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Abstract

A classical result from 1861 due to HERMITE says that every separable equation of degree 5 ca
transformed into an equation of the formx5 +bx3 + cx +d = 0. Later, in 1867, this was generalize
to equations of degree 6 by JOUBERT. We show that both results can be understood as an ex
analysis of certain covariants of the symmetric groupsS5 andS6. In case of degree 5, the classic
invariant theory of binary forms of degree 5 comes into play whereas in degree 6 the existenc
outer automorphism ofS6 plays an essential rôle.
 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let L/K be a finite separable field extension of degreen. A classical problem is to find
a generating elementx ∈ L whose equation

xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an = 0 (1)

is as simple as possible. For example, a quadratic extension in characteristic�= 2 has always
a generator with equationx2 + b = 0. One easily shows that for a separable extensio
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degree 3 there is a generator with equationx3 + bx + b = 0 and similarly for an extensio
of degree 4 (see Section 7).

In degree 5 and 6 we have the following classical results which go back to HERMITE

[Her61] and JOUBERT [Jou67].

Main Theorem. (a)For any separable field extensionL/K of degree5 there is a generato
x ∈ L whose equation has the form

x5 + bx3 + cx + c = 0,

except forK = F2 where the equation has the formx5 + x3 + 1= 0.
(b)LetL/K be a separable extension of degree6. If charK �= 2 then there is a generato

x ∈ L whose equation has the form

x6 + bx4 + cx2 + dx + d = 0.

The arguments given by HERMITE and JOUBERT work in characteristic zero. They a
short and elegant and both are based on some classical invariant theory. The id
construct “universal” TSCHIRNHAUS transformations which, applied to any generato
L/K , produce elements ofL whose Eqs.(1) satisfy the required properties, i.e.a1 = a3 =
0. From this it is not difficult to obtain the Main Theorem (at least in characteristic z
although this is not explicitly formulated in their papers. To get the result also in po
characteristic and, in particular, for finite fields needs a little more work and some ex
computations.

The aim of this note is to give a “modern” approach to these results, following
explaining) the classical ideas. We will show that HERMITE’s and JOUBERT’s method can
be considered as a careful and explicit analysis of certain covariants of the sym
groupsS5 andS6. In degree 5 the classical invariant theory of binary forms of degr
comes into play whereas in degree 6 the existence of an outer automorphism ofS6 plays
an essential rôle. Another modern approach was given by CORAY in [Cor87]; it is based
on rationality questions for cubic hypersurfaces.

There is the obvious question to generalize these results to higher degree. How
was shown by REICHSTEIN in [Rei99] that, in general, this is not possible (see Examp
in Section 3).

It should be pointed out here that the relation between equations of degreen and covari-
ants of the symmetric groupSn has be studied in detail by BUHLER and REICHSTEIN in
[BuR97] (see also [BuR99]).

2. Covariants and Tschirnhaus transformations

Let K be field andn ∈ N a positive integer. To anyx = (x1, x2, . . . , xn) ∈ Kn we asso-
ciate the polynomialπ(x) := ∏

i (X − xi) ∈ K[X]. This defines a polynomial map

π :An → Pn
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wherePn denotes the unitary polynomials of degreen:

Pn(K) := {
f = Xn + a1X

n−1 + a2X
n−2 + · · · + an−1X + an | ai ∈ K

}
.

The morphismπ is defined overZ and corresponds to thealgebraic quotientwith respect
to the natural action of the symmetric groupSn on An by permutations. This means th
the polynomial functions onPn are identified, viaπ , with the symmetric functions onAn,

π∗ :Z[Pn] = Z[a1, a2, . . . , an] ∼−→ Z[An]Sn, ak �→ (−1)ksk(x1, x2, . . . , xn),

wheresk denotes thekth elementary symmetric function. Iff ∈ Pn(K) andξ1, . . . , ξn the
roots off (with multiplicities) in some field extensionL/K thenπ−1(f ) is theSn-orbit
of ξ = (ξ1, . . . , ξn) ∈ An(L) = Ln.

Let Φ = (ϕ1, ϕ2, . . . , ϕn) :An → An be anSn-equivariant polynomial map. By defin
tion, Φ induces a morphismΦ :Pn → Pn such that the following diagram commutes:

An
Φ

π

An

π

Pn
Φ

Pn.

Such anSn-equivariant morphismΦ is classically called acovariant. More generally, we
have the following definition.

Definition 1. Let V,W be finite-dimensionalK-representations of a finite groupG. Then
aG-equivariantK-morphismΦ :V → W is called acovariant ofV of typeW . Moreover,
Φ is said to befaithful if G acts faithfully on the imageΦ(VK) whereK is the algebraic
closure ofK .

Clearly, covariantsΦ,Ψ :An → An can be added and multiplied by invariantsp (i.e. by
symmetric polynomials):

Φ + Ψ := (ϕ1 + ψ1, ϕ2 + ψ2, . . . , ϕn + ψn),

pΦ := (pϕ1,pϕ2, . . . , pϕn).

Thus the covariants form a module over the ring of invariants. Moreover, we can
the “transvection”(Φ,Ψ ) := (ϕ1ψ1, ϕ2ψ2, . . . , ϕnψn) of two covariantsΦ andΨ . It is
obtained by composing the productΦ × Ψ with the bilinear covariantAn × An → An,
(x1, . . . , xn, y1, . . . , yn) �→ (x1y1, . . . , xnyn).

All this also makes sense ifΦ andΨ are covariants of typeAn
sign whereAn

sign denotes
the standard representation ofSn multiplied with the sign character. E.g., ifΨ :An → An

sign
is a covariant (of typeAn ) and∆ := ∏

(xi − xj ) then∆Ψ is a covariant of typeAn.
sign i<j
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Remark 1. It is easy to see that if a covariantΦ = (ϕ1, . . . , ϕn) :An → An is not faithful
thenϕ1 = ϕ2 = · · · = ϕn, and this polynomial is anSn-invariant. For example, ifϕ1 +ϕ2 +
· · · + ϕn = 0 and charK does not dividen, thenΦ is faithful if Φ �= 0.

Assume now that the covariantΦ :An → An is defined overK . Let f ∈ Pn(K) and
denote byξ = (ξ1, ξ2, . . . , ξn) the roots off in some field extensionL/K . ThenΦ(ξ) =:
(ξ̄1, ξ̄2, . . . , ξ̄n) are the roots of the transformed polynomialf̄ := Φ(f ):

f =
n∏

i=1

(X − ξi) �→ f̄ =
n∏

i=1

(X − ξ̄i ).

Lemma 1. LetΦ = (ϕ1, ϕ2, . . . , ϕn) :An → An be a covariant defined overK .

(1) ϕ1 is invariant underSn−1 ⊂ Sn acting on the lastn − 1 variables, andϕk = (1k)ϕ1
where (1k) denotes the transposition of1 and k. Conversely, everySn−1-invariant
polynomialϕ1 defines a unique covariantΦ whose first component isϕ1.

(2) There is a uniquely defined polynomialϕ = ϕ(f,X) = ϕ(a1, . . . , an,X) ∈ K[Pn][X]
of degree< n in X such that

ϕi(x1, x2, . . . , xn) = ϕ(a1, a2, . . . , an, xi), i = 1,2, . . . , n,

whereak := (−1)ksk(x1, . . . , xn). Conversely, every such polynomialϕ defines a co
variantΦ :An → An.

Proof. Part (1) is clear, sinceSn−1 ⊂ Sn is the stabilizer of(1,0, . . . ,0) ∈ An. The asser
tion (2) follows from (1) because

K[x1, x2, . . . , xn]Sn−1 =
n−1⊕
j=0

K[x1, x2, . . . , xn]Snx
j

1 .

This is well known and even holds overZ. �
A way to express this result is by saying that the covariantsAn → An form afree module

of rankn over the invariants, with a basis given by the covariants

(x1, . . . , xn) �→ (
x

j

1, . . . , x
j
n

)
, j = 0,1, . . . , n − 1.

For our purposes the following interpretation of Lemma 1 will be important. If the pol
mial

f = xn + a1x
n−1 + a2x

n−2 + · · · + an

with coefficientsak ∈ K has a rootξ in some field extensionL/K then ξ̄ := ϕ(f, ξ)

belongs toL, and ξ̄ is a root of the transformed polynomial̄f := Φ(f ). Following the
classics we therefore make the following definition.
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Definition 2. The polynomialϕ(f,X) ∈ K[Pn][X] from Lemma 1(2) will be called the
TSCHIRNHAUStransformationassociated to the covariantΦ.

Thus, by Lemma 1, the covariantsΦ :An → An correspond bijectively to TSCHIRN-
HAUS transformationsϕ = ϕ(a1, . . . , an,X) by

Φ(x1, . . . , xn) = (
ϕ(a1, . . . , an, x1), . . . , ϕ(a1, . . . , an, xn)

)
whereak := (−1)ksk(x1, . . . , xn). So the general problem can be formulated as follow

Problem. Given a field extensionL/K of degreen and a generatorξ ∈ L with equation
f (ξ) = 0, find a covariantΦ :An → An defined overK such thatf̄ := Φ(f ) is as simple
as possible.

Of course, the transformed equationf̄ has to be irreducible so thatξ̄ = ϕ(f, ξ) is again
a generator of the extensionL/K .

Our main goal is to prove the following two theorems which are due to HERMITE and
JOUBERT. They imply the Main Theorem from the introduction about the special form
equations of degree 5 and 6. This will be shown in the following Section 3 for infinite fi
K and in Section 6 for finite fieldsK . The proofs of the following two theorems will b
given in Sections 4 and 5.

Theorem A (HERMITE). There is a homogeneousS5-covariantΦ :A5 → A5 of degree25,
defined overZ and faithful for every fieldK , with the property that

s1(ϕ1, ϕ2, . . . , ϕ5) = s3(ϕ1, ϕ2, . . . , ϕ5) = 0.

The covariantΦ has the formΦ = (Ψ,∆Ω) whereΨ :A5 → A5 is homogeneous of de
gree9, Ω :A5 → A5

sign homogeneous of degree6 and∆ = ∏
i<j (xi − xj ).

Remark 2. We used the computer program Mathematica to show that, for every primp,
we haves4(ϕ1, . . . , ϕ5) �≡ 0 modp.

For the case of degree 6 we need a slight modification. It is well known that the groS6
has an outer automorphismτ which is unique up to inner automorphisms. We will den
by A6

τ the standard representation ofS6 twisted withτ , i.e.σ ·τ x := τ(σ )x. Clearly,A6
τ has

the same invariants and the same algebraic quotientπ :A6
τ → P6 asA6. Therefore, every

covariantΦ :A6 → A6
τ gives rise to a commutative diagram

A6
Φ

π

A6
τ

π

P6
Φ

P6.
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It is easy to see that the results obtained so far carry over to this case with only
modifications in the formulation, e.g. in Lemma 1(1) the componentϕ1 is invariant under
τ(S5) ⊂ S6, andϕk = (1k) ·τ ϕ1 = τ((1k))ϕ1.

Theorem B (JOUBERT). There is a homogeneousS6-covariantΦ :A6 → A6
τ of degree18,

defined overZ and faithful for every fieldK of characteristic�= 2, with the property that

s1(ϕ1, . . . , ϕ6) = s3(ϕ1, . . . , ϕ6) = 0 and s5(ϕ1, . . . , ϕ6) = −25∆6.

The covariantΦ has the formΦ = ∆Ψ whereΨ :A6 → (A6
τ )sign is of degree3 and∆ =∏

i<j (xi − xj ).

Remark 3. It is interesting to remark thatΨ is the covariant of type(A6
τ )sign of lowest

possible degree (see Section 5 for more details). This observation will provide us
conceptual proof of Theorem B (in characteristic zero), without any explicit calculati

3. Equations of degree 5 and 6

We will now use the results of the previous section to deduce the Main Theorem
the special form of equations of degree 5 and 6 for infinite fieldsK . For the case of finite
fields, we will need the explicit description of the covariants of HERMITE and JOUBERT;
this will be done in Section 6.

Theorem 1. LetK be an infinite field.

(1) If L/K is a separable field extension of degree5, then there is a generatorx of L/K

with equation

x5 + bx3 + cx + d = 0.

(2) If L/K is a separable field extension of degree6 and charK �= 2, then there is a
generatorx of L/K with equation

x6 + bx4 + cx2 + dx + e = 0.

Example 1 (REICHSTEIN [Rei99]). Let k be a field of characteristic�= 3 containing a
primitive third root of unity. Define

L := k(x1, x2, . . . , xr ) ⊃ K := k
(
x3

1, x3
2, . . . , x3

r

)
.

If x ∈ L, x �= 0, then TrL/K(x3) �= 0. In particular, there is no generatorx of L/K whose
equation has the form

xn + a2x
n−2 + a4x

n−4 + a5x
n−5 + · · · + an
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wheren := [L : K] = 3r . (In fact, if x = ∑
i1,i2,...,ir

ai1i2...ir x
i1
1 x

i2
2 · · ·xir

r then TrL/K x = 0
if and only if ai1i2...ir = 0 wheneveri1, i2, . . . , ir ∈ 3N. From this observation the claim
follows immediately.) This example also shows that forn = 3r there is no faithful covarian
Φ :An → An such thats1(ϕ1, . . . , ϕn) = s3(ϕ1, . . . , ϕn) = 0.

In view of Theorems A and B from the previous section, the theorem above
immediate consequence of the next proposition. In fact, applying the TSCHIRNHAUStrans-
formation of HERMITE, respectively JOUBERT, to a “general” element ofL/K we get a
new generator ofL/K whose equation has the form

x5 + bx3 + cx + d = 0, respectivelyx6 + bx4 + cx2 + dx + e = 0.

In order to reduce further to the form of the equations claimed in the Main Theorem
introduction (i.e.d = c, respectivelye = d) we have to show thatc �= 0 respectivelyd �= 0.
This will be done in Section 6.

Proposition 1. Let K be an infinite field andL/K a separable field extension of d
green. If Φ :An → An is a faithful covariant defined overK and ϕ the corresponding
TSCHIRNHAUS transformation, then there is a generatorξ of L/K such thatξ̄ := ϕ(ξ)

also generatesL overK , i.e. iff (x) = 0 is the equation ofξ then the transformed equatio
f̄ := Φ(f ) is again irreducible. Moreover, ifs ∈ K[x1, . . . , xn] is a non-zero polynomia
function onAn thenξ ∈ L can be chosen in such a way thats(ξ1, ξ2, . . . , ξn) �= 0 where
(ξ1, . . . , ξn) are the conjugates ofξ .

For the proof, we need the next two lemmas. (In the first one, the fieldK is arbitrary.)

Lemma 2. Let Φ :An → An be a covariant defined over an arbitrary fieldK and f ∈
Pn(K) an irreducible separable polynomial with splitting fieldL/K and Galois groupG =
Gal(L/K). Then the imagēf = Φ(f ) has the formf̄ = hm with an irreducible polynomia
h ∈ Pk(K) of degreek = n/m whose splitting fieldL ⊂ L is G-invariant. In particular,
Gal(L/K) 
 G/N whereN := Gal(L/L).

Proof. This is an exercise in Galois theory. Iff = ∏n
i=1(X − xi) andΦ(x1, . . . , xn) =

(x̄1, . . . , x̄n), i.e. x̄i = ϕ(f, xi), thenf̄ = ∏n
i=1(X − x̄i ). SinceΦ is defined overK we see

that Φ :Ln → Ln is G-equivariant. Hence, the splitting fieldL = K[x̄1, . . . , x̄n] of f̄ is
G-invariant andG acts transitively on the setΛ := {x̄1, . . . , x̄n}. If [K[x̄1] : K] = k then
the stabilizer ofx̄1 has indexk in G and the orbitΛ consists ofk elements, sayΛ =
{x̄1, . . . , x̄k}. It follows thath := ∏k

i=1(X − x̄i ) ∈ K[X] is irreducible andf̄ = hm where
m = n/k. �
Example 2. If f ∈ Pn(K) has Galois groupSn then eitherf̄ is irreducible with Galois
groupSn or f̄ = (X − a)n with a ∈ K . In fact, if x is a root off andL the splitting
field then Gal(L/K[x]) 
 Sn−1 which is a maximal subgroup ofSn. Thus every elemen
y ∈ K[x] \ K generatesK[x]/K .
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Lemma 3. LetK be an infinite field andL/K a finite separable field extension of degreen.
Then the subset

IrrL/K := {
f ∈ Pn(K) | f irreducible andf (x) = 0 for somex ∈ L

}
is Zariski-dense inPn(K) whereK denotes the algebraic closure ofK .

Proof. Let L = K(x) with equationf (x) = 0. A linear combinationy = ∑n−1
i=0 aix

i

(ai ∈ K) is a generator forL/K if and only if the powers(1, y, y2, . . . , yn−1) are linearly
independent overK . It follows that the corresponding subset

A :=
{

(a0, a1, . . . , an−1) ∈ Kn

∣∣∣∣
n−1∑
i=0

aix
i generatesL/K

}

is Zariski-dense inKn. As a consequence, ifx1 := x, x2, . . . , xn are the roots off in some
splitting fieldL′ ⊃ L of f , then

B :=
{(

n−1∑
i=0

aix
i
1,

n−1∑
i=0

aix
i
2, . . . ,

n−1∑
i=0

aix
i
n

) ∣∣∣∣ (a0, a1, . . .) ∈ A

}
⊂ L′n

is Zariski-dense inKn. Hence its imageπ(B) ⊂ Pn(K) is Zariski-dense, too. By constru
tion, π(B) is the set considered in the lemma.�

Now we can prove Proposition 1.

Proof of Proposition 1. By Lemma 3 the setπ−1(IrrL/K) is Zariski-dense inK
n
. There-

fore, the subset

I := {
ξ = (ξ1, . . . , ξn) ∈ π−1(IrrL/K) | ξ̄ := Φ(ξ) has trivial stabilizer inSn

}
is Zariski-dense, too, becauseΦ is faithful. This means that thēξi ’s are all different and so
by Lemma 2, the imagēf := Φ(f ) = ∏

i (X − ξ̄i ) is irreducible. Also, sinceI is Zariski-
dense, the functions does not vanish onI . �

4. Proof of Theorem A

For any covariantΦ = (ϕ1, . . . , ϕn) :An → An the functionssk(ϕ1, . . . , ϕn) are sym-
metric, hence can be regarded as functions onPn(K), as we have already seen abo
Denote byWn the vector space of binary forms of degreen:

Wn(K) := K[X,Y ]n =
{

f =
n∑

aiX
n−iY i

∣∣∣∣ ai ∈ K

}
.

i=0
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We will identify Pn(K) with the binary formsf with leading coefficienta0 = 1 by setting
Y = 1. Then every polynomialq = q(a1, . . . , an) onPn(K) of degreed defines, by homog
enizing, a homogeneous polynomialq̃(a0, a1, . . . , an) := ad

0q(a1/a0, a2/a0, . . . , an/a0)

on Wn(K) of the same degree. Thus, from every covariantΦ :An → An we obtainn ho-
mogeneous functions̃sk ∈ K[Wn] defined by

s̃k(a0, a1, . . . , an) := a
dk

0 sk(ϕ1, ϕ2, . . . , ϕn), k = 1, . . . n,

wheredk is the degree ofsk(ϕ1, . . . , ϕn) considered as a function onPn which is the same
as the degree ofsk in each variablexj . Now recall that the group SL2(K) acts linearly on
Wn(K) by considering a binary formf as a function on the standard representationK2 of
SL2(K): gf (v) := f (g−1v) for g ∈ SL2(K) andv ∈ K2.

The basic idea of HERMITE is to arrange the covariantΦ in such a way that the ho
mogeneous polynomials̃sk become SL2-invariant functions onWn and then to use ou
knowledge about SL2-invariants and, in particular, the fact that there are no SL2-invariants
in certain degrees.

In order to achieve this we will use the following classical result (see [Sch68
Satz 2.10]).

Proposition 2. Assume thatK is algebraically closed of characteristic0. Let q ∈
K[x1, . . . , xn] be a symmetric polynomial which is of degreed in each variable and le
q̃ = q̃(a0, . . . , an) ∈ K[Wn] be the corresponding homogeneous polynomial of degred .
Thenq̃ is anSL2-invariant if and only if the following two conditions hold:

(T) q(x1 + t, x2 + t, . . . , xn + t) = q(x1, x2, . . . , xn) for t ∈ K , i.e.,q only depends on th
differencesxi − xj ;

(R) n · d is even and(x1x2 · · ·xn)
dq(1/x1,1/x2, . . . ,1/xn) = (−1)nd/2q(x1, x2, . . . , xn).

It then follows thatq is homogeneous of degreend/2.

Outline of proof. The group SL2(K) is generated by the matrices
[ 1 t

1

]
(t ∈ K) and

[
i

i

]
(i := √−1). Therefore, a (homogeneous) functionq̃ ∈ K[Wn] is SL2(K)-invariant if and
only if q̃(f ) does not change under the following substitutions:

f (X,Y ) �→ f (X − t, Y ) and f (X,Y ) �→ f (iY, iX).

Write f (X,Y ) = a0
∏n

i=1(X − xiY ) so thatq̃(f ) = q(x1, x2, . . . , xn). Since

f (X − t, Y ) = a0

n∏
i=1

(
(X − t) − xiY

) = a0

n∏
i=1

(
X − (xi + t)Y

)

the invariance underf (X,Y ) �→ f (X − t, Y ) is equivalent to (T). Since

f (iY, iX) = a0

n∏
(iY − xkiX) = a0(−i)nx1x2 · · ·xn

n∏(
X − 1

xk

Y

)

k=1 k=1
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the invariance underf (X,Y ) �→ f (iY, iX) is equivalent to the condition

q(x1, x2, . . . , xn) = (−i)nd(x1x2 · · ·xn)
d · q

(
1

x1
,

1

x2
, . . . ,

1

xn

)

which is (R). Moreover,q̃ is also invariant underf (X,Y ) �→ f (tX, t−1Y) for t ∈ K∗
which implies thatq is homogeneous of degreend/2. �

Later on we will use the following easy fact: If two arbitrary homogeneous polynom
q1, q2 satisfy one of the conditions (T) or (R) then the same holds for the productq1q2.

Example 3. Start with ∆ := ∏
i<j (xi − xj ). It is easy to see that the symmetric po

nomial ∆2 satisfies the conditions (T) and (R) withd := 2(n − 1). The corresponding
homogeneous invariant of degreed is thediscriminantD of a binary form of degreen.
The polynomial∆ itself satisfies the conditions (T) and (R), but is skew-symmetric,
σ∆ = sign(σ ) · ∆ for σ ∈ Sn.

Now we are ready to prove Theorem A from Section 3. In his note [Her61] HERMITE

considers the following polynomial inZ[x1, x2, . . . , x5]:

ψ1 := [
(x1 − x2)(x1 − x5)(x4 − x3) + (x1 − x3)(x1 − x4)(x2 − x5)

]
· [(x1 − x2)(x1 − x3)(x5 − x4) + (x1 − x4)(x1 − x5)(x2 − x3)

]
· [(x1 − x2)(x1 − x4)(x5 − x3) + (x1 − x3)(x1 − x5)(x4 − x2)

]
. (2)

One easily checks thatψ1 is symmetric inx2, x3, . . . , x5, hence, by Lemma 1, defines
covariant

Ψ = (ψ1,ψ2, . . . ,ψ5) :A5 → A5

of degree 9, defined overZ, whereψk := (1k)ψ1. The functionsψi obviously satisfy the
condition (T) of Proposition 2, and one finds

x3
1(x1x2 · · ·x5)

3ψ1

(
1

x1
,

1

x2
, . . . ,

1

x5

)
= −ψ1(x1, . . . , x5).

Therefore, the polynomial

ϕ1 := ψ1 ·
∏

1<i<j

(xi − xj ) · ∆ (3)

has the properties (T) and (R) withd = degxi
ϕ1 = 10, andϕ1 is symmetric inx2, . . . , x5.

By construction, the corresponding covariant

Φ = (ϕ1, ϕ2, . . . , ϕ5) :A5 → A5
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is again defined overZ and has degree 25= 9 + 6 + 10. We claim thatΦ satisfies the
properties of Theorem A.

In fact, it follows from Proposition 2, choosing forK the algebraic closure ofQ,
that the homogeneous polynomialss̃k ∈ K[W5] corresponding to the symmetric fun
tions sk(ϕ1, . . . , ϕ5) are SL2-invariants ofW5 of degree 10k. Since a symmetric poly
nomial which is divisible by∆ is automatically divisible by∆2 we see that̃s1 is di-
visible by the discriminantD and s̃3 by D2, and we get deg̃s1/D = 10 − 8 = 2 and
degs̃3/D

2 = 3 · 10− 2 · 8 = 14. On the other hand, the SL2-invariants ofW5 are gen-
erated by invariantsI4, I8, I12, andI18 of degree 4, 8, 12, and 18 (see [Sch68, II.9 S
2.26]). Hence, there are no invariants in degree 2 and 14 and sos̃1 = s̃3 = 0 which proves
Theorem A.

Finally, the covariantΦ is faithful. First of all,Φ �≡ 0 modulop for all primesp. In fact,
one easily sees that the leading term of the polynomialψ1 is −x6

1x3
2 and so the leading term

of ϕ1 has coefficient±1. Now the faithfulness follows from Remark 1 for charK �= 5.
If charK �= 2 andΦ were not faithful forK thenϕ1 is an invariant and soϕ1 · ∆−1 =
ψ1 · ∏1<i<j (xi − xj ) a semi-invariant, hence divisible by∆. This is not possible sinceψ1
does not vanish forx1 = x2. �
Remark 4. By construction, the covariantΦ has the formΦ = ∆(Ψ,Ω) = (Ψ,∆Ω) where

Ω = (ω1, . . . ,ω5) :A5 → A5
sign

is the homogeneous covariant of degree 6 defined byω1 := ∏
1<i<j (xi − xj ) (andωk :=

−(1k)ω1 for k � 2). The representationA5
sign of S5 contains the subrepresentation

U := {
x = (x1, . . . , x5) ∈ A5 | x1 + · · · + x5 = 0

}
,

and the image of the covariantΩ :A5 → A5
sign is contained inU . (The last statement i

clear sinceω1 + · · · + ω5 is skew symmetric of degree 9, hence equal to 0, because
skew symmetric polynomial is divisible by∆.)

It is interesting to note thatΩ is the covariant of typeU of smallest possible degre
because the representationU occurs inK[A5] for the first time in degree 6. (In fact,U is the
irreducible representation corresponding to the partition(2,1,1,1), andK[A5]6 contains
the induced representation IndS5

S2
K because the stabilizer ofx1x

2
2x3

3 ∈ K[A5]6 is S2.)

Remark 5. Using a computer program like SINGULAR [GPS01] or MATHEMATICA , one
can check directly thats1(ϕ1, . . . , ϕ5) = s3(ϕ1, . . . , ϕ5) = 0. So the ingenious part of HER-
MITE’s short note is the discovery of the functionsψi above. In fact, his remark is th
following, see [Her61]. He was trying to write out the invariant of degree 18 of the bi
forms of degree 5 in terms of the rootsx1, . . . , x5. Thus, he was looking for a polynomi
expressionψ in the differences(xi − xj ) which satisfies the conditions (T) and (R)
Proposition 2 whered = 18. He discovered thatψ := ψ1ψ2ψ3ψ4ψ5 has this property, i.e
thatψ can be written as a product of 5 terms where each one is invariant with resp
one of the standard subgroupsS4 ⊂ S5. And, of course, he immediately realized that t
can be used to transform and simplify equations of degree 5.
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5. Proof of Theorem B

We will give two proofs for Theorem B. The first one is more conceptual, but only w
in characteristic zero. The second follows the explicit calculations given by JOUBERT and
is valid in all characteristics�= 2.

First Proof. Here the base field isQ. If λ = (λ1, λ2, . . .) is a partition of 6, we will denote
by Vλ the irreducible representation ofS6 associated toλ (see [FuH91, §4.1]). SoV(6) is
the trivial representation andV(1,1,...,1) is the sign representation. It is not hard to see
twisting V(5,1) with the outer automorphismτ we obtain the representationV(2,2,2) which
is isomorphic toV(3,3) ⊗ sign.

Let V denote the standard representation ofS6, i.e. V 
 V(6) ⊕ V(5,1). Then, as we
just said,Vτ ⊃ V(2,2,2). One easily sees that the third symmetric powerS3V contains the
representationV(3,3). In fact, all symmetric powersSiV are permutation representatio
Since the stabilizer ofe1e2e3 ∈ S3V is S3 × S3, we see thatS3V contains the induce
representation IndS6

S3×S3
Q which containsV(3,3).

It follows that

V(3,3) 
 V(2,2,2) ⊗ sign⊂ Vτ ⊗ sign,

which implies that there is a non-trivial covariantΨ :V → Vτ ⊗ sign of degree 3. Multi-
plying Ψ with ∆, we finally get a covariant

Φ := ∆Ψ :A6 → A6
τ

of degree 3+ deg∆ = 18. We claim thatΦ satisfies the properties of Theorem B.
fact, for everyk the functionsk(ϕ1, . . . , ϕ6) = sk(ψ1, . . . ,ψ6)∆

k is symmetric and so
s2k+1(ψ1, . . . ,ψ6) is skew-symmetric of degree 6k + 3, hence is divisible by∆. Since
deg∆ = 15, we gets1 = s3 = 0. To see thatΦ is faithful, we simply remark that otherwis
Φ = 0 becauses1 = ϕ1 + · · · + ϕ6 = 0 (see Remark 1). �
Second Proof. This proof needs some preparation. We will consider the elements o
symmetric groupS6 as permutations of the projective line

PF5 = F5 ∪ {∞} = {∞,0,1,2,3,4},
so thatH := PGL2(F5) becomes a subgroup ofS6 isomorphic toS5. This subgroup is the
image of the standardS5 ⊂ S6 under an outer automorphismτ . Let S6 act on the set o
subsets ofPF5 consisting of 2 elements, and defineN ⊂ S6 to be the normalizer of th
subset

M := {{∞,0}, {1,4}, {2,3}}.
We obtain a surjective homomorphismρ :N → S3 with kernel isomorphic to(Z2)

3 gen-
erated by the transpositions(∞0), (1 4), (2 3). The following result is known and easy
prove.
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Lemma 4. SetN0 := N ∩ H , the normalizer ofM in H , andη := [ 1 1
1

] ∈ H .

(1) ρ(N0) = S3 andkerρ|N0 
 (Z2)
2.

(2) N0 is isomorphic toS4.
(3) H = N0 ∪ ηN0 ∪ η2N0 ∪ η3N0 ∪ η4N0.

Now we can prove Theorem B. For the polynomial functions onA6 we use the variable
x∞, x0, x1, x2, x3, x4. Define, as in JOUBERT’s paper,

h := (x∞ − x4)(x1 − x3)(x2 − x0) + (x0 − x1)(x4 − x2)(x3 − x∞)

= x∞x0(x2 + x3 − x1 − x4) + x1x4(x∞ + x0 − x2 − x3) + x2x3(x1 + x4 − x∞ − x0).

It is easy to see thath is semi-invariant with respect to the subgroupN defined above. Fo
σ ∈ N0 
 S4, we haveσh = sign(ρ(σ )) · h = signN0

(σ ) · h. Therefore, by Lemma 4(3
the function

h + η(h) + η2(h) + η3(h) + η4(h)

is semi-invariant with respect toH . We claim that the coefficients of this polynomial a
all ±3. In fact,

h = (x1x2x3 + x2x3x4 + x4x0x1) − (x1x2x4 + x2x3x0 + x3x4xx1)

+ x∞(x0x2 + x3x0 + x4x1) − x∞(x0x1 + x2x3 + x4x0)

and each bracket expression is a sum of three monomials from a single orbit und
group generated by the cyclic permutationη = (12340) ∈ H . Denoting byoijk the sum of
the monomials in the orbit ofxixj xk under the group〈η〉 ⊂ H , e.g.

o123= x1x2x3 + x2x3x4 + x3x4x0 + x4x0x1 + x0x1x2,

we see that

h + η(h) + η2(h) + η3(h) + η4(h) = 3(o123− o124+ x∞o02 − x∞o01).

Thus

ψ1 := 1

3

(
h + η(h) + η2(h) + η3(h) + η4(h)

)
is the sum of all square-free monomialsxixj xk (i �= j �= k �= i) with coefficients±1. Since
ψ1 is semi-invariant with respect toH , we see thatϕ1 := ∆ · ψ1 is invariant with respec
to H and defines, by Lemma 1, a homogeneous covariant

Φ = (ϕ1, ϕ2, . . . , ϕ6) :A6 → A6
τ
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of degree 3+ deg∆ = 18, defined overZ. The same degree argument as in the first p
shows thats1(ϕ1, . . . , ϕ6) = s3(ϕ1, . . . , ϕ6) = 0. Moreover, in characteristic�= 2, the poly-
nomialψ1 is not a semi-invariant with respect to the whole groupS6, henceϕ1 is not an
S6-invariant, and soΦ is faithful (see Remark 1). �
Remark 6. We have seen above thatψ1 is the sum of all square-free monomialsxixj xk

(i �= j �= k �= i) with coefficients±1. Thus, for any fieldK of characteristic 2, we hav
ψ1 = s3. Hence neitherΨ norΦ is faithful in characteristic 2. We do not know if the Ma
Theorem for extensions of degree 6 also holds in characteristic 2.

6. The case of finite fields

In this section we will show that the methods of HERMITE and JOUBERT also work for
finite fields thus completing the proof of the Main Theorem. For extensions of degre
characteristic�= 2, this will follows from what we have done in Sections 3 and 5. Re
that JOUBERT’s covariant

Φ :A6 → A6
τ

has the formΦ = Ψ · ∆ where Ψ :A6 → (A6
τ )sign is of degree 3. If follows tha

s5(ψ1, . . . ,ψ6) is a semi-invariant of degree 15, hence an integral multiple of∆. We claim
that

s5(ψ1, . . . ,ψ6) = ±2s · ∆ for somes ∈ N.

In fact, if s5(ψ1, . . . ,ψ6) ≡ 0 modp for a primep �= 2, then it follows from Theorem 1
of Section 3 that for any infinite fieldK of characteristicp and any extensionL/K of
degree 6 there is a generatorξ whose equation has the formx6 + a2x

4 + a4x
2 + a6 = 0.

But this implies thatL contains a subfieldL′ := K(ξ2) of degree 3 overK which clearly
does not hold for generic extensions of degree 6.

Remark 7. An explicit calculation shows that

s5(ψ1, . . . ,ψ6) = −25 · ∆.

The next proposition shows that the covariant of JOUBERT, applied to any separab
irreducible polynomial of degree 6 over any field of characteristic�= 2, always gives an
irreducible polynomial. In particular, this proves the Main Theorem for extensions o
gree 6.

Proposition 3. LetK be any field of characteristic�= 2 and letf ∈ K[x] be an irreducible
separable polynomial of degree6. If Φ :A6 → A6

τ is the covariant constructed byJOUBERT

thenf̄ = Φ(f ) is irreducible. Moreover, the linear term of̄f has a non-zero coefficient.
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Proof. By Theorem B, we havef̄ := Φ(f ) = x6 + bx4 + cx2 + dx + e If ξ =
(ξ1, ξ2, . . . , ξ6) are the (distinct) roots off , then∆(ξ) �= 0 and so

d = s5
(
ϕ1(ξ), . . . , ϕ6(ξ)

) = ±2s∆6 �= 0.

On the other hand, iff̄ were reducible then, by Lemma 2,̄f = hk whereh is irreducible
andk = 2,3 or 6. The casēf = h2 cannot occur since thenh should have the formx3+ax.
In the other two cases a short calculation shows thath is either(x2 − a) or x. But then the
coefficientd of the linear term off̄ is zero. �

A similar result does not hold for the covariantΦ of HERMITE. In fact, if we start with
an irreducible polynomial of the formf (x) = x5 − a thenΦ(f ) = 0. (This can verified by
using the explicit form (3) ofΦ given in Section 4; in fact,ψ1(1, ζ, ζ 2, ζ 3, ζ 4) = 0 for any
fifth root of unity ζ .) However, we have the following result.

Proposition 4. LetΦ = (ϕ1, ϕ2, . . . , ϕ5) :A5 → A5 be the covariant ofHERMITE.

(1) For every primep the symmetric polynomials4(ϕ1, . . . , ϕ5) ∈ Z[x1, . . . , x5] is non-
zero modulop.

(2) s4(ϕ1, . . . , ϕ5) is divisible by∆6 in Z[x1, . . . , x5], and the quotientS4 := s4(ϕ1, . . . ,

ϕ5)/∆
6 is homogeneous of degree40.

(3) If L/K is a separable extension of degree5 and ξ ∈ L a generator with equation
f (x) = 0 such thatS4(ξ1, . . . , ξ5) �= 0, thenΦ(f ) is irreducible.(ξ1, . . . , ξ5 are the
conjugates ofξ .)

Proof. Recall the definition of HERMITE’s covariantΦ :A5 → A5:

ϕ1 = ψ1 ·
∏

1<i<j

(xi − xj ) · ∆

where

ψ1 := [
(x1 − x2)(x1 − x5)(x4 − x3) + (x1 − x3)(x1 − x4)(x2 − x5)

]
· [(x1 − x2)(x1 − x3)(x5 − x4) + (x1 − x4)(x1 − x5)(x2 − x3)

]
· [(x1 − x2)(x1 − x4)(x5 − x3) + (x1 − x3)(x1 − x5)(x4 − x2)

]
and∆ = ∏

i<j (xi − xj ). Putψ̃1 := ψ1 · ∏1<i<j (xi − xj ). It is easy to see that the leadin

term of ψ̃1 and ψ̃2 is ±x6
1x5

2x4
3 and that the leading term of̃ψ4 and ψ̃5 is ±x6

1x6
2x2

3x4.
Moreover, one finds thatψ3(t

4, t3, t2, t,1) = 0. This implies that

s4
(
ψ̃1, . . . , ψ̃5

)(
t4, t3, t2, t,1

)
= ψ̃1

(
t4, . . . , t,1

) · ψ̃2
(
t4, . . . , t,1

) · ψ̃4
(
t4, . . . , t,1

) · ψ̃5
(
t4, . . . , t,1

)
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and the leading term of this product is±t188. Thuss4(ψ̃1, . . . , ψ̃5) and hences4(ϕ1, . . . , ϕ5)

= s4(ψ̃1, . . . , ψ̃5)∆
4 is non-zero modulop for every primep, proving (1).

We haves4(ϕ1, . . . , ϕ5) = s4(ψ̃1, . . . , ψ̃5)∆
4. In addition,ψ̃iψ̃j ψ̃k is divisible by∆ for

i �= j �= k �= i, and sos4(ψ̃1, . . . , ψ̃5) is divisible by∆2 since it is symmetric. Now (2
follows because deg̃ψi = 15 and deg∆ = 10.

Finally, let f ∈ K[x] be an irreducible separable polynomial of degree 5 with r
ξ1, . . . , ξ5 ∈ K . If f̄ := Φ(f ) is reducible thenf̄ = (x − a)5 by Lemma 2. If charK �= 5
thena = 0, because 5a = s1(ϕ1(ξ), . . . , ϕ5(ξ)) = 0. For charK = 5, we getf̄ = x5 − a5.
In both cases we see thatS4(ξ1, . . . , ξ5) = 0 which contradicts the assumption. Thus
get (3). �

A crucial step in the proof of the Main Theorem for infinite fieldsK was Proposition 1
which says that for a faithful covariantΦ :An → An defined overK and a separable ex
tensionL/K we can always find a generatorξ ∈ L such thatϕ(ξ) is also a generator fo
L/K , or, equivalently, thatΦ(f ) is irreducible wheref ∈ K[x] is the minimal polynomia
of ξ . However, ifK is finite it is not clear that such aξ ∈ L exists. One expects that this
the case ifK is large enough. In fact, we have the following more precise result. (Fo
proof we will only need the second part.)

Proposition 5. Let K be a finite field andL/K a separable extension of degreen. Let
Φ :An → An be a faithful homogeneous covariant defined overK and

ϕ = p0 + p1X + p2X
2 + · · · + pn−1X

n−1

the correspondingTSCHIRNHAUS transformation(see Definition2). If ϕ(ξ1, . . . , ξn) ∈ K

for all generatorsξ of L/K whereξ1, . . . , ξn are the conjugates ofξ , then

|K| � min{degpj | j > 0 andpj �= 0} < degΦ.

Moreover, if S ∈ K[x1, . . . , xn] is a homogeneous symmetric polynomial such
S(ξ1, . . . , ξn) = 0 for all generatorsξ of L/K then

|K| � degS.

Proof. If ϕ(ξ) ∈ K for a generatorξ of L/K thenp1(ξ) = p2(ξ) = · · · = pn−1(ξ) = 0
because 1, ξ, ξ2, . . . , ξn−1 are linearly independent overK . Now fix a generatorθ of L/K

and consider the following linear change of coordinates

xi = y0 + y1θi + y2θ
2
i + · · · + yn−1θ

n−1
i , i = 1,2, . . . , n,

whereθ1 := θ, θ2, . . . , θn are the conjugates ofθ . Eachpj and alsoS are transformed into
homogeneous polynomials̃pj (y0, . . . , yn−1) and S̃(y0, . . . , yn−1) of the same degree. I
addition,p̃j andS̃ have their coefficients inK , becausepj andS do and are symmetric.

If ξ = a0 + a1θ + · · · + an−1θ
n−1 is a generator ofL/K then, by assumption, we hav

p̃j (a0, . . . , an−1) = 0 for j � 1. Thus eachp̃j vanishes onKn \ F whereF is the finite
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union of all subspaces corresponding to proper subfieldsL′ ⊂ L containingK . The follow-
ing Lemma 5 shows thatF is contained in a proper linear subspace ofKn and so Lemma 6
implies that|K| � degpj if pj �= 0, and also|K| � degS, hence the claim. �
Lemma 5. Let L/K be an extension of finite fields of degreen > 1 and p1,p2, . . . , pk

be the prime factors ofn. Then the sum of the proper subfieldsM ⊂ L containingK has
codimension

n

p1p2 · · ·pk

(p1 − 1)(p2 − 1) · · · (pk − 1) � 1.

The following proof was communicated to me by MIHAELA POPOVICIU and JAN

DRAISMA.

Proof. For every divisord of n, we denote byLd the (unique) subfield ofL with
[L : Ld ] = d . Then the span of the proper subfields ofL containingK is given by

Lp1 + Lp2 + · · · + Lpk
.

We can therefore assume thatK = Lp1p2···pk
, i.e. thatn is square-free. We proceed b

induction on the numberk of prime factors ofn, the casen = p1 being trivial. By relabeling
thepi ’s, we can assume thatpk is not equal to the characteristic ofK . Then we claim tha

(Lp1 + · · · + Lpk−1) ∩ Lpk
= Lp1 ∩ Lpk

+ · · · + Lpk−1 ∩ Lpk
. (4)

The inclusion⊇ is clear. For the converse, suppose thatα ∈ Lpk
can be written as

α = α1 + α2 + · · · + αk−1 whereαi ∈ Lpi
.

Let F :L → L be the FROBENIUSoperator of the extensionL/Lpk
and put

H := 1

pk

(
Id + F + F 2 + · · · + Fpk−1).

The linear operatorH is the projection onto the fixed pointsLF = Lpk
and stabilizes

all Lpi
. Thusα = H(α) = H(α1) + H(α2) + · · · + H(αk) andH(αi) ∈ Lpi

∩ Lpk
which

proves our claim (4). Using this we get

codimK(Lp1 + · · · + Lpk
) = codimK(Lp1 + · · · + Lpk−1) + codimLpk

− codimK(Lp1 + · · · + Lpk−1) ∩ Lpk

= codimK(Lp1 + · · · + Lpk−1) + codimK Lpk

− codimK(Lp1 ∩ Lpk
+ · · · + Lpk−1 ∩ Lpk

).

Applying the induction hypothesis to the extensionsL/Lp p ···p andLp /K we find
1 2 k−1 k
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codimK(Lp1 + · · · + Lpk−1) = pk(p1 − 1)(p2 − 1) · · · (pk−1 − 1),

codimK(Lp1 ∩ Lpk
+ · · · + Lpk−1 ∩ Lpk

) = (p1 − 1) · · · (pk−1 − 1) + codimK Lpk
,

hence

codimK(Lp1 + · · · + Lpk
) = (pk − 1)(p1 − 1)(p2 − 1) · · · (pk−1 − 1). �

Lemma 6. Let K be a finite field andf ∈ K[y0, y1, . . . , ym] a non-zero homogeneou
polynomial. Iff vanishes onKm+1 \ W whereW is a proper linear subspace then|K| �
degf .

Proof. By a linear change of coordinates we can assume thatW is contained in the hy
perplane given byy0 = 0. Then the polynomialf̄ (y1, y2, . . . , ym) := f (1, y1, . . . , ym) is
non-zero, has degree� degf and vanishes onKm. Now the claim follows by an eas
induction onm, since a polynomial in one variable of degreed has at mostd different
roots. �

Now we are ready to give a proof of the Main Theorem for extensions of degree 5K

is infinite or|K| � 40 andL/K an extension of degree 5 then there is a generatorξ of L/K

such thats4(ϕ1(ξ), . . . , ϕ5(ξ) �= 0, by Proposition 4(1) and (2) together with Proposition
It follows that the transformed equation̄f is irreducible (Proposition 4(3)) and has t
form x5 + ax3 + bx + c whereb �= 0 and the claim follows.

It remains to discuss the finite fieldsK = Fq whereq � 37 andq �= 2 and to show tha
in each case there is an irreducible polynomial of degree 5 of the required form. It c
suffices to consider the fieldsFq whereq = 22,23,25,3,5,7,11,13,17,19,23,29,31,37.
In all these cases, there are the following irreducible polynomials of degree 5:

F22: x5 + ax + a wherea ∈ F22 \ F2,

F23: x5 + bx3 + bx + b whereb3 + b2 + 1= 0,

F25: x5 + cx3 + x + 1 wherec5 + c4 + c3 + c2 + 1= 0,

F3 : x5 − x − 1,

F5 : x5 − x − 1,

F7 : x5 − 2x − 2,

F11: x5 − x − 1,

F13: x5 − x − 1,

F17: x5 + 4x + 4,

F19: x5 + 3x + 3,

F23: x5 + 2x + 2,

F29: x5 − 4x − 4,
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F31: x5 + 3x + 3,

F37: x5 − 3x − 3.

This finishes the proof of the Main Theorem.�

7. Equations of degree 3 and 4

To complete the picture we want to describe the situation for equations of deg
and 4. First we have the following general result.

Lemma 7. For n > 2 there is a faithful covariantΦ = (ϕ1, . . . , ϕn) :An → An
sign of degree(

n−1
2

)
such thatϕ1 + · · · + ϕn = 0.

Proof. Defineϕ1 := ∏
1<i<j�n(xi − xj ) andϕk := −(1k)ϕ1. ThenΦ := (ϕ1, . . . , ϕn) is a

faithful covariant of typeAn
sign. Sinceϕ1 + · · · + ϕn is skew symmetric of degree< deg∆

the claim follows. �
Proposition 6. Let L/K be a separable field extension of degreen whereK is either
infinite or charK is prime ton.

(1) If [K : L] > 2 there is a generatorx ∈ L with trx = 0.
(2) If [L : K] = 3 then there is a generatorx ∈ L which satisfies an equation of the form

x3 + ax + a = 0.

(3) If [L : K] = 4 then there is a generatorx ∈ L which satisfies an equation of the form

x4 + ax2 + bx + b = 0.

Proof. (1) This is well know if charK is prime ton. If K is infinite, then it follows from
Lemma 7 together with Proposition 1.

(2) By (1) we can assume that there is a generatorx ∈ L with equationx3 + bx + c = 0.
If b �= 0 the claim follows by replacingx by b

c
x. If b = 0 (which can happen only i

charK �= 3) theny := x + x2 satisfies the equationy3 + 3cy + c − c2 = 0 which reduces
to the previous case.

(3) Again by (1) we can assume that there is a generatorx of L/K such that trx = 0.
Thusx satisfies an equation of the formx4 + bx2 + cx + d = 0. If c �= 0 we are done a
in (2). Otherwise, charK �= 2 and the elementy := b/2 + x + x2 is again a generator o
L/K . An easy calculation shows that the coefficient of the linear term of the equati
y is equal toa2 − 4d which is non-zero becausex4 + ax2 + d is irreducible, by assump
tion. �
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Remark 8. Replacing in (2) the elementx by 1/x we see that for a separable extens
L/K of degree 3 there is always a generatorx such thatx3 + x2 ∈ K . This was mentioned
to me by DAVID MASSER.
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