by Myers (12 ). For a fragment of length k,
the complexity of this algorithm is O (kL). Here, L is
the length of the input sequence. Therefore, the total
complexity of the label step would be O (KL). Here,
K is the sum of all composed fragments. Then, we do
assembling from position using exhaustive algorithm.
If there are M composed fragments, the complexity of
this operation would be O

(
M2h

)
. Here, h is the aver-

age times that each composed fragments occurred in
the input sequence. Consequently, the total computa-
tional complexity of the assembling operation would
be O

(
KL + M2h

)
, and its upper limit is the square

of the length of the input sequence. In fact, the real
test results show that the computing time is far less
than this upper limit value, and usually, its complex-
ity is ignorable compared with the fragment selection
algorithm.

Results and Discussion

To test our algorithm all round, we first performed
some tests with simulation data. We used the whole
genome of Escherichia coli as the background se-
quence S, and inserted some artificial repeats with
given parameters. The whole genome data was re-
trieved from the GenBank version 134.0 with acces-
sion number U00096. The total length is 4,639,221 bp,
and the appearance probabilities of the four bases, A,
C, G, and T, are 24.6%, 25.4%, 25.4%, and 24.6%,
respectively. It is nearly a uniform distribution. We
designed our test as follows: we first generate a se-
quence R with the given length as the repeat unit
based on the background distribution. Then, we se-
lect m positions in sequence S and insert an instance

Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004 187



Algorithm for Finding Interspersed Repeat Regions

(noted as Ri) of the repeat R in each position. Here,
instance Ri is formed after some independent muta-
tions with probability p having been done on R. The
in-del mutation may be or maynot be allowed, and,
if in-del mutations are allowed, the three mutations
should be occurred in equal probability.

During the tests, we selected several parameters.
The results are given in Figure 2. To compare the
results, we normalized the two sequences. That is, we
first did a global alignment between the real repeat
unit and the export results given by our algorithm.
Then, we divided this score by the length of the real
repeat unit, and the result would be between 0 and
1. This value was used as our normalized compara-
bility score. In each test, we calculated the score for
each output sequence, and used the highest one as
the score of this run. Here we should point out that
there is certain risk to use this score. For example, if
no correct repeat unit is found, this score would be
a random score, and it is meaningless. But on the
other hand, the random score is not high enough (less
than 0.5, for example). Hence, only when the score is
higher than a reasonable threshold is this run mean-
ingful. Therefore, our comparability was done under
these conditions.

In the above tests, we used the following fixed pa-
rameters: n0 = 24, n1 = 9. In Figure 2A, the rela-
tions among the score, the repeat’s occurrence num-
ber m and its length l are demonstrated. Here, muta-
tion probability p = 0.1 and in-del mutations are per-
mitted. As a contrast, Figure 2B gives the curves with
the same parameters without in-del mutations. In
Figure 2C, we fix the length of repeat unit as l = 100,
and give the relation among score, m and p (in-del
mutation is permitted). All results are the mean of
over 20 runs, which were carried out on a computer
with a 2.4 GHz CPU and 512 M memory. Each run
was completed within 400 to 800 seconds.

From Figure 2A we can see that, when the muta-
tion probability of the repeat unit is 0.1 and the oc-
currence number is 30, our algorithm can find them
correctly in each run, with only slight errors at head
and tail ends. The reason of these errors is as follow-
ing: because we don’t know the length of the repeat
unit before they run, and only get the results by as-
sembly, so some bases would be lost or added at the
ends, and thus causes some trivial errors. Such errors
usually bring more infection for the shorter repeats,
that’s why shorter l often has lower score in the fig-
ures.

Comparing Figures 2A and 2B, we find that with

A

B

C
Fig. 2 The score curves of our algorithm. A. The score

curves on repeat times, whose mutation probability is 0.1

with in-del errors; B. The same to figure 2A, only doesn’t

allow in-del errors; C. The score curve on mutation rate

with in-del errors.

the same parameters, the scores with in-del errors are
obviously lower than those without in-del errors. Fur-
ther more, the score curves in Figure 2B rise much
faster than those in Figure 2A and reach a very high
level soon.

From Figure 2C we know that the mutation prob-
ability p plays an important role in the efficiency of
our algorithm. When p rises to 20%, the scores usu-
ally reduce to 0.2 approximately, which is less than
the threshold for random case. Our algorithm is ef-
fective when p is less than 10%. Besides, the score

188 Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004



Li et al.

curves have a rapid descending in a special position,
which is related with the repeat time m: the larger
the m, the larger the mutation probability. That is to
say, the repeat time m can compensate the efficiency
decrease brought by the rise of mutation probability
in some degree.

We then ran our algorithm with the E. coli whole
genome sequence. In the rude GenBank records, there
are 482 elements noted as “repeat region”. After re-
moving the redundant notes, the number of the real

repeat region is 437. Most of the elements are repet-
itive extragenic palindromic element (REP element,
314 elements), and they locate in the forward chain.
The REP element has the characters of the tandem
repeats, and its length varies from several dozen base
pairs to several thousand base pairs. It is difficult for
our algorithm to find them. Except REP elements,
the other repeat regions in E. coli genome are list in
Table 1.

Table 1 Information of the Repeat Regions in E. coli Genome*

No. Notation Length (bp) Occurrence

Total Normal Complement

1 IS1 768 7 3 4

2 IS2 1,331(1) 7 3 4

3 IS3 1,258(2) 5 3 2

4 IS5 1,195 11 9 2

5 IS30 1,221 4 3 1

6 IS186 1,343 3 3 0

7 IS Others – 7 5 2

8 BoxC 56(3) 33 21 12

9 IRU 127(4) 19 8 11

10 Rhs –(5) 5 5 0

11 Ter –(6) 9 4 5

12 RSA 150/151 6 2 4

13 LDR –(7) 4 4 0

14 Iap –(8) 3 3 0

* In this table, Notation is the notation given in rude records. Length is the typical length of the repeat regions, and the

flag “–” means there is no typical length for the repeat regions. Occurrence is listed in three columns, according to total

number (Total), number in forward chain (Normal), and number in the converse-complement chain (Complement).

Note: (1) In the 7 instances of IS2, the length of one instance is 706 bp. (2) In the 5 instances of IS3, one instance

has the length of 1,255 bp. (3) The length of instances of boxC varies from 51 to 59 bp. (4) Some instances of IRU have

the length of 126 or 129 bp. (5) The 5 instances of Rhs are labeled as RhsA ∼ RhsE respectively, and their lengths are

varied in region 5,000 ∼ 9,000 bp. (6) Two instances of Ter are labeled as Ter core, and their lengths are 11 bp. The

other 7 instances are labeled as TerA ∼ TerG, their lengths are all 23 bp. (7) The 4 instances of LDR are labeled as

LDR-a ∼ LDR-d, and their lengths varies from 200 to 600 bp. (8) The 3 instances of iap are labeled as iap(1), iap(7)

and iap(14), with the length of 90, 395 and 823 bp, respectively.

From Table 1 we can find that, because many dif-
ferent sequences are involved, there is no obvious re-
peat fragments in the classes 7, 10, 11, 13, 14, and
they are difficult to find. In the other repeat regions,
the classes 1, 2, 3, 5, 6, 12 have few instances, and
they are not easy to find, too. Compared with them,
the classes 4, 8, 9 are easier to find.

We ran our algorithm with E. coli genome se-
quences. The parameters were set as follows: repeat
unit length threshold as 50, repeat number threshold

as 4, and mutation probability as 0.1. In the tests, we
only searched the forward chain. The results are list
in Table 2.

Table 2 shows that some instances of the three
classes with stronger characters were found, although
we can’t find all instances of these classes. Our anal-
ysis proves that for the sequence with long typical
length (IS5), we can find its all instances correctly.
While for the classes with short typical length, we
can only find its partial instances. This result demon-

Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004 189



Algorithm for Finding Interspersed Repeat Regions

Table 2 The Results of Our Algorithm for E. coli Genome Sequence*

No. Notation Reference information Our result

Length (bp) Occurrence Length (bp) Occurrence

1 IS5 1,195 9 1,202 9

2 BoxC 56 21 50 6

3 IRU 127 8 73 5

4 REP element – – 70 42

102 15

5 Rhs – 5 226 4

175 5

222 5

6 Unknown – – 5,200 5

* Here, Notation is the according label in rude GenBank records. Reference information is the information from the

rude GenBank records, the last two columns are the results calculated by our algorithm.

Table 3 Information for the Repeat Sequence Found by Our Algorithm*

No. Start position Stop position Length

1 223,620 228,890 5,271

2 3,939,280 3,944,459 5,180

3 4,032,969 4,038,231 5,263

4 4,164,087 4,169,351 5,265

5 4,205,574 4,210,753 5,180

* In this table, the lengths of the five instances are not exactly the same, and there are differences about 100 bp among

them. Because the repeat region is longer than 5,000 bp, instead of listing each instance in the table, we only give the

start and stop positions of these instances, and these positions are based on the whole genome sequence of E. coli from

GenBank version 134.0.

strates that our algorithm could get a good efficiency
for long repeat regions. On the other hand, our al-
gorithm also found three segments of Rhs element,
two segments of REP element, and an unknown long
repeat region. Here we should emphasize that the
length of the last unknown repeat region is more
than 5,000 bp, and there are five instances in E. coli
genome sequence. Our analysis indicates that the
number of mismatch errors in these instances is less
than 200 (the mutation probability is less than 4%).
Therefore, from the sense of mathematics, it must be
a repeat region, although it is not labeled in the rude
GenBank records. The information of this repeat re-
gion is list in Table 3.

Conclusion

In this paper, we proposed a novel projection-
assemble algorithm for the problem of long inter-
spersed repeats finding. Our algorithm can find the

repeats longer than a given length threshold and oc-
curring more than the given occurrence threshold. For
this problem, as far as we know, no efficient algorithm
has been used widely. Our algorithm is an attempt in
this subject, and the test results for both simulated
and real biology data indicate that our algorithm is
efficient and effective.

However, there are several fields in our algorithm
that are worth for further research. First, we used the
simple exhaustive algorithm in the assembly steps for
the sake of the concision of the algorithm, with the
cost of reducing the executed efficiency. Second, in
our algorithm, we set n1 as 9. For the sequence with
length less than several dozen million base pairs, n1

= 9 is enough, and the memory usage is reasonable.
While for longer sequences, we should use larger n1,
which will use much more computer resources. The
algorithm should be further improved. Third, this
method can only be used in finding interspersed re-
peats, but not in finding tandem repeats. To find

190 Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004



Li et al.

tandem repeats, some feasible improved algorithms
should use the position information more adequately
in assembly, which requires more studies for the as-
sembling algorithm with position. These are our fu-
ture projects.

References

1. Lander, E.S., et al. 2001. Initial sequencing and anal-

ysis of the human genome. Nature 409: 860-921.

2. Brown, T.A. 1999. Genomes. BIOS Scientific Pub-

lishers, Ltd., Oxford, UK.

3. Benson, G. 1999. Tandem repeats finder: a program

to analyze DNA sequences. Nucleic Acids Res. 27:

573-580.

4. Hauth, A.M. and Joseph, D.A. 2002. Beyond tandem

repeats: complex pattern structures and distant re-

gions of similarity. Bioinformatics 18: S31–37.

5. Kolpakov, R., et al. 2003. mreps: efficient and flexi-

ble detection of tandem repeats in DNA. Nucleic Acids

Res. 31: 3672-3678.

6. Sonnhammer, E.L. and Durbin, R. 1995. A dot-matrix

program with dynamic threshold control suited for ge-

nomic DNA and protein sequence analysis. Gene 167:

GC1-10.

7. Kurtz, S., et al. 2001. REPuter: the manifold appli-

cations of repeat analysis on a genomic scale. Nucleic

Acids Res. 29: 4633-4642.

8. Rigoutsos, I. and Floratos, A. 1998. Motif discovery

without alignment or enumeration. In Proceedings of

the Second Annual International Conference on Com-

putational Molecular Biology (RECOMB), pp.221-227.

ACM Press, New York, USA.

9. Hertz, G.Z. and Stormo, G.D. 1999. Identifying

DNA and protein patterns with statistically signifi-

cant alignments of multiple sequences. Bioinformatics

15: 563-577.

10. Pevzner, P. and Sze, S. 2000. Combinatorial ap-

proaches to finding subtle signals in DNA sequences.

In Proceedings of the Eighth International Conference

on Intelligent Systems for Molecular Biology, pp.269-

278. AAAI Press, San Diego, USA.

11. Buhler, J. 2001. Search algorithms for biosequences

using random projection. Ph.D. thesis. University of

Washington, USA.

12. Myers, G. 1999. A fast bit-vector algorithm for ap-

proximate string matching based on dynamic pro-

gramming. J. ACM 46: 395-415.

Geno. Prot. Bioinfo. Vol. 2 No. 3 August 2004 191


	A Novel Algorithm for Finding Interspersed Repeat Regions

