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Abstract

A classical result from 1861 due tosgMITE says that every separable equation of degree 5 can be
transformed into an equation of the forR+ bx3+cx +d =0. Later, in 1867, this was generalized
to equations of degree 6 by UBERT. We show that both results can be understood as an explicit
analysis of certain covariants of the symmetric groSgsnd Sg. In case of degree 5, the classical
invariant theory of binary forms of degree 5 comes into play whereas in degree 6 the existence of an
outer automorphism dfg plays an essential role.
0 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let L/K be afinite separable field extension of degre@ classical problem is to find
a generating elemente L whose equation

x}’l +a1xn—l+a2xn—2+ P +an_lx +an :0 (1)

is as simple as possible. For example, a quadratic extension in characiegdiis always
a generator with equatiar? + » = 0. One easily shows that for a separable extension of
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degree 3 there is a generator with equatidr- bx + b = 0 and similarly for an extension
of degree 4 (see Section 7).

In degree 5 and 6 we have the following classical results which go backe kmiHE
[Her61] and dUBERT[JOU67].

Main Theorem. (a) For any separable field extensidry K of degreeb there is a generator
x € L whose equation has the form

x5+bx3+cx+c=0,

except fork = F, where the equation has the forri + x3 +1=0.
(b) LetL/K be a separable extension of degfedf charK # 2then there is a generator
x € L whose equation has the form

W+ bx*+ex’+dx+d=0.

The arguments given by #RMITE and DUBERTwork in characteristic zero. They are
short and elegant and both are based on some classical invariant theory. The idea is to
construct “universal” BCHIRNHAUS transformations which, applied to any generator of
L/K, produce elements df whose Eqgs(1) satisfy the required properties, i®.= a3z =
0. From this it is not difficult to obtain the Main Theorem (at least in characteristic zero)
although this is not explicitly formulated in their papers. To get the result also in positive
characteristic and, in particular, for finite fields needs a little more work and some explicit
computations.

The aim of this note is to give a “modern” approach to these results, following (and
explaining) the classical ideas. We will show thag&MITE's and HUBERTS method can
be considered as a careful and explicit analysis of certain covariants of the symmetric
groupsSs and Sg. In degree 5 the classical invariant theory of binary forms of degree 5
comes into play whereas in degree 6 the existence of an outer automorphfgrmplaf/s
an essential réle. Another modern approach was givendgA® in [Cor87]; it is based
on rationality questions for cubic hypersurfaces.

There is the obvious question to generalize these results to higher degree. However, it
was shown by RICHSTEINIn [Rei99] that, in general, this is not possible (see Example 1
in Section 3).

It should be pointed out here that the relation between equations of degreecovari-
ants of the symmetric groufy, has be studied in detail byBiLER and REICHSTEININ
[BuR97] (see also [BUR99]).

2. Covariantsand Tschirnhaustransformations

Let K be field and: € N a positive integer. To any = (x1, x2, ..., x,;) € K" we asso-
ciate the polynomiat (x) :=[[,(X — x;) € K[X]. This defines a polynomial map

A" — P,
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where P, denotes the unitary polynomials of degree
PuK):={f=X"+ar X" P+ apX"?+- +a,.1X +ay |a; €K}

The morphismr is defined oveZ and corresponds to tlegebraic quotientvith respect
to the natural action of the symmetric groip on A" by permutations. This means that
the polynomial functions o®, are identified, viar, with the symmetric functions oA”,

L Py =Zlay, az, . .., a)) — ZIAMTS,  ap > (=D si(xn, xa, .., X0,

wheres; denotes théth elementary symmetric function. ff € P,(K) andéy, ..., &, the
roots of f (with multiplicities) in some field extensioh/K thenz ~1(f) is the S,-orbit
of € = (£1,...,&) e A"(L)=L".

Let @ = (p1, 92, ..., ¢,) A" — A" be anS,-equivariant polynomial map. By defini-
tion, @ induces a morphisr# : P, — P, such that the following diagram commutes:

[
Ar —— A"

L b

P, —— P,.

Such anS,-equivariant morphisn® is classically called aovariant More generally, we
have the following definition.

Definition 1. Let V, W be finite-dimensionak -representations of a finite group. Then

a G-equivariantk -morphisme : V — W is called acovariant of V of typeW. Moreover,

@ is said to bdaithful if G acts faithfully on the image (V¢) whereK is the algebraic
closure ofK.

Clearly, covariant®, ¥ : A" — A" can be added and multiplied by invariapt$i.e. by
symmetric polynomials):

D+ = (p1+ Y1, 02+ Y2, ..., 00+ Yu),
PP = (po1, p2,..., pPn).

Thus the covariants form a module over the ring of invariants. Moreover, we can form
the “transvection”(®, W) := (p1¥1, w22, ..., ¢, ¥,) of two covariants® and ¥. It is
obtained by composing the produgt x ¥ with the bilinear covarianf\” x A" — A",

(X1, vy Xy Y15 ooy V) > (XYL, - ooy X Yn)-

All this also makes sense & and¥ are covariants of typAgign whereAgign denotes
the standard representation§yfmultiplied with the sign character. E.g. ¥f: A" — Agign
is a covariant (of typa%gign) andA = ]_[i<j(x,- —x;) thenAWY is a covariant of type\”.
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Remark 1. It is easy to see that if a covaria@t= (¢1, ..., ¢,): A" — A" is not faithful
theng; = g2 = - - - = ¢,,, and this polynomial is af,-invariant. For example, ip1 + g2 +
.-+ 4 ¢, = 0 and chak does not divide:, then® is faithful if @ #£ 0.

Assume now that the covariadt: A" — A" is defined overK. Let f € P,(K) and
denote by = (61, &2, ..., &) the roots off in some field qxten_sioﬂ/[(. Thend () =:
(&1, &2, ..., &,) are the roots of the transformed polynomjal= @ (f):

f=lx-&r~rfF=]Jx-&.
i=1 i=1

Lemmal Let® = (g1, ¢2,...,9,) A" — A" be a covariant defined ovek .

(1) @1 is invariant undersS,_1 C S, acting on the last: — 1 variables, andp, = (1k)¢1
where (1k) denotes the transposition 4f and k. Conversely, eveng,_1-invariant
polynomialgp1 defines a unique covariagt whose first component g .

(2) There is a uniquely defined polynomiak= ¢ (f, X) = ¢(as, ..., an, X) € K[P,][X]
of degree< n in X such that

(pi(xlax27-"’xn)=(p(al5a25"‘5anaxi)5 i:1’25"‘5n7

wherea := (—1)*s;(x1, ..., x,). Conversely, every such polynomjaldefines a co-
variant®@ : A" — A",

Proof. Part (1) is clear, sinc§,_1 C S, is the stabilizer 0f1,0,...,0) € A". The asser-
tion (2) follows from (1) because

n—1
Sn—1 _ Sn J
K([x1,x2,...,x,] = Klx1,x2,..., %17 x7.
j=0

This is well known and even holds ov&r 0O

A way to express this result is by saying that the covariarits> A” form afree module
of rankn over the invariants, with a basis given by the covariants

(xl,...,xn)H(xi/,...,x;{), j=01,...,n—1

For our purposes the following interpretation of Lemma 1 will be important. If the polyno-
mial

f=x" +ax" T ap" 2+ .. +a,

with coefficientsa; € K has a root in some field extensiord. /K then& := ¢(f, &)
belongs toL, andé& is a root of the transformed polynomigl:= & (f). Following the
classics we therefore make the following definition.
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Definition 2. The polynomialp( f, X) € K[P,][X] from Lemma 1(2) will be called the
TsCHIRNHAUStransformationassociated to the covariagt

Thus, by Lemma 1, the covariangs: A" — A" correspond bijectively to ICHIRN-
HAUS transformationg = ¢(ay, ..., a,, X) by

¢(-x17 .. 7-xrl) = ((0(611» sy ans xl)v A ) (p(ala ceey an» x}’l))
whereay := (—1)Ksi(x1, ..., x,). So the general problem can be formulated as follows.

Problem. Given a field extensioi./ K of degreen and a generatay € L with equation
f(&) =0, find a covariantb : A" — A" defined overK such thatf := @ (f) is as simple
as possible.

Of course, the transformed equatigrnas to be irreducible so that= ¢ (f, £) is again
a generator of the extensidry K .

Our main goal is to prove the following two theorems which are duegeM TE and
JouBERT. They imply the Main Theorem from the introduction about the special form of
equations of degree 5 and 6. This will be shown in the following Section 3 for infinite fields
K and in Section 6 for finite field& . The proofs of the following two theorems will be
given in Sections 4 and 5.

Theorem A (HERMITE). There is a homogeneots-covariant® : A% — A® of degree25,
defined ovefZ and faithful for every field&, with the property that

51091, 92, ..., ¢5) = 53(P1, 2, ..., 5) = 0.

The covariant® has the form® = (¥, A2) where¥ : A> — A5 is homogeneous of de-
gree9, 2:A% - Agign homogeneous of degréeaand A = ]_[,.<j(x,~ —Xj).

Remark 2. We used the computer program Mathematica to show that, for every prime
we havess (g1, ..., ¢5) Z0modp.

For the case of degree 6 we need a slight modification. It is well known that the §goup
has an outer automorphistmwhich is unique up to inner automorphisms. We will denote
by A® the standard representationSaftwisted withz, i.e.o -; x := t(o)x. Clearly,A® has
the same invariants and the same algebraic quc»tiemf — Pg asA®. Therefore, every
covariant® : A% — A? gives rise to a commutative diagram

AGLA?
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It is easy to see that the results obtained so far carry over to this case with only minor
modifications in the formulation, e.g. in Lemma 1(1) the compoggris invariant under
7(S85) C Se, andgy = (1k) - g1 = T ((1k))¢1.

Theorem B (JOUBERT). There is a homogeneous-covariant® : A® — A8 of degreets,
defined ovefZ and faithful for every fiel& of characteristic£ 2, with the property that

51(¢1, -+ 96) = 53(01, ..., 96) =0 and s5(¢1, ..., gg) = —2°A°.

The covariant® has the form® = A¥ wherew : A% — (Af)sign is of degree3 and A =
Hi<j(xi —Xj).

Remark 3. It is interesting to remark tha¥ is the covariant of typeéAf)sign of lowest
possible degree (see Section 5 for more details). This observation will provide us with a
conceptual proof of Theorem B (in characteristic zero), without any explicit calculations.

3. Equationsof degree5and 6

We will now use the results of the previous section to deduce the Main Theorem about
the special form of equations of degree 5 and 6 for infinite fiédld$-or the case of finite
fields, we will need the explicit description of the covariants @&fR#¥ITE and DUBERT,
this will be done in Section 6.

Theorem 1. Let K be an infinite field.

(1) If L/K is a separable field extension of degfgehen there is a generator of L/K
with equation

¥+ bxP+cx+d=0.

(2) If L/K is a separable field extension of degreend charK +# 2, then there is a
generatorx of L/K with equation

O+ bx*+cx?+dx +e=0.

Example 1 (REICHSTEIN [Rei99)). Let k be a field of characteristigz 3 containing a
primitive third root of unity. Define
L:=k(x1,x2,....,x) DK :=k(xf,x§’, ) ..,xf’).

If xeL,x#0,then T][/K(x3) # 0. In particular, there is no generatoiof L/K whose
equation has the form

" +a2xn—2+a4xn—4+a5xn—5+ o tay,
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wheren :=[L: K]=3". (Infact, if x = Zil,iz,...,i, a,-lizmi,xilx;z .. ~x£’ then Tk x =0
if and only if a;,;,;, = 0 whenevetiy, ip, ..., i, € 3N. From this observation the claim
follows immediately.) This example also shows thatfet 3" there is no faithful covariant

@ A" — A" such that1(e1, ..., ¢n) =s3(@1,...,90,) =0.

In view of Theorems A and B from the previous section, the theorem above is an
immediate consequence of the next proposition. In fact, applying$lagiTlRNHAU Strans-
formation of HERMITE, respectively QUBERT, to a “general” element of. /K we get a
new generator of./ K whose equation has the form

x>+ bx3+cx+d=0, respectively®+bx*+cx?+dx+e=0.

In order to reduce further to the form of the equations claimed in the Main Theorem of the
introduction (i.ed = ¢, respectively = d) we have to show that=£ 0 respectivelyl # 0.
This will be done in Section 6.

Proposition 1. Let K be an infinite field andL/K a separable field extension of de-
green. If ®:A" — A" is a faithful covariant defined ovek and ¢ the corresponding
TSCHIRNHAUS transformation, then there is a generatprof L/K such thatt := ¢(&)
also generated& overKk, i.e. if f(x) = 0is the equation of then the transformed equation
f := ®(f) is again irreducible. Moreover, if € K[x1, ..., x,] is a non-zero polynomial
function onA” thené € L can be chosen in such a way thdks, &, ..., &,) # 0 where
(&1, ..., &,) are the conjugates df.

For the proof, we need the next two lemmas. (In the first one, the Kigklarbitrary.)

Lemma 2. Let @ : A" — A" be a covariant defined over an arbitrary fiekl and f <
P, (K) anirreducible separable polynomial with splitting fidld K and Galois groupgs =
Gal(L/K). Thenthe imag¢ = @ (/) has the formf = 1™ with an irreducible polynomial
h € P.(K) of degreek = n/m whose splitting field. c L is G-invariant. In particular,
Gal(L/K) ~ G/N whereN :=Gal(L/L).

Proof. This is an exercise in Galois theory. ff=[]'_1(X — x;) and ®(x1, ..., x,) =

(X1, ..., Xn), 1-€.5 = o(f, x;), thenf = []/_ (X — X;). Since® is defined ovek we see
that®: L" — L" is G-equivariant. Hence, the splitting field = K[x1, ..., X,] of f is

G-invariant andG acts transitively on the set := {x1, ..., x,}. If [K[x1] : K] = k then
the stabilizer ofx; has indexk in G and the orbitA consists ofk elements, sayl =

{x1, ..., Xx}. It follows thath := ]'[f?:l(X — Xi) € K[X] is irreducible andf = k" where
m=n/k. O

Example 2. If f € P,(K) has Galois grou, then eitherf is irreducible with Galois
group S, or f = (X —a)" with a € K. In fact, if x is a root of f and L the splitting
field then GalL/K[x]) >~ S,,—1 which is a maximal subgroup &f,. Thus every element
y € K[x]\ K generateK [x]/K .
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Lemma 3. Let K be an infinite field and./ K a finite separable field extension of degree
Then the subset

Irrp/x :={f € P.(K) | f irreducible andy (x) = 0 for somex € L}
is Zariski-dense irP, (K) whereK denotes the algebraic closure &f.
Proof. Let L = K(x) with equation f(x) = 0. A linear comblnatlony > a,

(a; € K) is a generator fof./K if and only if the powerg1, y, y2, ..., y"1) are Ilnearly
independent ovekK . It follows that the corresponding subset

A= i(ao,al,---,an—l) €eK"

n—1
Za,-xi generatesL/K}
i=0

is Zariski-dense irK". As a consequence,ifi := x, x, ..., x, are the roots of in some
splitting field L’ > L of f, then

n—1 n—1 n—1
= { (Zaix’l, Za,-x’z, el Za,-x,’1>
i=0 i=0 i=0

(ap,a1,...) € A} cL”

is Zariski-dense irk”. Hence its imager (B) C P, (K) is Zariski-dense, too. By construc-
tion, 7 (B) is the set considered in the lemmaa

Now we can prove Proposition 1.

Proof of Proposition 1. By Lemma 3 the sertr‘l(lrrL/K) is Zariski-dense irk . There-
fore, the subset

={&=(&1,....&) en 1(Iry k) | & := @ (£) has trivial stabilizer is, }

is Zariski-dense, too, becaudeis faithful. This means that thig’s are all different and so,
by Lemma 2, the imagg := @ (f) =[[;(X — &) is irreducible. Also, sincé is Zariski-
dense, the functiom does not vanish oh. O

4. Proof of Theorem A

For any covariantb = (¢1, ..., ¢,): A" — A" the functionssy (g1, ..., ¢,) are sym-
metric, hence can be regarded as functionsPp(X), as we have already seen above.
Denote byW,, the vector space of binary forms of degree

a; € K}

Wn(K) = K[X, Y]n = {fzzal_xn—iyi

i=0
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We will identify P, (K) with the binary formsf with leading coefficientg = 1 by setting
Y = 1. Then every polynomial = g (as, ..., a,) on P,(K) of degreei defines, by homog-
enizing, a homogeneous polynomi@lag, a1, ..., a,) := agq(al/ao,az/ao,...,a,,/ao)
on W, (K) of the same degree. Thus, from every covari@nt\” — A" we obtainz ho-
mogeneous functiong € K[W, ] defined by

~ d
Sk(a(), alv MR al’l) :ZaokSk(gol, ¢29 cee (Pn)y k = 17 coon,

wheredy is the degree aofy (¢1, . .., ¢,) considered as a function df, which is the same
as the degree af; in each variable:;. Now recall that the group SI(K) acts linearly on
W, (K) by considering a binary fornf as a function on the standard representak@rof
SLa(K): gf (v) := f(g v) for g € SLo(K) andv € K2.

The basic idea of HRMITE is to arrange the covariad in such a way that the ho-
mogeneous polynomial§ become Sk-invariant functions onW,, and then to use our
knowledge about Si-invariants and, in particular, the fact that there are ng-Blariants
in certain degrees.

In order to achieve this we will use the following classical result (see [Sch68, 1.4
Satz 2.10]).

Proposition 2. Assume thatk is algebraically closed of characteristi®. Let g €
K[x1,...,x,] be a symmetric polynomial which is of degitén each variable and let
q =q(ao, -..,ay) € K[W,] be the corresponding homogeneous polynomial of degree
Theng is anSLy-invariant if and only if the following two conditions hold

(M) gx1+t,x2+¢,...,x,+1) =q(x1,x2,...,x,) fort € K, i.e.,q only depends on the
differencesy; — x;;
(R) n-disevenandxixs---x,)%(1/x1, 1/x2, ..., 1/x,) = (=1 2q(x1, x2, ..., xp).

It then follows thal; is homogeneous of degreé /2.

Outline of proof. The group Sk(K) is generated by the matricﬁ:’s’l] (te K)and[, ]
(i :==+/—1). Therefore, a (homogeneous) functipe K[W,] is SLy(K)-invariant if and
only if g(f) does not change under the following substitutions:

fX, )~ f(X—1,Y) and f(X,Y)— f(@Y,iX).
Write f(X,Y) =ao[[/_1(X — x;Y) so thatg(f) = q(x1, x2, ..., x,). Since
fX =tV =a][(X =0 —-xi¥)=a][(X — i +1)Y)
i=1 i=1
the invariance undef (X, Y) — f(X —1t,Y) is equivalent to (T). Since

fGY,iX)=ao [ [GY — xiX) = ao(—i)"x1x2+ - X, H(X - iY)

k=1 k=1 Yk
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the invariance undef (X, Y) — f(iY,iX) is equivalent to the condition

nd d 11 1
q(xlax29”"xn):(_l) (x1x2"’xn) 'q Ty Ty eeey T
X1 X2 Xn

which is (R). Moreoverj is also invariant underf (X, Y) — f(tX,t~1Y) for t € K*
which implies thay; is homogeneous of degrad /2. O

Later on we will use the following easy fact: If two arbitrary homogeneous polynomials
q1, q2 satisfy one of the conditions (T) or (R) then the same holds for the pradygt

Example 3. Start with A := ]_[i<j(x,~ —x;). It is easy to see that the symmetric poly-

nomial A2 satisfies the conditions (T) and (R) with:= 2(n — 1). The corresponding
homogeneous invariant of degréds thediscriminantD of a binary form of degree.

The polynomialA itself satisfies the conditions (T) and (R), but is skew-symmetric, i.e.
oA =signo) - Aforo €S,.

Now we are ready to prove Theorem A from Section 3. In his note [Her&RBNMTE
considers the following polynomial ii[x1, x2, ..., x5]:

Y1 = [(x1 — x2)(x1 — x5) (x4 — x3) + (x1 — x3) (x1 — X4) (x2 — X5) |
- [(x1 — x2)(x1 — x3) (x5 — x4) + (x1 — x4) (x1 — X5) (x2 — x3) ]

- [(x1 = x2) (x1 — x4) (x5 — x3) + (x1 — x3)(x1 — X5) (xa — x2)]. (2)

One easily checks that; is symmetric inxz, x3, ..., x5, hence, by Lemma 1, defines a
covariant

U= (Y1, Yo, ..., U5) A% — A®

of degree 9, defined ovét, wherey, := (1k)y1. The functionsy; obviously satisfy the
condition (T) of Proposition 2, and one finds

3 3 11 1
xy(x1x2---x5) Y1l —, —, ..., — | = —¥1(x1, ..., x5).
X1 X2 X5
Therefore, the polynomial
p1:=Y1" 1_[ (xi —xj)-A €))
l<i<j

has the properties (T) and (R) with= deg,, ¢1 = 10, andy; is symmetric inx, ..., xs.
By construction, the corresponding covariant

D = (¢1,92,...,95) A% — A®
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is again defined oveZ and has degree 259+ 6 + 10. We claim that satisfies the
properties of Theorem A.

In fact, it follows from Proposition 2, choosing fak the algebraic closure of),
that the homogeneous polynomialse K[Ws] corresponding to the symmetric func-
tions s (¢1, ..., ¢s) are Sly-invariants of W5 of degree 10. Since a symmetric poly-
nomial which is divisible byA is automatically divisible byA2 we see thaf is di-
visible by the discriminantd and 53 by D?, and we get def/D = 10— 8 =2 and
degsz/D? = 3-10— 2- 8 = 14. On the other hand, the Slinvariants of W5 are gen-
erated by invariantg,, Ig, 112, and I1g of degree 4, 8, 12, and 18 (see [Sch68, 11.9 Satz
2.26]). Hence, there are no invariants in degree 2 and 14 akg-s63 = 0 which proves
Theorem A.

Finally, the covarian® is faithful. First of all,® = 0 modulop for all primesp. In fact,
one easily sees that the leading term of the polynofhjas —xfxg’ and so the leading term
of ¢1 has coefficientt1l. Now the faithfulness follows from Remark 1 for chér 5.

If charK # 2 and® were not faithful fork theng; is an invariant and sg; - A=1 =
Y - ]—[1<i<j(x,~ — x;) a semi-invariant, hence divisible ky. This is not possible sincg,
does not vanish fatry = x». O

Remark 4. By construction, the covariagt has the formd = A(Y, 2) = (¥, A2) where

.Q:(wl,...,ws):AS_)Agign

is the homogeneous covariant of degree 6 define@by=[];_;_; (x; — x;) (@ndwy :=

—(1k)wy for k > 2). The representatiuﬁlgign of S5 contains the subrepresentation

U .= {x=(x1,...,x5)€A5|x1~|—-~~+x5=0},
and the image of the covarias : A®> — Agign is contained inU. (The last statement is
clear sincew; + - - - + ws is skew symmetric of degree 9, hence equal to 0, because every
skew symmetric polynomial is divisible by.)

It is interesting to note tha® is the covariant of typd/ of smallest possible degree
because the representatigroccurs ink [A®] for the first time in degree 6. (In fadt is the
irreducible representation corresponding to the partit®r, 1, 1), and K [A®]g contains
the induced representation I}id( because the stabilizer ofx2x3 € K[AS]g is S2.)

Remark 5. Using a computer program likell$GULAR [GPS01] or MATHEMATICA, one

can check directly that (¢1, ..., ¢5) = s3(¢1, ..., ¢5) = 0. So the ingenious part of k-

MITE’s short note is the discovery of the functiotts above. In fact, his remark is the
following, see [Her61]. He was trying to write out the invariant of degree 18 of the binary
forms of degree 5 in terms of the roots, . .., x5. Thus, he was looking for a polynomial
expressiony) in the differencesx; — x;) which satisfies the conditions (T) and (R) of
Proposition 2 wherd = 18. He discovered that := y1y2vy3¢4y5 has this property, i.e.
thaty can be written as a product of 5 terms where each one is invariant with respect to
one of the standard subgroufis C Ss. And, of course, he immediately realized that this
can be used to transform and simplify equations of degree 5.
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5. Proof of Theorem B

We will give two proofs for Theorem B. The first one is more conceptual, but only works
in characteristic zero. The second follows the explicit calculations giverobgdRT and
is valid in all characteristicg: 2.

First Proof. Here the base field i®. If L = (A1, A2, ...) is a partition of 6, we will denote
by V, the irreducible representation §§ associated ta (see [FuH91, §4.1]). S¥, is

the trivial representation and 1,... 1) is the sign representation. It is not hard to see that
twisting V(s 1) with the outer automorphism we obtain the representatiof » 2, which

is isomorphic toV(3 3) ® sign.

Let V denote the standard representationSgfi.e. V >~ Vg, @ V(51). Then, as we
just said,V; D V(2.2.2). One easily sees that the third symmetric pOW&Y contains the
representatior(z s). In fact, all symmetric powers’V are permutation representation.
Since the stabilizer oé1eze3 € S3V is 3 x S3, we see thas3V contains the induced
representation Irfngxs3 Q which containsV(s 3).

It follows that

V3.3 = V2,22 @ signC V; ® sign

which implies that there is a non-trivial covariaft: V — V; ® sign of degree 3. Multi-
plying ¥ with A, we finally get a covariant

@ =AW A5 AS

of degree 3+ degA = 18. We claim that® satisfies the properties of Theorem B. In
fact, for everyk the functionsg(¢1, ..., ¢e) = sk(¥1, ..., ¥e)AX is symmetric and so
sok+1(¥1, ..., ¥e) is skew-symmetric of degreek6+ 3, hence is divisible byA. Since
degA = 15, we gets; = s3 = 0. To see that is faithful, we simply remark that otherwise
® =0 because; = ¢1 + -+ + ¢ =0 (see Remark 1). O

Second Proof. This proof needs some preparation. We will consider the elements of the
symmetric grougse as permutations of the projective line

PF5=FsU {0} ={00,0,1, 2, 3, 4},

so thatH := PGLy(FF5) becomes a subgroup 6§ isomorphic toSs. This subgroup is the
image of the standarl; C Sg under an outer automorphism Let Sg act on the set of
subsets of?Fs consisting of 2 elements, and defibeC Sg to be the normalizer of the
subset

M := {{o0, 0}, {1,4}, (2, 3}}.

We obtain a surjective homomorphism N — S3 with kernel isomorphic tdZ»)3 gen-
erated by the transpositiorisc 0), (14), (2 3). The following result is known and easy to
prove.
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Lemma 4. SetNo := N N H, the normalizer ofM in H, andn := [ * i] c€H.

(1) p(No) = S3 andkerp|y, = (Z2).
(2) Nogis isomorphic taS,.
(38) H = NoUnNoU n2No U n3NoU n*No.

Now we can prove Theorem B. For the polynomial functions\émwe use the variables
Xoo, X0, X1, X2, X3, X4. Define, as in QUBERT'S paper,

h = (xoo — x4)(x1 — x3)(x2 — x0) + (X0 — X1) (x4 — x2)(x3 — Xo0)
= XooX0(X2 + X3 — X1 — X4) + x1X4(X0o + X0 — X2 — X3) + X2Xx3(X1 + X4 — Xoo — X0)-
It is easy to see thdt is semi-invariant with respect to the subgraMplefined above. For

o € No = S4, Wwe havesh = sign(p (o)) - h = signy, (o) - h. Therefore, by Lemma 4(3),
the function

h+n(h) + n?(h) 4+ n3(h) + n*(h)

is semi-invariant with respect td. We claim that the coefficients of this polynomial are
all £3. In fact,

h = (x1x2x3 + X2X3X4 + X4X0X1) — (¥1X2X4 + X2X3X0 + X3X4XX1)
+ Xoo (X0X2 + X3X0 + X4X1) — Xoo(X0X1 + X2X3 + X4X0)
and each bracket expression is a sum of three monomials from a single orbit under the

group generated by the cyclic permutatipe: (12340 € H. Denoting byo; jx the sum of
the monomials in the orbit of; x ;x; under the grougn) C H, e.g.

0123 = X1X2X3 1 X2X3X4 + X3X4X0 + X4X0X1 + X0X1X2,
we see that
I+ n(h) +n(h) + 0> () + 1 (h) = 3(0123 — 0124+ X002 — Xo0001).-
Thus
Y1i= %(h + () + 17 (h) + n°(h) +n*(h))
is the sum of all square-free monomials ;jx; (i # j # k # i) with coefficients:-1. Since
Y1 IS semi-invariant with respect t&, we see thaps := A - ¢1 is invariant with respect

to H and defines, by Lemma 1, a homogeneous covariant

& = (91,92, ...,96) A — AS



H. Kraft / Journal of Algebra 297 (2006) 234—253 247

of degree 3+ degA = 18, defined oveZ.. The same degree argument as in the first proof
shows thaki (g1, ..., ¢e) = s3(¢1, ..., pe) = 0. Moreover, in characteristig 2, the poly-
nomialyr1 is not a semi-invariant with respect to the whole grdigphenceyp; is not an
Ss-invariant, and sa@ is faithful (see Remark 1). O

Remark 6. We have seen above théi is the sum of all square-free monomiads: ;x

(i # j # k # i) with coefficients+1. Thus, for any fieldK of characteristic 2, we have
Y1 = s3. Hence neithe® nor @ is faithful in characteristic 2. We do not know if the Main
Theorem for extensions of degree 6 also holds in characteristic 2.

6. Thecaseof finitefields

In this section we will show that the methods oERMITE and bUBERT also work for
finite fields thus completing the proof of the Main Theorem. For extensions of degree 6 in
characteristic# 2, this will follows from what we have done in Sections 3 and 5. Recall
that DUBERTS covariant

@: A% — AS

has the form® = ¥ - A where ¥ : A% — (A%)ggn is of degree 3. If follows that
ss(Y¥1, ..., We) is a semi-invariant of degree 15, hence an integral multiplé.diVe claim
that

ss(P1, ..., ¥e) =x2°- A for somes € N.

In fact, if s5(¥1, ..., ¥e) =0 modp for a primep =# 2, then it follows from Theorem 1
of Section 3 that for any infinite fiel& of characteristico and any extensior./K of
degree 6 there is a generatowhose equation has the foraf + aox* + a4x2 + ag = 0.
But this implies thatl contains a subfield’ := K (£2) of degree 3 oveK which clearly
does not hold for generic extensions of degree 6.

Remark 7. An explicit calculation shows that

The next proposition shows that the covariant olUBERT, applied to any separable
irreducible polynomial of degree 6 over any field of characterigtig, always gives an
irreducible polynomial. In particular, this proves the Main Theorem for extensions of de-
gree 6.

Proposition 3. Let K be any field of characteristig 2 and let f € K[x] be an irreducible
separable polynomial of degréelf @ :A® — Abisthe covariant constructed BpUBERT
then f = @ (f) is irreducible. Moreover, the linear term gf has a non-zero coefficient.
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Proof. By Theorem B, we havef := &(f) = x6 + bx?* + cx2 +dx + e If £ =
(&1, &2, ..., &) are the (distinct) roots of , thenA(£) # 0 and so

d=s5(p1(5), ..., ps(§)) = +2°A% £ 0,

On the other hand, if were reducible then, by Lemma Z,= #* where# is irreducible
andk = 2, 3 or 6. The casg = h? cannot occur since theénshould have the form®+ax.
In the other two cases a short calculation shows/Hateither(x? — a) or x. But then the
coefficientd of the linear term off is zero. O

A similar result does not hold for the covariabtof HERMITE. In fact, if we start with
an irreducible polynomial of the fornfi(x) = x® — a then® (f) = 0. (This can verified by
using the explicit form (3) ofp given in Section 4; in facty1(1, ¢, £2, ¢3, ¢*) = 0 for any
fifth root of unity ¢.) However, we have the following result.

Proposition 4. Let® = (¢1, ¢, ..., ¢5) : A5 — A be the covariant o0HERMITE.

(1) For every primep the symmetric polynomial(¢1, ..., ¢5) € Z[x1, ..., x5] iS non-
zero modulgp.

(2) s4(¢p1, ..., ps) is divisible byA6 in Z[x1, ..., xs], and the quotiensy := s4(¢1, ...,
¢s5)/A® is homogeneous of degrde.

(3) If L/K is a separable extension of degrBeand & € L a generator with equation
f(x) =0 such thatSy(&1, ..., &) # 0, then® (f) is irreducible. (&1, ..., & are the
conjugates of.)

Proof. Recall the definition of IHRMITE's covariant® : A> — AS:

pr=vy1- [] i—x))-4

l<i<j

where

Y1 = [(x1 — x2)(x1 — x5) (x4 — x3) + (x1 — x3) (x1 — X4) (x2 — x5) ]
- [(x1 — x2) (x1 — x3) (x5 — x4) + (x1 — X4) (x1 — X5) (x2 — x3)
- [(x1 — x2) (x1 — xa) (x5 — x3) + (x1 — x3) (x1 — X5) (x4 — x2)
andA = I—[i<j(x,- —Xj). Putyry := v - Hl<i<j(xi —xj). Itis easy to see that the leading

term of Y1 and 2 is £x%x3x4 and that the leading term af4 and s is £xSxSx2xa.
Moreover, one finds thats(r*, r3, 12, 1, 1) = 0. This implies that

S4(1/~/1, e, 1}5)([4, t3, t2, t, 1)
=ya(th 1) (et 1) ga(rt 1) - Ps(eh L 1)
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and the leading term of this productis'®. Thuss4 (1, . .., ¥5) and hences(g1, . . ., ¢s5)
=s54(Yr1, ..., Y5) A% is non-zero modulg for every primep, proving (1).

We havesa(gs, . .., ¢5) = sa(¥r1, ..., ¥5) A%, In addition,i; ;¥ is divisible by A for
i#j#k=i,and sosa(V1, ..., ¥s) is divisible by A since it is symmetric. Now (2)
follows because deg; = 15 and degt = 10.

Finally, let f € K[x] be an irreducible separable polynomial of degree 5 with roots
£,....&5€ K. If f:=®(f) is reducible thenf = (x — a)® by Lemma 2. If chak #5
thena = 0, because b= s1(¢1(£), ..., p5(£)) = 0. For chak =5, we getf = x® — a°.

In both cases we see th8i{(&y, ..., &) = 0 which contradicts the assumption. Thus we
get(3). O

A crucial step in the proof of the Main Theorem for infinite fielkiswas Proposition 1
which says that for a faithful covariat : A" — A" defined overK and a separable ex-
tensionL /K we can always find a generatbre L such thatp(¢) is also a generator for
L/K, or, equivalently, tha® ( f) is irreducible wheref € K[x] is the minimal polynomial
of &£. However, ifK is finite it is not clear that suchf@e L exists. One expects that this is
the case ifK is large enough. In fact, we have the following more precise result. (For our
proof we will only need the second part.)

Proposition 5. Let K be a finite field andL/K a separable extension of degree Let
@ : A" — A" be a faithful homogeneous covariant defined akeasnd

¢ =po+p1X +p2X2 4+ pporX"L

the corresponding SCHIRNHAUS transformation(see Definitior2). If ¢ (&1,...,&,) € K
for all generatorst of L/K whereéy, .. ., &, are the conjugates df, then

|K| < min{degp; | j > 0andp; # 0} < deg®.

Moreover, if S € K[x1,...,x,] IS a homogeneous symmetric polynomial such that
S(&1,...,&,) =0forall generatorst of L/K then

|K| < degs.

Proof. If (&) € K for a generato€ of L/K thenp1(§) = p2(§) =--- = py—1(6) =0
because J, £2, ..., "1 are linearly independent ovér. Now fix a generatof of L/K
and consider the following linear change of coordinates

Xi =)0 + ylgl + y2912 +---+ yn—191~n711 i = 1a 21 s n,

wheref, :=#6, 0>, ..., 6, are the conjugates 6f Eachp; and alsaS are transformed into
homogeneous polynomiajs; (yo, ..., y,—1) and S(yo, ..., ya—1) of the same degree. In
addition, 5; andS have their coefficients i , becausg; andS do and are symmetric.

If € =ap+a10 +--- +a,_10"1is a generator of. /K then, by assumption, we have
pjlao, ...,a,—1) =0 for j > 1. Thus eaclp; vanishes orkK" \ F whereF is the finite
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union of all subspaces corresponding to proper subfi€lds L containingk . The follow-
ing Lemma 5 shows thdt is contained in a proper linear subspac&dfand so Lemma 6
implies that|K | < degp; if p; #0, and alsdK| < deg$, hence the claim. O

Lemma 5. Let L/K be an extension of finite fields of degiee- 1 and p1, p2, ..., pk
be the prime factors of. Then the sum of the proper subfieldsc L containingK has
codimension

—— (1 —Dp2—-D---(k—D =21
pip2--- Pk

The following proof was communicated to me byidAELA Popoviciu and AN
DRAISMA.

Proof. For every divisord of n, we denote byL, the (unique) subfield of. with
[L: Ly]=d. Then the span of the proper subfielddofontainingk is given by

Lpy+Lpy+---+Lp.
We can therefore assume thiit= L, ,..,, i.€. thatn is square-free. We proceed by
induction on the numbérof prime factors ofz, the case = p; being trivial. By relabeling
the p;’s, we can assume thaj, is not equal to the characteristic &f. Then we claim that
(Lpl +oeee ka—l) N ka = Lm N ka +oeee LPk—l N ka~ (4)
The inclusion2 is clear. For the converse, suppose thatL,, can be written as

a=0a1+op+---+ap_1 Wwhereo; € L.

Let F: L — L be the RoOBENIUSOperator of the extensiah/L ,, and put

H::i(|d+F+F2+--.+FPk*l),
Pk

The linear operatoid is the projection onto the fixed points” = L, and stabilizes
all L,,. Thusa = H(a) = H(ar) + H(az) + - -- + H(e) and H («;) € L, N L, which
proves our claim (4). Using this we get
codimg (L, +---+ Lp,) =codimg (Lp, +---+ Lp, ;) +codimL,,
—codimg(Lp, +---+Lp_)NLy
=codimg (L, +---+ Lp,_,)+codimg L,

—codimg (L, NLp, +---4+Lp_,NLy).

Applying the induction hypothesis to the extensidryd. ,, p,...p,_, andL,, /K we find
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codimg (Ly, +---+Lp_ ) =pc(pr—D(p2—1D---(pr-1— 1),
codimg (L, "Ly, +--+ Ly, ;NLp)=(p1—1) - (pr—1—1 +codimg L,,,

hence
codimg (L, + -+ Lp)=(px = D(p1—=D(p2—=1) -+ (pr-1—1). O

Lemma 6. Let K be a finite field andf € K[yo, y1,..., yn] @ NON-zero homogeneous
polynomial. If f vanishes ork”+1\ W whereW is a proper linear subspace thék | <

degf.

Proof. By a linear change of coordinates we can assumeWthé contained in the hy-
perplane given byo = 0. Then the polynomia¥ (y1, y2. ..., ym) := f(L, y1,..., Ym) iS
non-zero, has degre€ degf and vanishes oK. Now the claim follows by an easy
induction onm, since a polynomial in one variable of degréédias at mosti different
roots. O

Now we are ready to give a proof of the Main Theorem for extensions of degre&5. If
is infinite or| K| > 40 andL /K an extension of degree 5 then there is a genetadbi. / K
such thaka(p1(§), ..., ¢5(§) # 0, by Proposition 4(1) and (2) together with Proposition 5.
It follows that the transformed equatigf is irreducible (Proposition 4(3)) and has the
form x® + ax® + bx + ¢ whereb # 0 and the claim follows.

It remains to discuss the finite fields = F, whereq < 37 andg # 2 and to show that
in each case there is an irreducible polynomial of degree 5 of the required form. It clearly
suffices to consider the fields, whereg = 22, 23,25, 3,5, 7,11, 13,17, 19, 23,29, 31, 37.

In all these cases, there are the following irreducible polynomials of degree 5:
Fre: x°+ax+a whereaeFy\Fo,
Fp: x°+bx3+bx+b whereb®+b%+1=0,
Fos: Prexirx+1 Wherec5+c4~|—c3+c2+1=0,
F3: X —x—1,
Fs: x> —x— 1,
F7: x°—2x-2,
Fqq: x5 —x -1,
Fq3: x5 —x—1,
F17.  x°+4x + 4,
Fig: x°+3x+3,
Fos: x° +2x+ 2,
Fog:  x° —4x — 4,
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F31:  x°+3x+3,

Fs7: x°—3x -3

This finishes the proof of the Main Theoremo

7. Equationsof degree3 and 4

To complete the picture we want to describe the situation for equations of degree 3
and 4. First we have the following general result.

Lemma 7. For n > 2 there is a faithful covariantb = (¢1, ..., ¢,) A" — Agign of degree
(*31) such thatpy + - - - + ¢, = 0.

Proof. Defineg; := ]_[1<i<j<n(x,» —xj) andgy := —(lk)g1. Then® = (¢1,...,¢,) isa
faithful covariant of typeAgign. Sincegy + - - - + ¢, is skew symmetric of degree degA
the claim follows. O

Proposition 6. Let L/K be a separable field extension of degreevhere K is either
infinite or chark is prime ton.

(1) If [K : L] > 2there is a generatox € L with trx = 0.
(2) If [L : K]=3then there is a generator € L which satisfies an equation of the form

2 +ax+a=0.
(3) If [L : K]=4then there is a generator € L which satisfies an equation of the form

x*+ax’+bx+b=0.

Proof. (1) This is well know if chaK is prime ton. If K is infinite, then it follows from
Lemma 7 together with Proposition 1.

(2) By (1) we can assume that there is a generato. with equationt® 4 bx + ¢ = 0.

If b # 0 the claim follows by replacing by %x. If b =0 (which can happen only if
chark + 3) theny := x + x? satisfies the equatioy® + 3cy + ¢ — ¢? = 0 which reduces
to the previous case.

(3) Again by (1) we can assume that there is a generatufrL /K such that tx = 0.
Thusx satisfies an equation of the foret + bx? + cx +d = 0. If ¢ % 0 we are done as
in (2). Otherwise, chak # 2 and the element := b/2 + x + x? is again a generator of
L/K. An easy calculation shows that the coefficient of the linear term of the equation of
y is equal toa? — 4d which is non-zero becausé + ax? + d is irreducible, by assump-
tion. O
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Remark 8. Replacing in (2) the element by 1/x we see that for a separable extension
L/K of degree 3 there is always a generata@uch that:® + x? € K. This was mentioned
to me by DawiD MASSER
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