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The Segre embedding of P* x P! as a smooth quadric Q in P® corresponds to
the surjection of the four-dimensional polynomial ring onto the Segre product S of
two copies of the homogeneous coordinate ring of P1. We study Segre products of
noncommutative algebras. If in particular 4 and B are two copies of a quantum P*
then § = @i(A,- ®, B;) is a twisted homogeneous coordinate ring of the quadric
Q. The main result of this paper is the classification of all embeddings of the Segre
product of two quantum planes into so-called quantum P%s. These are (the Proj
of) Artin—Schelter regular algebras R of global dimension four with the Hilbert
series of a commutative polynomial ring and which map onto S. If R is not a twist
of a polynomial ring, then the point scheme of R either is the union of the quadric
QO with a line or is only the quadric Q. In the first case, R is a central extension of
a three-dimensional Artin—Schelter regular algebra and a twist of an algebra
mapping onto the (commutative) homogeneous coordinate ring of Q; in the second
case, such an algebra R is the first known example of a four-dimensional
Artin—Schelter regular algebra which is not determined by its point scheme.
© 1996 Academic Press, Inc.

1. INTRODUCTION

On the level of projective spaces (over an algebraically closed field k),
the Segre embedding is given by

¢: I]:[)n X |]:[)m s |]:[)n+m+nm
((xOV""xn)'(yO""lym)) - (XOyO’xlyO""7xnym)'
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The map ¢ is injective and its image is a subvariety of P*™*"*™ [10,
Exercise 1.2.14]. In this way one defines the Segre product of two projec-
tive varieties X c P” and YC P™ as the image XY of X XY in
prmtatm ynder the map ¢.

On the level of graded k-algebras, one has a Segre product in the
following way. For A4 and B commutative N-graded k-algebras with
A, = B, = k, we define the Segre product (called the cartesian product in
[10, Exercise 11.5.11]) to be the graded k-algebra A~ B := @ (A4, ® B).
Before we see how this relates to the Segre embedding, we recall the
following definition.

Given a commutative graded k-algebra R such that R, = k, one can
associate to it the commutative projective scheme X = (proj R, Oy) (cf.
[10, Chap. I1.2]). If R is finitely generated by homogeneous elements of
degree one, then, by Serre’s theorem [10, Prop. 11.5.15], the geometry of X
may be described in terms of the quotient category R-gr/tors since
R-gr /tors = coh X, where coh X is the category of coherent sheaves on X
and R-gr/tors is the category of finitely generated left R-modules modulo
torsion modules. A general definition of tors will be given later, but if R is
noetherian, (which will be the case for all algebras we consider in the
sequel), tors consists of the finite-dimensional left R-modules.

In the commutative setting the Segre product may be viewed as a
product because the commutative scheme proj(A < B) is isomorphic to the
fibred product proj 4 X, projB; cf. [10, Exercise 11.5.11]. The fibred
product of two schemes is a scheme [10, Thm. 3.3] and there are projection
homomorphisms from the fibred product to proj A and proj B.

Let A =k[x,y] and B = k[u,v] be two polynomial rings in two vari-
ables (two copies of the homogeneous coordinate ring of the projective
line P1). The Segre embedding ¢ embeds P! x P! as a smooth quadric
Q=7(XY—-UZ) in P> (where U=x®u, X=y®u, Y=x®uv, and
Z =y ® v), while the Segre product A4 - B is the (commutative) homoge-
neous coordinate ring of Q; that is, Ao B = k[U, X,Y, Z]/{XY — UZ).
Furthermore, the surjection k[U, X,Y, Z] - A - B implies that we have a
projective embedding proj(A4 - B) = projk[U, X,Y, Z] = P2. The aim of
this paper is to determine to what extent the previous constructions may
be repeated for noncommutative graded algebras.

The definition of the Segre product of two noncommutative graded
algebras will be the same as that in the commutative setting. Motivated by
Serre’s theorem, we take the noncommutative scheme proj R to be the
guotient category R-gr/tors. If one considers R-modules that are not
necessarily finitely generated then the quotient category is denoted Proj R
as in [6]. We will show in Theorem 2.4 that (with some conditions on A
and B), there is a category equivalence Proj 4 - B = Proj A ® B and maps
Proj A~ B — Proj A, Proj A~ B — Proj B in the sense of [6, Sect. 2]. The
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same result holds for proj. The latter two maps are analogous to the
projection maps in the case of the commutative fibred product described
above; however, Proj(A4 - B) is not a categorical product of Proj A4 and
Proj B.

The main result of this paper is a “quantization” of the embedding of
two copies of P! into P® as a smooth quadric. We take a quantum P! to
be the Proj of an Artin—Schelter regular algebra of global dimension two
(quantum plane or Jordan plane). If 4 and B are such Artin—Schelter
regular algebras, then A4 B is a twisted homogeneous coordinate ring [3,
5] of a smooth quadric Q (a quantum quadric) in P3; cf. Section 3. In the
case in which 4 and B are quantum planes, we classify in Section 4 the
graded algebras R which map onto A4 - B with the property that R is
Artin—Schelter regular of global dimension four with the Hilbert series of
a polynomial ring in four variables. Since such properties of R are shared
by the polynomial ring on four variables, we view ProjR as being a
quantum P2 containing a copy of the Segre product of the two quantum
PY's. This classification relies on Schelter’s computer program ‘“‘Affine,”
and so relevant calculations are omitted from this paper (therefore a proof
that all embeddings are classified cannot be provided here). Motivated by
the current study, the authors consider a more general setting in [21], in
which A - B is replaced by any twisted homogeneous coordinate ring of a
smooth quadric in P® and different techniques are employed.

Our main result, Theorem 4.3, classifies the algebras R into the follow-
ing categories.

e Twists [4, Sect. 8] of the four-dimensional polynomial ring.

e Twists of algebras R’ which map onto the commutative homoge-
neous coordinate ring of Q. Such R’ are determined by the geometric data
(Q U L, o), where L is a line which either meets Q in two points (counted
with multiplicity) or is embedded on Q, and o € Aut(Q U L) has the
property that oy is induced via the Segre embedding from automor-
phisms of the two copies of PL. In certain cases there are restrictions on
o, which are discussed in Theorem 4.3. In [20], the case in which L meets
Q in two distinct points has been studied in detail and O,(M,(C)), the
coordinate ring of quantum 2 X 2 matrices, is such an algebra [20, Ex. 1.5].
However, the embedded line and tangent line cases are new. Furthermore
such R’ have two central elements in degree one (the linear terms
determining the line L) and are therefore central extensions of three-
dimensional Artin—Schelter regular algebras, which were studied in [11].

e Algebras R which have associated geometric data (Q, o), where
o € Aut(Q) is induced as before via the Segre embedding from automor-
phisms of the two copies of P, but this time R is not determined by the
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geometric data (since these data determine A - B). The relations of such
algebras R will be given explicitly in Theorem 4.3. The importance of
these algebras is that they are the first known examples of four-dimen-
sional Artin—Schelter regular algebras which are not determined by their
point scheme and automorphism. It is also interesting that they have no
normal elements in degree one (unlike the central extensions of the
three-dimensional Artin—Schelter regular algebras above) and that they
cannot be twisted to an algebra mapping onto the commutative homoge-
neous coordinate ring of Q. A more detailed study of these algebras is
presented in [22].

To conclude, Theorem 4.7 describes the line modules over these algebras.

2. THE NONCOMMUTATIVE SEGRE PRODUCT

Let A=koA, ®A,®... and B=k ® B, ® B, ® ... be connected
k-algebras (N-graded with k = A, = B,) over an algebraically closed
field k.

DeriNnITION 2.1. The Segre product A4 o B of the N-graded algebras A
and B is the N-graded k-algebra A° B = ©,_ (A B), with (4° B), =
A; ® B,

The Segre product M - N of a graded left 4-module M and a graded
left B-module N is the N-graded left (4 - B)-module Mo N = ©,_ (M,

®, N;), where the action of a, ® b, € (A4°B), on m; ® n; € (M N), is
given by a;n; ® b;m;.

The notation A4 - B was used in [15, Sect. 3.2]. Closely related to 4~ B
is the tensor product A ®, B. Apart from the usual N-grading, given by
(4 & B), =@, _, A ®B, several other gradings can be put on 4 ®
B. The following two are used in the sequel:

« an N?-bigrading given by (4 ®, B), ;, = A, ® B, and

* a Z-grading given by (4 ®, B), = © _ (A,,, & B,).

m=

For this Z-grading, A4 B is the degree zero part of A ®, B.

As mentioned in the Introduction, it was Serre’s theorem [10, Prop.
11.5.15] that led to the definition of a noncommutative scheme in [1, Def.
1.2; 6]. Following the notation of [6], one defines for R a left noetherian
N-graded k-algebra:

R-Gr = the category of N-graded left R-modules and
R-gr := the category of finitely generated N-graded left R-modules.
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In both cases the morphisms in the category are the degree zero homo-
morphisms.

An element m of a graded module M is called torsion if R, ;m = 0 for
some s in N. Let 7(M), the torsion submodule of M, be the graded
R-submodule formed by all torsion elements in M. A module M is then
torsion if M = (M) and torsion-free if 7(M) = 0. The torsion modules
form a full subcategory in R-Gr (resp. R-gr), called Tors (resp. tors). As
Tors and tors are dense subcategories of R-Gr and R-gr, we can construct:

Proj R := the quotient category R-Gr/Tors,
proj R == the quotient category R-gr /tors.
Remark 2.2.

1. In[6, Sect. 2], Proj R is the pair (R-Gr/Tors, %), where % is the
image of ;R in R-Gr/Tors. The canonical polarization, given by the shift
operator s, (s(M)), = M, ,, is also omitted here.

2. If R is left noetherian and connected then R is locally finite
(dim R, <o for all n in N [6, Prop. 2.1]) and tors consists of all
finite-dimensional modules.

3. If R is not noetherian, then 7(M) must be defined as the smallest
submodule of M such that M/7(M) is torsion free; cf. [19,
Chap. 6].

4. By [6, Prop. 2.5], any Z-graded left noetherian algebra R satisfies
the category equivalences ProjR = ProjR., and projR = projR.,.
Therefore we assumed from the beginning that R is N-graded.

For this definition of Proj and proj to be appliedto 4 ® B and A4 - B,
both algebras must be (left) noetherian. In general it is not known under
what assumptions the tensor product of two noetherian algebras is again
noetherian. However, from Section 3 on, A ® B will be an iterated Ore
extension, hence noetherian, and therefore 4 ® B is assumed to be
noetherian for the rest of this section. This implies that 4. B is also
noetherian because A~ B = (A ® B),, and by [16, Lemma 11.3.2]. The
foregoing may then be applied to the N-graded A° B: if (4°B),, =
@, (4, ® B) then an element n of a left graded (A4~ B)-module is
torsion if (4 B)_ ,n = 0 for some s in N. For the bigraded 4 & B we
define (A4 ® B)-BiGr (respectively (A ®, B)-bigr) as the category of
NZ-bigraded left 4 & B-modules (respectively the finitely generated ones).
If (4® B).,.,= D, .. (A4, & B)then an element m of a left
bigraded (4 ®, B)-module is torsion if (4 ® B) ., . ,m = 0 for some s
in N. In this way it is clear what is meant by Tors for both categories
(A~ B)-Gr and (4 ® B)-BiGr, thus defining Proj(A - B) and Proj(4 ®, B)
(similarly for tors and proj).
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Notation. The Segre product A B will also be denoted by S and the
tensor product A4 ®k B by T. We write 4,= ®©,_ A4, B,= ©, B,
=(A-B), = (A < B); (the positive parts w.r.t the N- gradlng) and
T,,=(A4® B)H— 69 poolA & B g =A.® B, (the positive
part of A ® B w.r.t. the double grading).

LEMMA 2.3. If A and B are connected k-algebras, generated by homoge-
neous elements of degree one, then

L VneNT.,, ., =T, )" =T )" =E)"T
2. VvneN:T,T_, =T_,T,=(5,)'=5., =Ty,

Note that T is not strongly graded [16, Sect. 1.3] because 7, T_, # T,.

THEOREM 2.4. If A and B are connected k-algebras, left noetherian,
generated in degree one, and such that A ® B is left noetherian, then the
following equivalences of categories hold:

Proj(A ®, B) = Proj(A° B) and proj(A ®, B) = proj(A° B).

Proof.  As before, put T =A4 ® B and S = 4 - B. Each doubly graded

T-module M = 69 BzoM(a,B) is also a Z-graded T = @ __ T, -module
by M= @

EZ(GB M,

neZ T meN (n+_m,rn))' . .
To obtain the category equivalence Proj T = Proj S, define two functors

neZz

F: T-BiGr — S-Gr
M - M,
and
G: S-Gr - T-BiGr
N - T & N.

Then T ® N is a doubly graded left T-module by

T(a,ﬁ)'(TQS‘ N)(‘y,ﬁ):]}a,ﬁ)'( ) @ T(y—j,é—j) ® ]\7]
(jeN,j<y,8)

O Ty &N
(eN,j<v,8)

C(T & N)aty.pto

N

as well as a Z-graded T-module with (T ® N), =T, & N and 7,(T &
N), c(T& N),,n

The first step is to show that F and G define functors on the quotient
categories ProjT and ProjS. Suppose, for example, that N is torsion in
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S-Gr; then there exists for all n in N an m,, such that S ,, n = 0. Take an
element g = X!_, t, & n; in G(N) and m, such that S>m n, = 0 for all
iin{1,.... 1. If m is the maximum of those m, , then by Lemma 2.3,
T(zm,zm)gCT(>m >m)®S Zl/l _TS, & Zn _T®S Z"S>mnz_0
Therefore every element of G(N) is torsion and the functor G passes to
the quotient categories. Clearly the same holds for the functor F.

The natural equivalence F G = Id on Proj S follows from (F o G)(N)
=(T® N)y=S5& N=N.

It remains to show that Go F = Id on ProjT or that T ® M, = M in
Proj T. (Note that if S were the degree zero part of a strongly graded ring,
then the statement would be true in 7-gr; cf. [16, Thm. 1.3.4]. The weaker
situation in Lemma 2.3 forces us to pass to the quotient category of T-Gr.)

Define the bigraded degree (0,0) and Z-graded degree 0 map ¢: T &
M, —> M by ¢(t ® my) =t-my,. If K= Ker¢ and C = Coker ¢, then K
and C are objects of 7-BiGr as well as 7-Gr. We show that K is torsion in
Proj T (similarly for C), hence ¢ is an isomorphism in Proj T. First of all,
K, = Ker ¢, = 0 because ¢, is the isomorphism T, ® M, = M,. Lemma
2.3 then implies that S K, = T,T_,K, € T,K, = 0 for all [ in Z, which
means that all K, are torsion in Proj S, hence K = @ K, is torsion in
ProjS. Since for every element z of K there exists an m such that
S.n,z=0and T, » m»yz =TS, ,z=0, K is torsion in Proj T.

The same proof holds for proj, but in this case a torsion module N, for
example over S, satisfies the (stronger) property that there exists an s in N
such that S. N =0. |

The algebra homomorphism from A4 to A ®, B, sending an element a
of Ato a®1lin A ® B, induces a right exact functor from A-Gr to
(A ® B)-BiGr, sending a graded A4-module M to (A4 ®, B) ®, M. This
functor sends 4 to A ® B and passes to the quotient categories. In the
terminology of [6, Sect. 2] this means there is a map Proj(4 ®, B) —
Proj A. As the following corollary of Theorem 2.4 shows, not all maps
between projective schemes arise in this way from an algebra homomor-
phism.

COROLLARY 2.5. For A and B as in Theorem 2.4 there exist maps (in the
sense of [6, Sect. 2])

Proj(A° B) — Proj A and Proj(A - B) — Proj B,
proj(Ae° B) — proj A and proj( A~ B) — proj B.

PropPosITION 2.6. If A and B are connected and locally finite with Hilbert
series H,(t) = ¥, . o(dim, A,)t" and Hy(t) = ¥, . ((dim, B,)t", then

1 Hyt) =%, dim, A4 )dim, B,)",
2. Hy(s,1) =Y, ;. (dim, A)dim, B)s't’ for the double grading.
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Henceforth A and B are quadratic algebras generated in degree one,
written as

A

T(A,) /2%, with #Z, Cc A, ® A,
and
B =T(B,) /%y with %y C B, ® B,
where T'(-) is the tensor algebra. In this case
A°B=T(A, & By)/Sps(#, ® B ® B, + A, ® A, ® %),
where Sp(a ®d ® b @ b)=a®b®d @b and
A® B=T(A, ®B,)/(%, ® A, B,] ®%).

Suppose R = T(R,)/W is such a quadratic algebra with dim, R, = n +
1. Since W C R, ® R, and R; ® R, acts on R} ® R, hence on P(R}) ®
P(R¥), it makes sense to define the scheme 7 (W) ={(p,q) € P" X
P"Nfe W: f(p,q) = 0}, where P(R}) is identified with P”. Henceforth
we restrict attention to algebras R for which 7°(W) is the graph Ty of an
automorphism o, of a scheme P, C P", i.e.,, Z (W) =T, = {(p, ox(p))Ip
€ Pg}. Such an R is said to have associated geometric data (P, oz). One
can also ask the converse to hold:

DEFINITION 2.7. Given geometric data (P, oz) consisting of a sub-
scheme P, of P" and o € Aut(P;) and a quadratic algebra R =
T(R)/W with dim, R, =n + 1, we say that R is determined by the
geometric data (P, oy) exactly when W = {f € R, ® R,|f(I'z) = 0}, where
I'; € P" X P" is the graph of oy.

It is important to view I’y as the full scheme rather than only its closed
points. (Theorem 4.3 will consider a scheme consisting of a quadric and an
embedded line.)

For algebras that have been of interest so far in noncommutative
algebraic geometry, the Artin—Schelter regular [2] algebras of global
dimensions two, three, and four, it makes sense to ask for R to have
associated geometric data or to be determined by such data: all
Artin—Schelter regular algebras of global dimension two have for " (W)
the graph of an automorphism o of a projective line P! and are deter-
mined by this (P!, ¢ ); cf. Section 3. In the case in which R is Artin—Schelter
regular of global dimension three, generated in degree one, it is shown in
[3, Thm. 1] that Z"(W) is the graph of an automorphism of a cubic divisor
in P? and by [3, Thm. 6.7] such an R is determined by these geometric
data.
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The foregoing no longer holds for algebras of global dimension four. It
is true that under some conditions, °(W) is a graph; in [21] the authors
show that this is the case if R is noetherian, finitely generated in degree
one with Hilbert series (1 — #)~*, Auslander regular of global dimension
four, satisfying the Cohen Macaulay property, and such that both projec-
tions II,7°(W) contain two distinct points. However, not all four-dimen-
sional Artin—Schelter regular algebras are determined by a scheme and an
automorphism of it. As mentioned in the Introduction, Theorem 4.3
provides the first known example of such an algebra.

DerINITION 2.8 [3]. Let R be a graded algebra which is generated by
R,. A (left) point (respectively line, respectively plane) module over R is a
graded cyclic (left) R-module M with Hilbert series H,,(t) = (1 — )"t
(respectively (1 — ¢)~2, respectively (1 — ¢)~3%).

For A, B and associated (P,, o), (Pg, a3), we write the image of P, X
Py under the Segre embedding as P, ° P, and points of P,o Py as pogq
with p € P, and g € P,. The two automorphisms o, and o then induce
an automorphism o5 = 0,,5 = 0,005 of P,oPy by opeoq) =
a,(p)e ox(q) and let Ty = {(v, o5(v)lv € P, > Py} be the graph of o on
P, o Py.

For algebras having a graph of an automorphism as the zero locus of the
defining relations there is a one-to-one correspondence [3, Cor. 3.13]
between point modules and points on (the underlying variety of) the
scheme Py. Therefore P, is called the point scheme of R. The next
theorem shows that the point scheme of the Segre product of 4 and B is
the (Segre) product of the point schemes of 4 and B.

THEOREM 2.9. If A and B have associated geometric data (P,, o) and
(Py, o), then S = A o B has associated geometric data (P, ° Py, o, ° ap).

Proof. We must show that if 7(#,) =T, and 7(%,) =Ty then
7(Hs) = T.

Put i = dim, 4,, j = dim, B, and let x,,...,x; and uy,...,u; be gen-
erators of A4, and B;. For (v,w) in T there exists a p in P, and an r in
P such that

(0,w) = (periog(por)) = (Pt m ((240)1(0B7) )0 m)s

where, for the rest of this proof, k and [ belong to {1,...,i} and m and n
to{1,...,/},and p = (x,(p),..., x,(p)) is written as (p,, ..., p;) (similarly
for r).

If i belongs to Z# then A is a linear combination of terms of the form
Foa(f®Db +a®g)with feER,, g €ERy,a €A, ® Aj,and b € B, ® B,
In order to show that A(v,w) =0 for all & in %, it suffices to take
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h=S(f®u, ®u,), with mn<jand f=1%,,_; a,x.x, Then, be-
cause f € %y,

h(v,w) = kzlakl(Xk ®u, ®(x,®u,)(v,w)

= Eak,zpk”m(U'AP)z(‘TB”)n
k,1

[f(p,oup)]ra(asr),
-0

and so (v, w) belong to 7°(%).

On the other hand, suppose that #(v,w) = 0 for all & in ;. We must
show that (v,w) = (peor, oy(peor)) with (p,r) € P, X Py. Suppose that
,9?A is generated by (f*),,f"=X,, aklxk ® x, eA ®A (yel1,.

a? — a,}) and Fy is generated by (g°)s5,8° = L0 » ,ﬁnum ® u, €B, ® B
(8 €{1,...,b7 — b,}) and put (v, w) = (v;,,) . m),(w,n)(, ) From (fy ®
u, ®u )(U w) =0and (x, ® x, ® g°)v,w) = 0, it follows that

Vm,n <j: Y VWi, =0 (1)
k1

Vk,l <i: Y B2 UimWi, = 0. (2)
m,n

For any point v = (v;,,) 4., in P~ 1 there exist (p,), (k € {1,...,i}) and
(r,),, (m €{1,...,j}) such that v,,, = p,r,, if k=i or m =j. Equations
(1) imply that also for k +i and m #j, v,,, = pil,,, hence v =peor.
Repeat this for w and Egs. (2) to get w = g o s. Then rewrite Egs. (1) as
r, s, f(p,q) =0 (Vy,Ym,n <j) such that ¢ = o,(p) with p € P, and
similarly s = a3(r) with r € P;. I

If ;M and z N are point modules over A and B, respectively, then M &
N is a point module over 4 ® B (for the double gradation this means
dim, (M ® N), g =1 for all « and B) and by Theorem 2.4 this
determines a point module over A~ B, namely Mo N = (M ® N),. The
converse is also true and follows from Theorem 2.9 and [3, Cor. 3.1.3].

CoRoLLARY 2.10. Point modules over the Segre product A° B are in
one-to-one correspondence with products of point modules over A and B.

More concretely, any point module over A, corresponding to p € P,, is
of the form M(p) = A/(Aa; + -+ +Aa;_,) with «, € A, and
7(ay, ..., a;_y) = p. If similarly for B, N(q) = B/(BB, + -+ +BB;_,)
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with B, € B, and 7(B,,...,B;_1) =q € Py, then M(p)o N(q) =
S/(Sy, + -+ +8y;;_1) with v, € S, and 7 (y,,...,¥;_1) =peq € Py is
the corresponding point module over S and all point modules over S are of
this form.

THEOREM 2.11. If A and B are determined by (P, a,) and (P, o),
then S = A~ B is determined by (Py = P,° Py, o5 = 0, ° 0p).

Proof. It suffices to show that any 4 in S; ® §;, vanishing on I,
belongs to the defining relations %, of §; that is, # must be a linear
combination of terms of the form %,;(f®b®b +a®ad ®g) for
certain a,a in A,, f in %Z,,b,b in B, and g in %;. Write h as
Fayli-1a; ® a; ® b; ® b} for some a;, a; in A, and b, b; in B;. We give
a proof by induction on the length n of this sum.

If n=1then h =S (a®ad ®b®b')and forall pin P, and g in
Py we have a(p)d'(a, p)b(g)b'(ozq) = 0. If a ® d’ does not belong to
Z#,, then there is a point p on P, such that a(p)a'(o,p) + 0 and
therefore b ® b’ vanishes on I'y; and belongs to .%;.

Suppose the statement holds for length n» = k — 1 and take / of length
n=k If h=%,% a4, ®a, ®b ®b; then L/, alp)dao,p) X
b.(g)b(ozq) =0 for all p in P, and g in Py. If for all i €{1,...,k},
ai(p)a'i(O'Ap) = 0 forall p in P,, then we are done. So suppose there is a
Jin{L,...,k} such that there is a p in P, with a,(p)aj(a,p) # 0. Then
b; ® bj + (1/a (p)d, (aAp))ZHé] a(p)d ((TAp)b ® b’ vanishes on Iy and
b ® b’ = (- 1/a (p)a (o p)EY, ; a(p)d(o,p)b, ® b in B and the
Iength of & can be reduced by one. 1

For the sequel it is worthwhile to pay attention to the construction of
the twisted algebra (cf. [4, Sect. 8]). If 7 is a graded algebra automorphism
of a Z-graded algebra R, then the twist of R by 7 is a graded algebra R._
and is defined as follows. As a graded abelian group, R_ is isomorphic to
R, but the multiplication has been changed. If r, € R_ corresponds to
r € R, then the product of two homogeneous elements r_, s, is defined
tobe r s, = (r-s™"),, where d = deg(r). So if ry, ... belong to R, and
if f= Za 1, -1 isarelation of R, then f, = Za UGS )T...
" M. hoIdst

The functor from R-Gr to R_-Gr which associates to M € R-Gr the
module M, in R-Gr by r.m,= (r"'m)., where d = deg(r), defines a
category equivalence R-Gr = R -Gr [3, Cor. 8.5], hence Proj R = Proj R, .
For the sequel it is important that properties like Artin—Schelter regular-
ity, global dimension, and so on, are twisting invariant; cf. [3, Sect. 8; 24,
Sect. 5].
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It is clear that the Segre product behaves well with respect to twisting:

LEMMA 2.12. Let A and B be connected. If o and T are algebra
automorphisms of A and B, respectively, then

AG'OBTE(AOB)(T"T'

3. THE SEGRE PRODUCT OF ARTIN-SCHELTER REGULAR
ALGEBRAS OF GLOBAL DIMENSION TWO

The Artin—Schelter regular algebras of global dimension two are easily
described. As recalled in the introduction of [2], there are only two types:

e for every g € k*, a quantum plane C(q) = k<{x,y)/{y»x — quy),
and

e the Jordan plane J = k{(x,y)/{yx —xy — x?).

These algebras are connected, finitely generated in degree one with
Hilbert series ¥, . o(n + 1t" = 1/(1 — ¢)?, and noetherian (because they
are iterated Ore extensions), and finally, they determine and are deter-
mined by some geometric data in the sense of Definition 2.7. The algebra
C(q) is determined by (P*, o,(x,y) = (gx,y)) and J by (P*, o;(x, y) =
(x,y —x)). Since C(q) and J are twists of the commutative C(1) = k[x, y]
by the algebra automorphisms o, and oy, we call the Proj of such an
algebra a quantum P2,

Henceforth S = A~ B will be the Segre product of two-dimensional
Artin—Schelter regular algebras 4 and B determined by (P?, o,) and
(P, op). If (x, y) are the degree one generators of 4 and (u,v) those of
B, then the generators of S are (U, X,Y,Z)=(x®u, y®u, x®,
y ® v). Because of Proposition 2.6, Hy(t) = . o(n + D" = (1 + 1)/
(1 — ¢)®. Theorem 2.11 and the choice of the coordinates (U, X,Y, Z)
imply that S is determined by the smooth quadric Q = Z (XY — UZ) and
the automorphism oy = 0, ° 0.

Notation. There are three kinds of Segre products to consider,

e S,., = C(a)oC(b) (Segre product of two quantum planes) and

ao
Og0p = 0,° Op,

e S,.;,=JJ (Segre product of two Jordan planes) and o;,; =
O'J © O'J,
e 8;.,=1J°C(q) (Segre product of a Jordan plane and a quantum

plane) and o;., = g; ° g,
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Because C(a) and J are twists of C(1), Lemma 2.12 implies that S,,, =
(S1.1s,eap Ssos = (810000, AN S; 0 = (Sy.4), ., . All Segre products
of the regular algebras of global dimension two are therefore twists of
Si.1=CQDCQ) = klu, x,y,z1/{XY — UZ), the commutative homoge-
neous coordinate ring of Q.

We continue to write S = A > B when it is not specified what type A4

and B are.
ProrosiTION 3.1.

1. S is a noetherian domain and Auslander Gorenstein.

2. S is a twisted homogeneous coordinate ring of the smooth quadric
Q = 7(XY — UZ) in the sense of [5].

Proof. As A and B are both iterated Ore extensions, sois 4 ® B and
therefore 4 ® B is a hoetherian domain and § € 4 ® B a domain. As the
degree zero part of a Z-graded noetherian ring, S is noetherian [16,
Lemma 11.3.2]. On the other hand, S is a twist of the commutative
homogeneous coordinate ring and by [24, Prop. 5.1, 5.2], being Auslander
Gorenstein is (among other properties) twisting invariant.

For the second statement we refer to [3, 5] for the definition of a twisted
homogeneous coordinate ring or to [20, Sect. 3] for the specific case of a
quadric. |

ProrosITION 3.2.

1. The point modules over S are in bijective correspondence with the
points on Q.

2. The line modules over S are in bijective correspondence with the lines

on Q.

Proof. The first statement follows from Corollary 2.10. The second
statement holds for the commutative homogeneous coordinate ring and
because of [4, Cor. 8.5], an algebra and its twisted algebras have equiva-
lent categories of graded modules, so the same bijective correspondence
holds. I

Recall from [10, Exercise 1.2.15] that the lines on Q = Z(XY — UZ)
belong to two families (rulings) of lines, either of the form 7 (aU —
BX, aY — BZ) or of the form 7 (yX — 8Z,yU — §Y) (a, B,v, 8 € k),
and any two lines on Q intersect if and only if they belong to different
rulings.
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4. EMBEDDING SEGRE PRODUCTS OF QUANTUM
PLANES IN QUANTUM P?*s

If $=358,.;==kKx, yloklu,v]l=kU X,Y,Z]/{XY — UZ), the (com-
mutative) homogeneous coordinate ring of the quadric P! P! = 77 (XY —
UZ) c P8, then it is the surjection R = k[U, X,Y, Z] » S that leads to
the (commutative) projective embedding of Proj S into Proj R = P3. The
sequel of this paper studies a “quantization” of this embedding.

If the Proj of the coordinate ring of a quantum plane is viewed as a
quantum P!, then (the Proj of) the Segre product S of two such algebras is
a twisted homogeneous coordinate ring of P! X P!, and so may be viewed
as a quantum quadric. For @ and b in k*, we write

S =S, = C(a)s C(b),

where C(a) = k<{x,y)/{yx —axy) and C(b) = k{u,v)/{vu — buv) are
the algebras determined by (P!, o (x,y) = (ax,y)) and (P!, o,(u,v) =
(bu,v)). By Theorem 2.11, S is determined by the quadric Q = 7 (XY —
UZ) c P? and the automorphism o, = g,.,, given by o,.,(U, X, Y, Z) =
o,°0,U, X,Y, Z) = (abU, bX, aY, Z). More concretely, S,., =
kU, X, Y, Z) /<f1, fa: far far 5 [&, [22 With

fi=2ZY —aYZ,
f, = ZX — bXZ,
fs = ZU — abUZ,
fi =YX - bUZ,
fo = YU - bUY,
fs = XY — aUZ,
f; = XU — aUX.

A quantum P?* will be the Proj of an Artin—Schelter [2] regular graded
algebra R of global dimension four with Hilbert series Hp(t) = (1 —¢)~*
(properties shared with the polynomial ring on four variables).

In order to view Proj R as a quantum P2 containing Proj S (or to have a
map ProjS — Proj R in the sense of [6, Sect. 2]), it suffices to have
R, = 8, as k-vectorspaces and a graded degree zero onto homomorphism
R > S.

The goal is to classify all such algebras R. Our methods rely heavily on
Schelter’s computer program Affine. The claim that Theorem 4.3 lists all
such algebras is based upon these calculations, which were omitted from
the paper. This problem is avoided in [21]. The current strategy will be
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explained, but the proof of Theorem 4.3 can only show that the algebras
listed there satisfy the above properties.

Strategy. The defining relations of R, given by a six-dimensional sub-
space of the seven-dimensional space {f;,..., f;», can be written as

fi+Af, = fi+tAfe=0
fo + Ay f7 = fo+A4,fe=0
fa+A4sf7 = or fa+A3fe=0
fa+Auf7 = fo+Ayfs=0
fs +Asfr = fs +A4sfs =0
Jo + Asf7 = 7=

fi+A.f,=0 f>=0

f3=0 f3=0

fa=0 fa=0

or...or f5=0 or f5=0

fe=0 fe=10

f=0 f2=0

with parameters (A4,); € k.

A first selection, which turned out be the most important, is to take only
those six-dimensional subspaces yielding already a correct Hilbert series
up to a certain degree. This was done with the use of Affine; cf. [2]. Affine
uses the Diamond lemma (cf. [8]) to calculate dim, R, for fixed degree n.
Therefore one takes all monomials of degree n and reduces the number of
independent ones using the given relations of lower degree. At the same
time some overlaps can occur (for example, in degree three, one has
ZXY = (ZX)Y = Z(XY)). If such an overlap is not associative, this adds a
new relation and lowers the degree n part of the Hilbert series. When one
checks the associativity of an overlap, the parameters a, b, A; appear.
Taking the right values for a, b, A; is then the only way to change the
associativity and to control the Hilbert series. With the use of Affine, we
checked Hilbert series up to degree five, which imposed certain relations
on the a, b, A;. Once such algebras were found, general techniques were
used (cf. the proof of Theorem 4.3) to check regularity and the Hilbert
series in higher degree. All calculations were done over C but Theorem 4.3
holds for any algebraically closed field. The following claim lists all
solutions found in this way, but Theorem 4.3 classifies them in a more
constructive (geometric) manner.
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Remark 4.1. All algebras are classified up to isomorphism. For exam-
ple, the exchange a < b (which corresponds to § = C(b) C(a) instead of
C(a)° C(b)) is obtained by interchanging X < Y.

CLam 4.2.  The following six-dimensional spaces of relations are, up to
isomorphisms (the only ones), determining a four-dimensional Artin—Schelter
regular algebra with Hilbert series (1 — t)~* surjectingon S,,. ,:

1. for a and b arbitrary: {fy, f,, f3, fa + Asfe: f5, [77 with A, # 0,

2. for a=1, b=1 (f,+ (—~A3As — AyAg + A3 ANf fo +
Ao fr. fs + Asfo fu + Aufri fs + Asfr, fo + Agf7) with Ay Ag + A (Ag —
Ay) # 0,

3. for a arbitrary, b = 1: {f; + (—AzAs + aA)f5, fo, fs + Asf2, [4
+ fo [ fo + Agf7) with Ag — A3 # 0,

4. for a= -1, b= -1 (f; —Asfr. fo [ S far Is +Asf7nfe>
with A5 # 0,

5. for a=1 b= -1 (fi+ (A, Aq + ADf., f, + Ay f7, f3 +
Ayfy, fa + Aufoi fs + Asfr, fo) with A5 # Ay As,

6. for a arbitrary, b = —1: {f; + a*f5, f5, f3 + afo, fuo + f7. fo: [

Observation. A detailed study of the previous list reveals the following
facts that lead to the classification of Theorem 4.3.

e If R=T(R)/{W)withW C R, ® R, then 77(W) =T, , the graph
of an automorphism o of a scheme P c P2, and therefore P is the (point)
scheme parametrizing the point modules over R. Further Q C P and
alg = gy = a,.,. Recall that this scheme P is the zero locus of the 4 X 4
minors of the matrix M determining R; that is, if W = (g,,..., g;) then M
is such that (g,)) = M(UXY Z)".

e If P+ Q, which happens in cases 1 to 4 of Claim 4.2, and if P # P?
(so R is not a twist of a polynomial ring), then P = Q U L for some line
L c P2 If P consists of Q and an embedded line L C Q, e.qg., P =
7 (Y(XY — UZ), Z(XY — UZ)), we still denote P = Q U L (although this
“union” does not satisfy Q UL = Q inthecase L € Q). Incases 1to 4, L
is respectively 7' (U, Z), 7(Z + A;X — A,U, Y + A X + (A4 —
ADU), 7(Z + A, X, Y + (A — DU), and 7 (A X +Y,U + Z). How-
ever, a good choice of generators for R, enables the two linear terms
defining L, as well as the defining relations of R, to be expressed more
simply. By [20, Lemma 1.1] any line L intersecting Q = 7 (XY — UZ) in
two distinct points can be written in the form 7°(U, Z). In the same way
we may assume that any tangent line is of the form 7 (aX + Y, Z) for
some scalar « # 0, and any embedded line L c Q of the form L =
7(Y,Z) (e.g., the line (Y — U, Z — X) belongs to Q = 7 (XY — UZ)
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=7(X+Z)XY—-U)— U+ YXZ — X))). Such R are determined by
the geometric data (Q U L, o) in the sense of Definition 2.7 and o, = olp
defines an algebra automorphism on R (recall that we identified P(R}) =
P*). Hence all these algebras twist to an algebra mapping onto S, .,, the
commutative homogeneous coordinate ring of Q. It is shown in Theorem
4.3 that all these algebras are (twists of) central extensions of three-dimen-
sional Artin—Schelter regular algebras [11].

e If P =0, which is the case in 5 and 6 of Claim 4.2, the o, is not
defined on R and R is not determined by the geometric data (P, o) =
(Q, ap). Furthermore, all algebras of case 6 twist to an algebra of case 5,
which maps onto S, _;.

THEOREM 4.3. (i) The following algebras R are Artin—Schelter regular
algebras of global dimension four with Hilbert series 1,/(1 — t)*:

Type 1. The four-dimensional polynomial ring, determined by the geo-
metric data (P = P3, o = id).

Type 2. Algebras R mapping onto the commutative homogeneous
coordinate ring S,., of Q and determined by the geometric data (P, o).
The point scheme P = Q U L is the union of the quadric Q and a line
L cP? and o is an automorphism of P with oy = id, and o, an
automorphism of L. These (L, o|;) are either

1. L =2, Z), intersecting Q in two distinct points, and
o]0, X,Y,0) = (0, aX,Y,0) for some scalar o € k\ {0,1}; then R =
k{U, X,Y, Z) with defining relations

zZY =YZ, ZX =XZ, ZU = UZ,
YX - aXY = —(a-1)UZ, YU = Uy, XU =UX

or

2. L=7(aX+Y,Z) tangent to Q, and ol (U, X, —aX,0) = (U
+ BX, X, —aX,0) for some scalars « and B with aB + 0; then R =
k{U, X,Y, Z) with defining relations

ZY=YZ, ZX=XZ, ZU=UZ,
o
YX=XY, YU-UY=— a(XU - UX), XY—UZ=—E(XU—UX)

or

3. L=7(Y,Z)cQ and o is uniquely defined on P as follows:
on (U -1): o1, X,Y,Z2)=0, X+ (1/a)XY —
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1/a)Z,Y,Z),
on7Z(X—-1:0U1Y,2)=U-1/a0)Y + (1/a)UZ,1Y, Z),
on7(Y—-1:0( X,1,Z2)=(U, X,1,Z) and
on7(Z-1):. o, X, Y, )=, X,Y,1)

with « # 0; then R = k{U, X,Y, Z) with defining relations

Y =YZ, ZX = XZ, ZU =UZ,
YX = XY, YU = UY, XY - UZ = —a(XU - UX).

Type 3. Algebras R mapping onto §,,_, with point scheme Q, not
determined by the geometric data (P, o) = (Q, 0p); R =k{U, X,Y,Z)
with defining relations of the form

ZY -~ YZ = — (A} — A, 45) (XU - UX), YX+UZ=—A,(XU-UX),
ZX + XZ = — A,( XU — UX), YU+ UY = — Ag( XU - UX),
ZU + UZ = — A, (XU — UX), Xy = UZ,

with 4,, A,, A; € k and A, A5 — A5 # 0.

Type 4. Forall a and b in k*: twists by o,,, of the Type 1 algebra R;
determined by (P3, o, ,).

For those a and b in k* for which o,,, is defined on a Type 2
algebra R: twists by o,,, of such Type 2 algebras R; determined by
(QUL,ag,,,°0)

For those a and b in k* for which o,.,(o,._,)"" is defined on a
Type 3 algebra: twists by o,.,(o;._,)"* of such Type 3 algebras R;
determined by (Q, a,.,°(o,._;) t o o).

(ii) Every Artin—Schelter regular algebra R of global dimension four
and with Hilbert series 1/(1 — ¢)* which maps onto the Segre product
S,.» (a,b € k*) is isomorphic to an algebra of the above types.

Proof. As stated above, the proof of (ii) relies on the calculations with
Affine. We prove (i) here.

Type 1. The algebra of Type 1, the four-dimensional polynomial ring,
determined by the geometric data (P2, id), clearly satisfies the hypotheses.

Type 2. These algebras are determined by Q U L and an automor-
phism o of Q U L with olp = 0., = id, and o, an automorphism of
L (therefore fixing the intersection points of Q N L). We first describe the
geometric data that can occur and give the defining relations of the
corresponding R. As mentioned before, L is assumed to be either
7 (U, 2),7(aX +Y,Z), or 7(Y, Z).
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1. If L = 7°(U, Z) then any automorphism of L fixing the intersec-
tion points with Q is of the form ¢|.(0, X,Y,0) = (0, «X, Y, 0) for some
scalar o in k*. To exclude twists of a polynomial ring (classified in Type
1), take a # 1 (otherwise o extends to an automorphism of P3). By [20,
Lemma 1.3(a)], this geometry determines the defining relations of R as
given above.

2. If L=7(aX+Y,Z)with a # 0, tangent to Q, the situation is
slightly more complicated. Any automorphism of L fixing the point of
intersection is of the form o | (U, X, —aX,0) = (U + BX,yX, —ayX,0)
for some B,y in k, but only y = 1 is a candidate for an algebra with a
correct Hilbert series. In the case y # 1, this geometry determines only
five defining relations instead of six. A better argument will be given later
on in the proof. If v = 1, exclude B8 = 0 (twists of the polynomial ring) and
in a way similar to that above the defining relations of R can be
determined.

3. If L is an embedded line on Q, then L is of the form 7°(Y, Z).
If the matrix M is such that the defining relations of R can be written
in the form M- (U, X,Y,Z) =0, then M(p)a(p) =0 for p on P im-
plies that the vector o (p) is orthogonal to the six row vectors of M. The
matrix M has rank three at every point of P3; so if mﬁjk denotes the
minor of the 3 X 3 matrix obtained by deleting rows i, j, £ and column /
from M, then there always exist i,j,k such that o(U, X,Y,Z) =
(=miy, miy, —m},, mfy) defines a point in P* and in particular
M(p)o(p) =0 for p on P. Then o can be described on the affine opens
77U -1, 7(X -1, 7(Y — 1, 7(Z — 1) if one takes respectively
(i,j,k)=(1,2,4),(1,3,5),(2,3,6), and (4,5,6). Thus o is defined on P
and this determines the given relations of R if only those f in R, ® R, are
taken that vanish on the full scheme T, where O O L.

It remains to show that all Type 2 algebras are Artin—Schelter regular with
Hilbert series (1 — ¢)~*. In [20, Cor. 1.9, Prop. 2.3], this has been done in
the case L = 7°(U, Z) and the same technique can be applied to tangent
and embedded lines. We prefer the methods of [11] because of their use
later. All algebras whose defining relations are given above are shown to
be regular as central extensions of three-dimensional Artin—Schelter regu-
lar algebras; i.e., R has a central, regular element ¢ in R; such that
C = R/Rc is a three-dimensional Artin—Schelter regular algebra.

It is clear that for all algebras considered, Z is central in R,. If
C = R/RZ and if R is Artin—Schelter regular, then C must be a three-
dimensional Artin—Schelter regular algebra. For such a regular C with
generators U, X,Y we can choose a basis of the three-dimensional space
of quadratic relations (44, k,, h3) such that there is a 3 X 3 matrix M with
entries in C and a matrix N of GL,(k) such that the relations of C can be
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written as (hy, h,, hy)' = M(U, X,Y)" and (U, X,Y)M = (N(hy, h,, h)")".
(This is exactly the property of being a standard algebra in [3, Thm. 1].)
Take representatives for U, X,Y in R, still denoted by U, X,Y, and
consider their span in R, as a copy of C,. Therefore the equations of R
may be written in the form

g =h+Zl,+az*=0, ZU-UZ=0, ZX-XZ=0,
ZY-YZ =0 (3)

with j =1,...,3,1,,1,,l; € C;, and «;, a,, @3 € k. Let (U*, X*,Y*)' €
C? be defined by (U*, X*,Y*) = N'(U, X,Y)". Theorem 3.1.3 of [11]
describes when regularity can be lifted from C to R:

Equations (3) define a four-dimensional regular algebra if and only if
there exist ('yj)j ek, j=1,...,3, that form a solution to the following
system of linear equations in C;*%, C;, and k,

Z?’jh/‘ = Z(le/‘ —x7),
J J

Zlej = Zaj(xj _x_;k)’
j

J

Ly =0,
i

where one takes (x;, x,, x3) = (U, X, Y). If such (y,); exist, then they are
uniquely determined by (/,);.

This theorem may be applied to all three algebras of Type 2. For
instance, in the case of the tangent line 7' (aX + Y, Z),

(hy by, hy) = (YX—XY,YX—YU+ UY,EXY+XU—UX ,
o

B
(11’12113)=(0:_5U,—ZU), (ay, a,, ay) = (0,0,0),
0 Y -X 1 0 0
M=|-Y BY U , N=| B 1 0
X U (B/a)X B/a 0 1
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Then C = k(U, X,Y)/(hy, h,, hy) determines a three-dimensional
Artin—Schelter regular algebra: from the above, C is standard and because
the nine conics defined by the 2 X 2 minors of M have no common zero,
C is nondegenerate; cf. [3, Thm. 1]. Its point variety, the locus of zeros of
det M, is the intersection (Q U L) N Z°(z) consisting of the three lines
7(X), 7 (Y),7(aX + Y) in P? = 7(z) c P3. (For the other positions
of L, the point variety will be a conic union a line or a line union a double
line.)

An easy calculation shows that (y,,v,,7vs) =(—B8%/a, B/a, —B);
hence, by [11, Cor. 2.3, 2.7, Thm. 3.1.3], R is an Artin—Schelter regular
noetherian domain with Hilbert series (1 — ¢t)~*, Auslander regular, and
Koszul and satisfies the Cohen—Macaulay property. More details on cen-
tral extensions can be found in [11].

Remark. The above imposes the restriction y =1 on the automor-
phism o, (U, X, —aX,0) = (U + BX, yX, —ayX,0) of the tangent line,
because otherwise the quotient R/RZ would not be three-dimensional
Artin—Schelter regular: the geometric data ((Q U L) N #°(Z), the identity
on QN7 (Z), and ol on L N 27(Z)) can only determine a regular
algebra if y = 1; cf. condition (1.2) in [3, Thms. 2, 3].

Type 3. The algebras of Type 3, whose relations are stated above, all
have the same associated data (Q, o,._,) and are therefore not deter-
mined by these geometric data (which determine S,._;). Because any
normal degree one element of R must be normal in §,._, (a twist of the
commutative S;., by o;._,), such a normal element must commute by
means of a scalar multiple of o, _,. However, o,,_, does not define an
algebra automorphism of R so no normal elements can exist in R, and
other techniques must be used. Furthermore, this means that R can never
twist to an algebra mapping onto the (commutative) homogeneous coordi-
nate ring of Q.

First, S,._, is a noetherian domain and Auslander Gorenstein by
Proposition 3.1. Furthermore S, . _, is a Koszul algebra (cf. [11, Sect. 2; 18,
Sect. 4] because by [20], S,._, is a quotient of a Koszul algebra by a
normal degree two element, hence a Koszul algebra itself (cf. [9]).

The sequel of this proof depends on some calculations, easily checked
with Affine: if 4,4, — A3 # 0 then

e ) =XU - UX is normal in R, and
e R'=TW*)/W*, the dual of R =T(V)/W, is finite dimensional

with Hilbert series Hp(t) = (1 + 1)* (V* is the vector space dual of V
and W+ the orthogonal of W in IV'* ® VV*; cf. [17, Sect. 4.2]).
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More precisely, if {u, x, y, z} is the basis of V* dual to {U, X,Y, Z} then
R'= k{u, x, y, z) with defining relations

W=xl=y2=z2=0
(A, Ay — A})zy — (Ayxz + Ayxy + Ayuz + Aguy + ux) = 0
zx—xz=0

zu+yx —xy —uz=20

(A, Ay — Af)yz + (Ayxz + Ayxy + Aguz + Aguy + ux) =0
yu —uy =0

xu+ux=20

and the elements (u, x, y, z) form a basis for R}, (xy, xz, yx, ux, uy, uz) for
R, (xyx, uxy, uxz, uyx) for R}, and uxyx for R,

Since S is a Koszul algebra, Hg (1) = (Hg(—t)™ ' =1 +0)*Q — 7!
and so Hp(t) = (1 — t)Hg(t). As S = R/QR with Q normal in R,, it is
clear that R'= S'/S'wS' for some w in S, One may check (with Affine)
that o = (A, 45 — A3)zy — (A, xz + Ayxy + Ayuz + Aguy + ux) is 1-
regular in S' i.e., dim S} @ = dim S; = dim S} Then o is normal because

4 = dim Ry = dim §; — dim(S; 0 + wS;)
< dim S;— dim S{w = dim $; — 4
and dim S; = 8 implies that S;w = S}® + wS; = wS}. The exact sequence
0— Ann(w) = §' = 8'> §Y/S'o=R'-0

combined with Hy(t) = (1 — ¢t?)Hg(t) then implies that o is regular.

Since S is a Koszul algebra we get that S' is a Koszul algebra, and so are
R and R' (a quotient of a Koszul algebra by the degree two normal regular
element w; cf. [9]). It follows that R has finite global dimension since R is
a Koszul algebra and R' is finite dimensional.

Comparison of Hg(t) = (Hp(—1)"* = (1 — ¢)~* with Hg(¢) shows that
Q is regular. So by [12, Prop. 3.5, 3.6] we can lift the fact that S is
noetherian and Auslander Gorenstein to R, which is then Gorenstein and
Artin—Schelter regular but also Auslander regular and Koszul and satisfies
the Cohen—Macaulay property.

Type 4. It is clear that, if the Type 1 algebra or a Type 2 algebra
R - S, ., (respectively Type 3 algebra R - S;._;) and @ and b are such
that o,., (resp. a,.,(0,._,)"") are defined on R, then the twisted
algebra R, ~—>S,., (resp. R, ., -+ —>S, ) satisfies the desired
properties. To end this proof we briefly indicate which ¢,,, can occur.



EMBEDDINGS OF SEGRE PRODUCTS 505

If R is the four-dimensional polynomial ring, then o, , is defined on R
for all ¢ and b in k*.
In order to twist algebras of Type 2, o,,, is defined on R

e for all ¢ and b if L intersects Q in two distinct points, or

e for a=b=1if L is tangent (so algebras with an associated
tangent line always map onto S;.,), or

o for arbitrary a and b = 1 if L is a line of the following ruling of
lines on Q: 7 (yX — 8Z,yU — 8Y) (by symmetry the lines of the other
ruling will occur for arbitrary b but a = 1).

As algebras R determined by (Q U L, o), mapping onto the homogeneous
coordinate ring of Q, have two central elements v,w in R; (where
L = 77(v,w)), their twists will have at least one normal element in degree
one, the eigenvector for g,,, in kv + kw. To twist the algebras of Type 3,
a,.,(o,._,) "t is defined on R

e fora=—-1,b=1, A, = 0(by symmetry of thecase a = 1, b = —1,
cf. Remark 4.1), or

e for g arbitrary, b = —1and 4, = A, = 0, which is the solution 6 of
Claim 4.2. |

From the proof of the previous theorem it follows that

PROPOSITION 4.4. The algebras listed in Theorem 4.3 are Koszul, noethe-
rian, and Auslander regular and satisfy the Cohen—Macaulay property.

Let R be one of the regular algebras described in Theorem 4.3. The
following theorems describe the point, line, and plane modules over such
an R. It is well known that such modules are respectively of the form
R/Ru + Rv + Rw,R/Ru + Rv, and R/Ru for u,v,w in R, (cf. [11,
Thms. 4.1.1, 5.1.1], hence determine a point, line, and plane in P*. We now
classify these points, lines, and planes.

THEOREM 4.5. Let R be as above; then the point modules over R are in
bijective correspondence with the points on

1. P? if R is a twist of the polynomial ring,
2. Q U L if Ris a twist of the algebras of Type 2 in Theorem 4.3,
3. Qif Ris a twist of the algebras of Type 3 in Theorem 4.3.

Proof. This is an easy consequence of [3, Cor. 3.13] and Theorem 4.3. ||
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Since R is a domain with Hilbert series (1 — #)~* it is clear that

THEOREM 4.6. Let R be as above; then the plane modules over R are in
bijective correspondence with the planes in P3.

THEOREM 4.7.

1. The line modules over (twists of) the four-dimensional polynomial
ring are in bijective correspondence with the lines in P>,

2. The line modules over (twists of ) the algebras of Type 2 in Theorem
4.3, determined by (Q U L, o), are in bijective correspondence with the lines
in P2 that either lie on Q or meet L.

3. The line modules over (twists of ) the algebras of Type 3 in Theorem
4.3 with associated (Q, o) are in bijective correspondence with the lines on Q
or lines that can be described as follows: for every point p € P* there is a
plane T, with the property that all lines in T, containing this point p are line
modules. For the Type 3 algebras with parameters A,, A,, Ag as in Theorem
4.3, T, is given by

T, = 7(((_A2A5 +A§1)P1 — A, p, +A4P3)U
_((_AZAS +A3)po — A4p2 +A5P3)X
+(Aypo —Aypy +p3)Y — (Aypo — Asp: +p2)Z),

wherep = (poypl,pzypa)-

Proof. 1. This correspondence holds for the commutative polynomial
ring, and therefore for its twists.

2. A classification of the line modules in the case L = Z°(U, Z) can
be found in [20, Sect. 2.2]. Instead of generalizing this to arbitrary L, we
use [11, Sect. 5], which describes the line modules over central extensions
of three-dimensional Artin—Schelter regular algebras.

As in the proof of Theorem 4.3, Z is a central element of R, such that
C = R/RZ is three-dimensional Artin—Schelter regular. By [11, Sect. 5] we
find that all line modules over C (which are in bijective correspondence
with the lines in P3 lying in 2°(Z)), are line modules over R. If a line
module R/Ru + Rv corresponds to a line [ = 7°(u,v) not lying in the
plane 7°(Z), then R/Ru + Rv + RZ is a point module over C. So
I N 7(Z) belongs to P, the point variety of C, which is the intersection
of the point variety of R with #°(Z). By [11, Thm. 5.1.6], a line through
p € P. € 7°(Z) corresponds to a line module if and only if it is contained
in either 7°(Z) or Q,. This Q, is a scheme in 3, defined as follows: with
notations as in the proof of Theorem 4.3, we can write the relations of R
as (g =h;+Zl,+ 0,Z* =0, ZU—-UZ=0,ZX - XZ =0, ZY - YZ =
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0). If we take ¢ = ({;, {,,¢3)" to be the coordinates of olp.(p), g =
(81,8, &3)'" and the matrix N as before, then Q, = 7°({'Ng).

Let us briefly indicate what this means for the tangent L = 7 (aX +
Y,Z). In this case P. is the union of the three lines 7°(X), 7°(Y),
7(aX +Y)in 7(Z) c P? and o is the identity on the first two lines
and o (U, X, —aX) = (U + BX, X, —aX) on the third one. It is easy to
see that for p € 7°(X), Q, is either P or Q; for p € 7/(Y), Q, is Q and
for p € 7(aX +Y),Q, is P°. The lines through those p € P, lying on
Q, and the lines in 7°(Z) are the lines on Q and the lines meeting L.

3. By [13, Prop. 2.8; 11, Thm. 5.1.1], there is a bijective correspon-
dence between the (left) line modules M and the space of rank two ten-
sors u ® a —v ® b €%, (the space of relations of R) such that M =
R/Ra + Rb. Because a plane intersects Q in either a nondegenerate conic
or two distinct lines, there are only a few possibilities for div,(a) and
divy(b).

o |If din(a) = din(b) then u ® a — v ® b is of rank 1.

e Let C # C’ be two conics, I, # I, (resp. I, # 1,) be two lines on Q

belonging to the first (resp. second) family of lines.

—If (divy(a), divy(b)) = (C,C"),(C, 1, + 1), or (U + 1, I3+ 1,)
then u = o(b) and v = o(a) is the only way to make u ® a —v ® b
vanish on the graph of o on Q. Note that we have put o(b)(p) = b(o(p))
for p in Q.

—If divy(a) =1, + [, and divy(b) =, + 1, then [ = 7'(a,b) =1,
so [ lies on Q and these lines already correspond to line modules over R
because of Proposition 3.2.

So we must classify the lines [ = 7°(a, b) such that o(b)a — o(a)b
belongs to %.

Puta=pU+gX+rY+sZand b=p'U+qgX+rY+sZin R In
order to have o(b) ® a — o(a) ® b vanish on the graph of ¢ on Q,
o(b)a — o(a)b must belong to % (the space of relations of §). As
before, %, = (f,,...,f;» and the relations of R are (f, + (A5 —
Ay ANfq7, f + Ay fq, ..o fo + Agf7) (in Thm. 4.3, f; was called Q). Be-
cause %y =RHy + kf;, there is a surjective homomorphism ¢: FZ¢ — k
with kernel %, sending (fy, f5, fa fa, f5, for f2) 10 (—=(=A,As +
A3), —A,, —A,, —A,, —A5,0,1). A calculation shows that o(b)a —
o(@b = pq'f; + pr'(=f) + ps'(=f3) + qp'(=f)) + qr'(=f; —f5) +
qs' (—=f,) + ip'fs + rq'(fy + fo) + rs'(=f) + sp'fs + sq'f, + sr'f,. The con-



508 KRISTEL VAN ROMPAY

dition for [ = 7°(a, b) to be a line module is then
0= ¢(a(b)a— o(a)b)
=1(pq —qp') +As(pr' —m') + Ay(ps' — sp')
+Au(qr —rq') +Ay(qs' —sq') + (—AyAs + AZ)(rs' — sr')
or
0=N,; —AgN;3; + A,Ny; + A,N,, — A, Ny, + (—A2A5 +Ai)N01, (4)

where N;; is the corresponding minor of N, determined by the line
7 (a, b):
N= s/ _r/ q/ _p/ .
s —-r q -p
Equation (4) can also be written as a A b A T = 0 (cf. [7]), where a, b,
a A b and T are given by the tuples

a=(s —rq —p), b=(s-rqg -p),
anNb= (N01 Noy Noz Nip Nig N23)! T = (T01 Toy Tog 11, T Tzs)

and
aANbANT= N01T23 - N02T13 + N03T12 + N12T03 - N13T02 + N23T01-

Of course a = (s, —r,q, —p) corresponds to the plane a = 7 (pU +
gX +rY +sZ)and a A b to the line 7'(a, b).

Consider p = (py, p1, P2, p3) @ point in P° and define 7, to be the
plane pv T =6U — yX + BY — aZ containing p and given by the
4-tuple

(@, B,7,8) = (poT1; = PiTos + P2To1s PoT1s — P1Toz + P3To1, PoT s
—P2To3 + P3Toys P1Tos — PaTis + P3Th,).

The condition a A b A T =0 is then equivalent to p €a A b and a A
bcT,(orpAhanb=0andaAbAT,=0).

Then T corresponds to a line, i.e., T=c A d if and only if Ty, T,; —
Ty, Tis + TosT,, = 0 (this is the so-called Pliicker relation), and otherwise
T corresponds to some ¢ Ad + e A f; cf. [7, Prop. 5.5]. (Note that we
could so far repeat this proof for the Type 2 algebras, determined by
(Q UL, o). Inthat case T is the line L and 7, the plane through p and
L) Here T is given by T=(1 Ay, A, A, A, (—A, A + A3)) and the
Pliicker relation is —A4, A, + A% = 0, which was excluded from Theorem
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4.3. Therefore T is not a line and the plane 7, is given by

% ((_AZAS +Aﬁ)p1 —A4,p, +A4P3)U
_((_AzAs +A§1)Po — Ayp, +A5P3)X
+(Aypo — Aypy + p3)Y — (Aypy — Aspy +p,)Z =0

or T,={q € P3| p.#q = 0}, where .# is an anti-symmetric matrix
(p#p = 0 because p € T,)

0 —(—A,As +A3) A4, A,

e —A,A; + A3 0 —A, A,
—A, A, 0 -1

A, — A, 1 0

Observe that .# is a regular matrix with determinant 4(—A, A5 + A3)%. If
the line modules intersect a fixed line (as for the algebras with point
scheme Q U L) this matrix is singular. [

Comparison of the Hilbert series of R and § yields that R/{Q) =S
for some € in R,. One can check that for all algebras of Theorem 4.3, ()
is normal. Such an ) commutes by means of an algebra automorphism 6
such that Qr = 6(r)Q for all r in R. For the Type 3 algebras with point
scheme Q, the automorphism 6 is given by

AY —AZ A,Y - A,Z
A, Ag — A2 A, A, — A2

0(U XY, Z) = AU — A X, AU — A, X

and 67! = — 6. If s is the automorphism of P* given by

t AU -AX+Y
AU - A, X+ Z

(A, A5 — A3)U + A,Y — AsZ

(A, 45 — A3)X + A,Y — A, Z

N~ S

then s? = # and s is not an automorphism of Q. However, in [23] we show
the existence of a quadric K such that s is an automorphism of K N Q.
The quadric K consists of those points p of Q for which the line through
p and 6p lies on Q. For such points p, the plane 7, intersects Q in a
degenerate conic. In general, the plane 7, is the tangent plane to K in
0s(p). We remark that this gives us three points on 7, which (in most
cases) determine 7,.
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CoROLLARY 4.8. The plane T, of Theorem 4.7 is the plane through the
three points p, Op, and Osp. If p = Op then T, is the tangent plane to Q in p.

Because any line [ ¢ P? intersects Q it suffices to look at the planes T,
for p in Q. An explicit description of the P! of lines through p can be
given (by describing all points q, for which the line through p and g, is a
line module); cf. [23]. Furthermore one can check that there are only four
points on Q for which 6p = p and then p = sp.

To conclude, we remark on some material for further study in [22]. The
algebras R of Type 3 with point scheme Q have no normal elements in
degree one but three centrals in degree two, respectively of the form
v?,w? ow + wo for some v and w in R,. Apart from the normal degree
two element Q with (finite order) automorphism 6, R has only two other
normal degree two elements. They commute with even degree and anti-
commute with odd degree elements. The former implies that R has no
central elements in odd degrees and we claim there will even be no
normals in odd degrees. This and a proof that these algebras are finite
over their center appears in [22]. Of course these remarks fail for twists of
such algebras.

Remark 4.9. Some of the algebras determined by (Q U L, o) with
L = 77(U, Z) can also be found in the following way. In [14] one considers
a matrix % a solution of the quantum Yang—Baxter equation and con-
structs an algebra of quantum vectors V(.%), quantum covectors V*(%)
(cf. [14, Examples 2.4, 2.5]), and quantum matrices A(%). If these algebras
have generators (v'), (x,), (] N, i, ] = 1...n, then they satisfy the relations
vk =it xx, = x,x,, lk ,and %’kt 1 =Ry stk 1f Ry s the
transpose of %, i.e, (ﬂlz)k, A, then the image of the algebra homo-
morphism A(%) — V(#,) ® V*(%) (cf. [14, Prop. 2.7]) is what we called
the Segre product of V(#,,) and V'* (92’)

For the multiparameter solution = 5,8/(8 + 0/(¢q;))"" +

07q;/r*) + 8/8[607(1 —r~?) (6, = 1if i >] and zero otherW|se) vectors
in V(%’Zl) and covectors in V*(g?) satisfy the relations v/v’ = (g;,) ™"
x;x; = r?(q;;)"'x;x,. The algebra A(%) is then surjective on their Segre
product. For this %, A(%) is an iterated Ore extension and therefore
Artin—Schelter regular. This provides some examples of embeddings in
higher dimensions. For the two-parameter %, A(%) is the algebra deter-
mined by (Q U 7°(U, Z), 0,., on Q and the identity on L), a twist of a
Type 2 algebra of Theorem 4.3.

The discussion in Section 4 focused on embeddings of the Segre product
of two quantum planes; instead one may consider the Segre product of two
Jordan planes or a Jordan plane with a quantum plane. We believe these
cases introduce no new ideas and so we leave them for the general
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treatment in [21]. Indeed, some calculations with Affine established that in
the case of two Jordan planes J no algebras with point scheme Q occur.
For algebras with point scheme Q U L we now do have, in contrast to
Theorem 4.3, an algebra with an associated tangent line that maps onto an
algebra different from §,.,. On the other hand, no lines can occur that
intersect Q in two distinct points because of the structure of a; ° g; (an
automorphism of Q U L must fix QO N L but no such two intersection
points on Q exist for o, ;).
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