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The coupling between spin and torsion in the Einstein–Cartan–Sciama–Kibble theory of gravity generates 
gravitational repulsion at very high densities, which prevents a singularity in a black hole and may cre-
ate there a new universe. We show that quantum particle production in such a universe near the last 
bounce, which represents the Big Bang, gives the dynamics that solves the horizon, flatness, and homo-
geneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a 
nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 
60 e-folds, which lasts about ∼ 10−42 s. This scenario can thus explain cosmic inflation without requiring 
a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we fol-
low the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential 
which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of 
cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density 
perturbations, and its running as functions of the production coefficient. We find that these quantities do 
not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are 
consistent with the Planck 2015 observations.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It has been known since the 1970s that the standard hot 
Big Bang model suffers from the horizon, flatness, and homogene-
ity problems [1] and there must be another dynamical mechanism 
prior to Big Bang nucleosynthesis to alleviate these problems. Cur-
rently, the most widely accepted solution to these problems is the 
process of cosmic inflation, which is a brief period of exponen-
tial expansion, where the Universe is temporarily in a de Sitter 
phase dominated by the vacuum energy [2–7]. When the inflation-
ary epoch ends, the Universe starts decelerating, which is followed 
by the phenomenon of reheating when the energy in the inflaton 
field is dumped into standard model particles. Most of the generic 
models of cosmic inflation are usually due to scalar field in the 
slow-roll approximation, where potential energy of the field domi-
nates over its kinetic energy. In the last three decades a plethora of 
inflationary potentials have been constructed, and currently single-
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field models are observationally the most favored ones [8]. The ba-
sic predictions of single scalar field slow-roll inflation models, such 
as flatness, super-horizon correlations, adiabatic density perturba-
tions, nearly scale-invariant spectrum of curvature perturbations, 
and no observable non-gaussianity, have been verified by the Cos-
mic Microwave Background (CMB) observations from Planck and 
WMAP [9–11]. Inflation also provides a mechanism to seed the 
density perturbations which give rise to the observed structure in 
the universe. However despite these predictions, many concerns 
have been raised about conceptual problems with models of in-
flation based on single-field scalar potentials [12]. Moreover, most 
models of inflation do not address other problems such as Big Bang 
singularity, origin of the matter–antimatter asymmetry, arrow of 
time, or the nature of dark matter/dark energy.

In this paper, we consider a model of cosmic inflation which is 
motivated by an extension of general relativity, called the Einstein–
Cartan–Sciama–Kibble (ECSK) theory of gravity [13–16]. The ECSK 
theory naturally extends the metric general relativity (GR) by re-
moving its constraint that the affine connection is symmetric and 
thus allowing the exchange between the orbital and spin compo-
nents of the total angular momentum [17]. The antisymmetric part 
of the connection, which is the torsion tensor, becomes a dynam-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ical variable related to the spin density of matter. The source of 
torsion is provided by the spin of fermions approximated as a spin 
fluid [16,18,19]. The ECSK theory may also solve the problem of 
divergent integrals in quantum field theory by providing fermions 
with spatial extension and thus introducing an effective ultravio-
let cutoff for their propagators [20]. At extremely high densities 
existing in black holes and in the very early Universe, the min-
imal spin–torsion coupling manifests itself as a repulsive force, 
which avoids the formation of singularities from fermionic mat-
ter [18–28]. Accordingly, the singular Big Bang is replaced by a 
non-singular Big Bounce, before which the Universe was contract-
ing [23,24]. The ECSK theory agrees with all solar system, binary 
pulsar and cosmological tests of GR, since even at nuclear den-
sities, the contribution from torsion to the Einstein equations is 
negligible. Torsion therefore provides the simplest and most natu-
ral mechanism that solves the singularity problem of the standard 
Big Bang cosmology.

In this paper, we study how a scenario of a closed universe in-
side a black hole with torsion and quantum particle production 
[29–31], which was introduced in [32], can provide a viable model 
of inflation. We numerically solve the Friedmann equations which 
describe the dynamics of such a universe [32] and calculate the 
number of e-folds as a function of the particle production coef-
ficient. In order to make predictions for observables such as the 
tensor-to-scalar ratio and scalar spectral index of density fluctua-
tions, we reconstruct a dynamically equivalent single-field scalar 
potential from the time dependence of the scale factor calculated 
in our model. We then calculate the slow roll parameters from this 
non-parametric potential by applying the quantization of a scalar 
field in curved spacetime [33], and compare our results to the 
Planck 2015 results [10]. We emphasize that our model of infla-
tion does not contain a fundamental scalar, and the reconstruction 
of an inflation potential is only a mathematical technique we use 
to calculate the scalar spectral index and tensor-to-scalar ratio. We 
also briefly discuss some other models of inflation based upon tor-
sion and compare them with our approach.

2. Universe in a black hole with torsion

A model of a closed universe in a black hole with torsion was 
introduced in [32]. In this section, we briefly review the ECSK 
theory of gravity which provides torsion as a mechanism for this 
scenario and then write the equations describing the dynamics of 
such a universe. We use the same notation as [32].

In the ECSK theory, the antisymmetric part of the affine con-
nection (the torsion tensor) does not vanish but is determined by 
the field equations which are obtained by varying the total action 
for the gravitational field and matter with respect to the metric 
and torsion tensors [13–16]. Varying the action with respect to the 
torsion gives the Cartan equations that relate algebraically the tor-
sion of spacetime to the canonical spin tensor of matter. Varying 
the action with respect to the metric gives the Einstein equations 
that relate the curvature of spacetime to the canonical energy–
momentum tensor of matter. The Einstein and Cartan equations 
can be combined to give the Einstein equations of GR in which the 
energy–momentum tensor is modified by corrections arising from 
the spin tensor [15,16,19]. These corrections are significant only at 
extremely high densities which are much higher than the nuclear 
density, on the order of 1045 kg/m3 [20,24]. Below this density, 
the predictions of the ECSK theory are physically indistinguishable 
from the predictions of GR and reduce to them in vacuum, where 
torsion vanishes.

Fermions are described in relativistic quantum mechanics by 
the Dirac equation. Since Dirac fields couple minimally to the 
torsion tensor, fermions are the source of torsion [13–16]. At 
macroscopic scales, these particles can be averaged as a spin fluid 
[18–20,23,24], which results from the multipole expansion of the 
conservation law for the spin tensor in the ECSK theory [16,34]. 
Even if the spin orientation of particles is random, the terms with 
the spin tensor in the field equations are quadratic and do not van-
ish in a spin fluid. The Einstein–Cartan equations for a spin fluid 
are equivalent to the Einstein equations for an ideal fluid with the 
effective energy density ε̃ and pressure p̃ given by [16,18,19,23,24]

ε̃ = ε − αn2
f , (1)

p̃ = p − αn2
f , (2)

where nf is the number density of fermions and α = κ(h̄c)2/32.
The spin fluid in the early Universe is formed by an ultrarela-

tivistic matter in kinetic equilibrium, for which ε = h�T 4, p = ε/3
and nf = hnfT 3, where T is the temperature of the Universe, h� =
(π2/30)(gb + (7/8)gf)k4

B/(h̄c)3, and hnf = (ζ(3)/π2)(3/4)gfk
3
B/

(h̄c)3. For standard-model particles, gb = 28 and gf = 90. If we 
assume that the Universe is closed, homogeneous, and isotropic, 
then it is described by the Friedmann–Lemaître–Robertson–Walker 
(FLRW) metric. In the presence of spin and torsion, the first Fried-
mann equation can be written as [25,32]

ȧ2

c2
+ k = 1

3
κε̃a2 = 1

3
κ(h�T 4 − αh2

nfT
6)a2, (3)

where a is the scale factor, k = 1, and dot denotes the derivative 
with respect to the cosmic time. The second Friedmann equation 
can be written as a continuity equation which in the presence of 
particle production becomes [32]

ȧ

a
+ Ṫ

T
= cK

3hn1T 3
, (4)

where hn1 = (ζ(3)/π2)gn1k3
B/(h̄c)3 and gn1 = 9. A scalar K has the 

dimension of m−4 and is related to the square of the curvature 
tensor [29–31,35]. For a rigorous treatment, it should be derived 
from quantum field theory in the Riemann–Cartan spacetime. Fol-
lowing [32], we assume that

K = β(κε̃)2, (5)

where β is a dimensionless particle production coefficient. Equa-
tions (3) and (4) describe the dynamics of the early Universe.

Since the negative term on the right-hand side of Eq. (3) scales 
with T faster (∼ T 6) than the positive term (∼ T 4), ȧ reaches zero 
and the universe undergoes a nonsingular bounce at a positive 
minimum scale factor. The temperature at a bounce is the max-
imum temperature of the Universe. This temperature is given by 
Eq. (3) with ȧ = 0 in which we can omit k (which is negligible 
relative to the other terms) [25,32]:

Tmax =
( h�

αh2
nf

)1/2
. (6)

For standard-model particles, it is equal to 1.1524 ×1032 K. Particle 
production should vanish at a bounce, otherwise the temperature 
at that instant could exceed Tmax which would contradict Eq. (3). 
This condition justifies the choice of the scalar K in Eq. (5).

The contraction of the Universe before the Big Bounce could 
correspond to gravitational collapse of matter inside a black hole 
existing in another universe [24,36,37]. During the collapse of a 
dustlike medium in GR, each spatial point in the interior of a black 
hole locally evolves toward a singularity as an independent, spa-
tially homogeneous and isotropic universe [38]. Numerical analysis 
of generic gravitational collapse shows that spatial derivatives of 
the metric and curvature tensors can be neglected and each spatial 
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point in the interior of a black hole locally evolves as a spatially 
homogeneous universe [39]. In GR, a singularity forms before the 
collapse has completed [38,40]. The infalling matter makes the in-
terior of the black hole a dynamical spacetime with large inhomo-
geneities and anisotropies. During the collapse, multiple trapped 
null surfaces with a very complicated structure and at least two 
dynamical wormhole throats form in the interior [40]. In the ECSK 
theory, we expect that each spatial point evolves toward a state 
of an extremely high but finite density and curvature, avoiding a 
singularity [32]. At such a state, the local contraction ends, the 
matter undergoes a bounce, and the local expansion begins. Quan-
tum effects in the presence of an extremely strong gravitational 
field cause an intense particle production [29–31,35], which cre-
ates an enormous amount of mass without changing the total en-
ergy (matter plus gravitational field) in the black hole [41].

We conjecture that eventually the wormholes merge into one 
wormhole and the outermost trapped surface becomes an event 
horizon. Asymptotically, the throat of this wormhole and the event 
horizon coincide. The entire interior of a black hole would then 
become a new, closed universe whose dynamics cannot be ob-
served from the outside of the black hole because of an infinite 
redshift at its event horizon. This universe can be thought of as 
a three-dimensional analogue of the two-dimensional surface of a 
sphere [24]. We posit that particle production in such a universe 
would make it effectively homogeneous and isotropic [32].

After a bounce, the universe expands and its temperature de-
creases to the values at which k cannot be neglected in Eq. (3). 
Eventually, ȧ reaches zero and the universe undergoes a crunch 
at a maximum scale factor. The universe then contracts until it 
reaches another bounce, and expands again. Because of particle 
production near a bounce, the scale factor at a given bounce is 
larger than the scale factor at the preceding bounce. The scale 
factor at a given crunch is larger than the scale factor at the pre-
ceding crunch. When the universe produces sufficient amounts of 
mass, it reaches the size at which the temperature decreases to 
the matter-radiation equality value for which the energy density 
of nonrelativistic matter exceeds the energy density of radiation. 
The universe then expands according to the first Friedmann equa-
tion in which the energy density is dominated by nonrelativistic 
matter. The universe has contracting and expanding phases until 
the scale factor reaches the size at which the energy density for 
the cosmological constant exceeds the energy density of nonrela-
tivistic matter. The universe then begins to accelerate and expands 
indefinitely.

The last bounce (if there are more than one) is the Big Bounce 
that corresponds to the Big Bang [32]. It is followed by the accel-
erating torsion-dominated era (inflation), which lasts for a finite 
time because αh2

nfT
6 in Eq. (3) eventually becomes negligible rela-

tive to h�T 4. The universe then enters the radiation-dominated era 
(decelerating) without needing reheating, which is followed by the 
matter-dominated era (decelerating) and cosmological-constant era 
(accelerating). Accordingly, our Universe may have been formed in 
a black hole existing in another universe [24,32]. We note that, 
although this scenario can naturally explain the origin of the Uni-
verse, Eqs. (3) and (4) can describe the dynamics of the early 
Universe even if we do not assume a black hole as its origin.

3. Inflationary dynamics

The dynamics of a universe inside a black hole with torsion is 
encapsulated in Eqs. (3) and (4). Near a bounce, where we can 
neglect k, these equations and Eq. (5) give [32]

ȧ [
1 − 3β

3 3

( ȧ )3] = − Ṫ
. (7)
a c hn1T a T
Table 1
The number of bounces before the universe 
reaches the matter-radiation equality temperature 
as a function of the ratio of the particle produc-
tion coefficient to its critical value (β/βcr).

β/βcr Number of bounces

0.996 1
0.984 2
0.965 3
0.914 5
0.757 10

The signs of ȧ and Ṫ must be opposite to avoid an indefinite in-
crease of the scale factor. Thus, during an expanding phase, the 
second term in the square bracket in Eq. (7) should be less than 1. 
This term has a maximum at T = Tmax/

√
2. Therefore, the value of 

the particle production coefficient must satisfy [32]

β < βcr =
√

6

32

hn1h3
nf(h̄c)3

h3
�

. (8)

For standard-model particles, βcr = 1/929.0915.
For β = 0, the universe in a black hole is oscillatory with an in-

finite number of bounces and crunches (cycles) [32]. If 0 < β < βcr, 
then the universe is cyclic with a finite number of cycles, after 
which it expands indefinitely. As β increases, the number of cycles 
decreases and the early accelerated expansion of the universe in 
each cycle is closer to exponential. If β is slightly less than βcr, 
then the universe has only one bounce. In this case, Eq. (7) at 
T = Tmax/

√
2 gives Ṫ ≈ 0 and ȧ/a ≈ const. Accordingly, the uni-

verse has a finite period of a nearly exponential expansion at a 
nearly constant energy density [32]

ε̃ ≈ h3
�

8α2h4
nf

. (9)

This period is a part of the torsion-dominated era. If β ≥ βcr, then 
an exponential expansion of the universe would last indefinitely 
(eternal inflation). The number of bounces before the universe 
reaches the matter-radiation equality temperature Teq = 8820 K
[11] as a function of β/βcr is shown in Table 1.

Now, we find the time dependence of the scale factor and its 
time derivative by numerically solving Eqs. (3) and (4) with a given 
set of the initial conditions. We need an initial condition for a0 at 
the Big Bounce. We estimate that the minimum value of a0 would 
be on the order of the Cartan radius of an electron which is on 
the order of 10−27 m [25]. We need a value of β which is slightly 
smaller than βcr. Thus, we choose β = 1/929.25 and a0 = 10−27 m. 
The initial temperature T0 should be slightly less than Tmax given 
by Eq. (6). We choose T0 = 0.99Tmax. As long as T0 is near Tmax, 
the dynamics of the expansion is not sensitive to the exact value 
of T0. We shall show later that the dynamics of such a universe is 
also insensitive to the initial values a0, as long as β � βcr.

With these initial conditions, the numerical solutions of Eqs. (3)
and (4) for a(t), H(t), and T (t) starting from the last bounce are 
shown as functions of time in Figs. 1, 2, and 3, respectively. As we 
can see from Fig. 1, after the Big Bounce (shown by t = 0 in these 
figures), the comoving scale factor expands exponentially and the 
universe is in an accelerating phase until t = 1.33 × 10−42 sec-
onds. The total number of e-folds with these initial conditions and 
particle production coefficient is about 60 from the start of the in-
flationary phase. The Hubble parameter is also roughly constant 
until t = 1.33 × 10−42 seconds. The comoving Hubble radius also 
decreases during this period. Therefore, the dynamics of the scale 
factor immediately after the Big Bounce provides a realistic model 
of inflation.
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Fig. 1. The ratio of the comoving scale factor a(t) to its initial value as a function of 
time. The dashed magenta line at t ∼ 1.33 ×10−42 seconds represents the transition 
from acceleration to deceleration. We obtain about 60 e-folds. The time t = 0 is set 
at the Big Bounce.

Fig. 2. The Hubble parameter as a function of time. The dashed magenta line is at 
the same location as in Fig. 1. The Hubble parameter is roughly constant during the 
inflationary phase.

Fig. 3. The ratio of the temperature of the universe to its initial value as a function 
of time. The dashed line is at the same location as in Fig. 1.

4. Reconstruction of a scalar field potential

In order to compare our inflationary model with the obser-
vational data such as the tensor-to-scalar ratio, spectral index of 
density perturbations, and its running, one needs to consider the 
quantized perturbations of the torsion field in a background FLRW 
universe. This approach has been studied for a single Dirac field 
with torsion [42]. For our model, we shall address this in a future 
publication. Here, we find a scalar field potential which gives the 
same dynamics of the scale factor as the numerical solution for 
a(t) computed in the preceding section. This way, we can use the 
standard method of calculating quantum fluctuations of the scalar 
Fig. 4. The reconstruction of single-field scalar potential V (φ) from the inflationary 
dynamics depicted in Figs. 1, 2, and 3. The vertical line indicates the end of inflation 
in our model when the universe transitions to a decelerating phase. Since we are 
only interested in the shape of the potential, we do not show units on the axes.

field and background spacetime to determine the scalar and tensor 
perturbations [33] and compare them with observations.

The procedure for finding a scalar field corresponding to a given 
dynamics of the scale factor was studied by Ellis and Madsen [43]. 
Given any functional form of a(t) on a background FLRW space-
time, which results in a consistent cosmological evolution, one can 
always construct a potential V (φ) corresponding to a scalar field 
φ(t) (inflaton) [43,44]. To calculate an inflaton potential, we re-
construct a scalar field potential from the evolution of the Hubble 
parameter in our model and calculate its slow-roll parameters. We 
then calculate the tensor-to-scalar ratio r, scalar spectral index of 
density perturbations ns and its running αs using these calculated 
values of the slow-roll parameters. The equations from [43] (their 
equations (17)–(18)) which are used to reconstruct a scalar field 
potential V (φ) from the expansion history of the universe on a 
FLRW background are:

V (t) = (m2
P/8π)(Ḣ + 3H2 + 2c2/a2), (10)

φ̇2(t) = (m2
P/4π)(−Ḣ + c2/a2). (11)

Here, V (t) is the potential, φ(t) is the scalar field, and mP is the 
Planck mass [45]. The third/second term in the right-hand sides of 
Eqs. (10) and (11) represent the curvature terms. These terms are 
usually omitted in models of inflation, since it is assumed that the 
process of inflation drives the universe towards flatness.

From the non-parametric expressions for a(t), H(t), and ˙H(t), 
one can use Eqs. (10) and (11) to obtain expressions for V (t)
and φ̇2(t). The integration of φ̇ gives φ(t) which, combined 
with V (t), gives an expression for V (φ) which gives the same dy-
namics of the scale factor as that found in the preceding section. 
This inflaton potential is shown in Fig. 4. At early times we obtain 
a nearly flat potential which satisfies V ′(φ) � V (φ), which is then 
followed by a scalar field rolling down the potential. The universe 
transitions from an acceleration to deceleration near the minimum 
of the potential. In scalar field models of inflation, the height of 
the potential usually corresponds to the vacuum energy density 
and its width to the change in value of the scalar field during in-
flation. The energy scale is usually associated with particle physics 
phenomenology. However, since we want to find nondimensional 
quantities that characterize the CMB, we are only interested in the 
shape of V (φ) and not its absolute scale. Hence, we ignore the 
absolute scale of the potential.

Using a(t) and V (φ), we now calculate the slow-roll parameters 
ε , η, ηv , and ξ as functions of the number of e-folds before end of 
inflation, in order to make observable predictions for the spectrum 
of tensor and scalar perturbations. We use the expressions for ε
and η from [45], whereas ηv , and ξ are obtained from [46]:
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Fig. 5. The scalar spectral index ns as a function of the number of e-folds before 
the end of inflation (N), evaluated using Eq. (16). The hatched regions show the 1σ
estimates for ns from the Planck 2015 TT + lowP + lensing data release [48] which 
is ns = 0.968 ± 0.006.

ε = 1 − äa

ȧ2
, (12)

η = − φ̈

Hφ̇
, (13)

ηv = m2
P

8π V

d2 V

dφ2
, (14)

ξ = m4
P

64π2 V 2

dV

dφ

d3 V

dφ3
. (15)

Note that both η and ηv are the second slow-roll parameters, 
where η is denoted as the Hubble slow-roll parameter and ηv

as the potential slow-roll parameter. The tensor-to-scalar ratio r, 
scalar spectral index of curvature perturbations ns , and the running 
of the spectral index, αs ≡ d ln ns/d ln k, where k is the comoving 
wavenumber, can be calculated from the above parameters using 
the slow-roll approximation [45,46]:

ns ≈ 1 − 4ε + 2η, (16)

r ≈ 16ε, (17)

αs ≈ 16εηv − 24ε2 − 2ξ. (18)

To compare these quantities with observations, one calculates the 
slow-roll parameters for the value of N (number of e-folds before 
end of inflation) when the present Hubble scale crossed outside 
the horizon during inflation. For most inflationary models, N is 
about 50–60 [9,10], depending on the dynamics of the reheating 
era. However, the lower limit on the horizon crossing scale can be 
as low as N = 18 [47]. We shall calculate more precise bounds on 
this scale for our model in a forthcoming work.

For a conservative estimate, we evaluate the slow-roll parame-
ters for values of N between 18 and 60, and use these parameters 
to obtain ns , r, and αs from Eqs. (16), (17), and (18) respectively. 
The scalar spectral index ns obtained using Eq. (16) is shown in 
Fig. 5. We always can observe a red tilt. For values of N between 
about 20 and 25, we obtain ns ≈ 0.96, which is consistent with 
the best-fit estimate of ns = 0.968 ± 0.006 from Planck 2015 [48]. 
However, if the horizon crossing scale in our model occurs for the 
same values of N as in most other inflationary models (between 
50–60), we would obtain a value of ns ≈ 0.99, which on face value 
is in tension with the Planck 2015 best-fit estimate at about 6σ . 
However, if we assume an extra relativistic degree of freedom, then 
the best fit estimate of ns from Planck 2015 is closer to our esti-
mate of ≈ 0.99 [48]. The tensor-to-scalar ratio r obtained using 
Eq. (17) is shown in Fig. 6. Our estimated value of r for all permis-
sible values of N is about an order of magnitude smaller than the 
Fig. 6. The solid red curve shows the tensor-to-scalar ratio r as a function of the 
number of e-folds before the end of inflation (N), evaluated using Eq. (17). The 
dashed black line shows the upper limit of r0.05 < 0.12 at 95% confidence level 
(at the pivot scale of 0.05 Mpc−1), which is obtained from a joint analysis of BI-
CEP2/Keck Array and the 2015 Planck observations [49].

Fig. 7. The solid red curve shows the running of the spectral index (αs) as a function 
of the number of e-folds before the end of inflation (N), evaluated using Eq. (18). 
The Planck 2015 results are consistent with no running [48].

95% confidence upper limit on r0.05 < 0.12, where r0.05 is evalu-
ated at the pivot scale of 0.05 Mpc−1. This limit is obtained from 
a joint analysis of Planck 2015 and BICEP2/KECK Array [49]. The 
running of the spectral index αs is shown in Fig. 7. Our estimated 
value for the running is about O(10−3), which is consistent with 
the no running of the spectral index found from Planck 2015 ob-
servations [48]. We also note that our values of r and αs are of the 
same order of magnitude as in Starobinsky’s model of inflation [2].

5. Sensitivity to initial conditions

After calculating the expansion dynamics and the inflationary 
observables for one set of values of a0 and β , we now examine 
the sensitivity of the dynamics to initial conditions by varying a0
and β . We do not vary T0, since it must be close to Tmax in order 
to obtain inflation-like behavior. The total number of e-folds from 
the start of an inflationary phase as a function of a0 and β/βcr is 
shown in Fig. 8. The total number of e-folds is insensitive to ini-
tial values of a0 and only depends on β . We now do the same 
exercise for r, ns , and αs , where we evaluate these quantities 20 
e-folds before the end of inflation for the same range of a0 and β . 
These variations are shown in Figs. 9, 10, and 11 respectively. We 
always find a red tilt in the spectrum of scalar perturbations for 
different values of a0 and β . The value of the tensor-to-scalar ratio 
is approximately constant and is between 0.01 and 0.03. The run-
ning of the spectral index is always less than 0 and its absolute 
value is O(10−3 − 10−4) Therefore, the values of ns , r, and αs do 
not change significantly with a0 and are only sensitive to β . The 
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Fig. 8. The total number of expansion e-folds since the beginning of an inflationary 
phase as a function of the initial scale factor a0 (in meters) and one minus the ratio 
of the particle production coefficient to its critical value β/βcr. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of 
this article.)

Fig. 9. The scalar spectral index (ns) evaluated 20 e-folds before the end of inflation 
as a function of the initial scale factor a0 (in meters) and one minus the ratio of the 
particle production coefficient to its critical value β/βcr. (For interpretation of the 
references to color in this figure, the reader is referred to the web version of this 
article.)

total number of e-folds also effectively depends only on β . There-
fore, our inflationary model does not rely on the initial scale factor 
a0 but depends on the particle production coefficient β .

6. Other models of inflation with spin

The first model of inflation based on the ECSK theory was by 
Gasperini [19], who also has considered the dynamics of a spin 
fluid in the FLRW spacetime. In that model, a spin fluid with 
w = −1/3 + δ, where w = p/ε and 0 < δ � 1 is a number ex-
tremely close to zero, can characterize a physically viable infla-
tionary scenario with three distinct phases of acceleration which 
can give about 70 e-folds. The origin of such a fine tuning would 
be, however, difficult to explain. Obukhov [50] has considered a 
GR fluid with the spin–spin interactions characterized by an ef-
fective potential, which was chosen to be similar to that used in 
vector field models of inflation. That model can give an inflationary 
phase which lasts for about 10−43 s, but does not specify the origin 
of such a potential. Watanabe [42] has considered a single Dirac 
spinor field in the ECSK theory, characterized by a generic potential 
which depends on the scalar constructed from the spinors. That 
model can give a viable inflationary phase with an almost scale 
invariant spectrum of perturbations of the Dirac field on the FLRW 
background and a de Sitter expansion phase with more than 60 
e-folds if such a potential is appropriately chosen. Most recently, 
Choudhury et al. [51] have considered an effective potential for a 
Fig. 10. The tensor-to-scalar ratio (r) evaluated 20 e-folds before the end of inflation 
as a function of the initial scale factor a0 (in meters) and one minus the ratio of the 
particle production coefficient to its critical value β/βcr. (For interpretation of the 
references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 11. The running of the spectral index (αs) evaluated 20 e-folds before the end 
of inflation as a function of the initial scale factor a0 (in meters) and one minus 
the ratio of the particle production coefficient to its critical value β/βcr. (For inter-
pretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

scalar field associated with torsion and its quantum corrections. 
That model gives an inflationary phase with ns ≈ 0.96, r ≈ 0.056, 
and αs 
 −10−4. There also exist models of inflation based on 
fermion fields with a symmetric affine connection and other the-
ories with torsion such as teleparallel gravity or f(T) gravity. In 
those theories, however, the orbital angular momentum is con-
served, which contradicts the exchange between the orbital and 
spin parts of the angular momentum, that happens for electrons 
in atoms [17].

The model presented in this paper is similar to that in [19,24]
with the addition of the temperature dependences of the terms in 
the energy–momentum tensor [25]. The spin–spin corrections to 
the energy–momentum tensor arising from the minimal coupling 
between spin and torsion in the ECSK theory give the dynamics 
of the scale factor that avoids the singularity and solves the flat-
ness and horizon problems without constraining the equation of 
state of matter. Adding quantum particle production can explain 
the origin of matter in the Universe and generate an inflationary 
phase without constraining a potential driving inflation. The only 
relevant parameter in this scenario is the production coefficient β
which ultimately should be derived from quantum gravity.

7. Conclusions

We studied the dynamics of a universe formed in a black hole, 
using the Einstein–Cartan–Sciama–Kibble theory of gravity which 
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extends general relativity by including the spin of matter and tor-
sion of spacetime. We solved numerically the equations describ-
ing such a universe in the torsion-dominated era which follows 
the last bounce. We demonstrated that for values of the particle 
production coefficient below a critical value, the dynamics of the 
scale factor is similar to that in typical models of cosmic inflation. 
We obtain about 60–150 e-folds, depending on the value of the 
production coefficient. From the calculated expansion of the scale 
factor, we reconstructed a dynamically equivalent scalar field and 
the corresponding inflaton potential, and showed that the shape of 
such a potential is similar to those in most generic models of in-
flation. We also demonstrated that the dynamics of the universe is 
insensitive to the initial values of the scale factor and effectively 
depends on the particle production coefficient only.

We calculated the slow-roll parameters corresponding to the 
reconstructed scalar field. Using the slow-roll approximations, we 
found the tensor-to-scalar ratio, scalar spectral index of curva-
ture perturbations, and its running as functions of the number of 
e-folds before the end of inflation. Our values of the tensor-to-
scalar ratio are about ten times smaller than the 95% confidence 
level limits obtained from the joint analysis of Bicep-2/Keck and 
Planck data. The values of the scalar spectral index agree with the 
Planck 2015 results when evaluated about 20 e-folds before the 
end of inflation for a particular range of the particle production co-
efficient. We also find that the running of the scalar spectral index 
is negligible. Therefore, a universe in a black hole with spin, tor-
sion, and particle production provides a simple and natural mech-
anism for inflation which does not require hypothetical fields and 
is consistent with the Planck 2015 observations. Other observables 
such as non-gaussianities of the CMB radiation will be considered 
in future work.
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