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a b s t r a c t

Objectives: The aim of this study was to review the effect of a low advanced glycation end product
(AGEs) diet, exercise, and a combination of both on circulating AGE levels as well as on plasma
lipids and anthropometric parameters.
Methods: Forty-three overweight or obese men (body mass index [BMI] >25 kg/m2), 30 to 55 y,
participated in a 12-wk study and were randomly assigned to one of three groups: low AGE diet,
exercise with habitual food intake, or exercise plus low AGE diet. Exercise was for 45 min at 65% to
75% of their maximum heart rate three times a week. We measured somatometric variables (BMI
and waist circumference), blood glucose, lipids, and serum AGEs (Nε-[Carboxymethyl]Lysine [CML]
and methylglyoxal [MG]) at baseline and at 12 wk.
Results: Exercise alone was associated with decreased somatometric variables; the low AGE diet
had the same effects and decreased serum CML and MG and when combined with exercise
reproduced all these effects, but also decreased triacylglycerols and increased high-density lipo-
protein. Correlation analysis showed that both changes of CML and MG correlated with changes in
dietary AGEs (P < 0.020 and P < 0.038, respectively); change in maximum oxygen consumption
correlated inversely with change in weight and triacylglycerols. Regression analyses, including
change in dietary AGEs and in dietary calories, showed that change in dietary AGEs was the in-
dependent determinant of change in CML (P < 0.020) and MG (P < 0.038).
Conclusions: An AGE-restricted diet reduces serum AGE and indices of body fat. The addition of
exercise to the restricted diet has the same effects but also improves lipid profile.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Introduction

The epidemic of overweight and obesity and their complica-
tions, including insulin resistance (IR) and type 2 diabetes mel-
litus (T2DM), is rising worldwide both in developed and in
developing countries [1], and in all age groups [2]. It is also an
important health problem in Mexico where there is a high
prevalence of overweight and obesity [3]. Both dietary caloric
restriction and exercise have been reported to reduce obesity [4,
5]. A study in young, healthy, nonsmoking women during 2-mo
of aerobic cycling training with 60-min duration, three times a
week induced significant changes in the parameters of body
cle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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composition, increased levels of high-density lipoprotein (HDL)
and low-density lipoprotein (LDL) and increased maximum ox-
ygen consumption (VO2 max) [6]. Exercise training also has been
shown to improve lipid profile in adolescent males [7]. Addi-
tionally, regular exercise may cause a gradual reduction of serum
triacylglycerols (TGs), total cholesterol (TC), low-density lipo-
protein cholesterol (LDL-C), body mass index (BMI) and body fat,
and an increase of HDL cholesterol (HDL-C). Aerobic exercise
seems more effective than other forms of exercise in reducing
body fat [8]. A calorie-restricted diet has been shown to improve
serum lipid profile, which if combined with exercise, is targeted
at improving body composition [4]. The effectiveness of both
aerobic exercise and resistance training in controlling and
improving cholesterol levels through various modalities, fre-
quency, intensity, and duration of exercise has been demon-
strated in different populations [9]. Genetic factors may be
important in terms of the response to diet; for example it has
been reported that Thr54 allele carriers responded better to a
moderate fat diet decreasing somatometric variables and
C-reactive protein [10].

Exercise also has been shown to diminish levels of circu-
lating advanced glycation end products (AGEs). AGEs are a
heterogeneous group of compounds created through nonen-
zymatic reactions between reducing sugars and free amino
groups of proteins, lipids, or nucleic acids [11,12], Their path-
ologic effects in diabetes [13] and in the development of
complications of obesity such as metabolic syndrome (MetS)
and IR [14], are related to the ability of these compounds to
promote oxidative stress and inflammation by binding with
cell surface receptors or cross-linking with body proteins,
altering their structure and function [15]. It has been demon-
strated that a program of tai chi performed twice per week for
12 mo decreased serum AGE concentrations in 60 healthy
overweight patients, aged 49 to 53 y [16].

Recently, it has been recognized that AGEs of dietary origin
are an important determinant of the body AGE pool [17] and an
AGE-restricted diet has been shown to have a significant effect in
improving IR in patients with T2DM [18]. Moreover, many of the
beneficial effects of reduced caloric intake have been associated
with reduced AGE intake, at least in mice [19].

The aim of the present study was to investigate the effect of a
12-wk intervention with a low AGE diet, exercise, or a combi-
nation of both on circulating AGE levels as well as on plasma lipid
profile and anthropometric parameters in a group of overweight
or obesemen. Our hypothesis was that aerobic exercise and a low
AGE diet would have a synergistic effect, diminishing serum
AGEs and improving metabolic parameters compared with the
effect of each intervention alone.
Material and methods

Seventy-five overweight or obese men (BMI >25 kg/m2), aged 30 to 55 y,
were invited to participate in the study (43 completed the study and 32 dropped
out for personal reasons) from the community served by the Department of
Medical Sciences of The University of Guanajuato (Le�on, M�exico) using adver-
tisement in local newspapers and on the radio. Interested individuals were
screened by personal interviewwith a member of the research team. Participants
were required to be sedentary or relatively inactive; involved in less than three
sessions of 30 min each per week of physical activity; nonsmokers; and free of
known chronic diseases including diabetes, renal, or cardiovascular disease.
Participants were randomly assigned to one of three groups: a low AGE diet
(group 1), an exercise with habitual food intake (group 2), or an exercise plus low
AGE diet group (group 3). Randomization was done according to aleatory
numbers generated by computer and were kept in consecutively numbered en-
velopes opened at the moment of participant enrollment into the study. All
participants signed an informed consent approved by the Institutional Review
Board at the Department of Medical Sciences. Universidad de Guanajuato, Gua-
najuato, M�exico.

Anthropometric parameters

Weight and height were measured with a stadiometer (Seca, Germany).
Participants were barefoot and wearing light clothing; waist circumference (WC)
was measured as previously described [20].

Aerobic exercise

All participants were initially evaluated with a resting electrocardiogram and
then started on an incremental treadmill exercise test according to an earlier
developed protocol [21]. Heart rate was measured every 60 sec using a portable
heart rate monitor (Polar RS400, Finland). At the end of the test, VO2 max
(expressed in mL$kg$min�1) and maximum heart rate (HR max) of training were
calculated. The VO2 max was calculated using the following equation: VO2 max
(mL$kg$min�1) ¼ 0.2 (speed) þ 0.9 (speed) (% inclination) speed þ 3.5 [22]. VO2

peak was used as an index of cardiorespiratory fitness.

Exercise training and nutritional intervention

All participants in the exercise groups underwent a 12-wk supervised aerobic
exercise program three times per week, lasting 45 min each time according to
pre-established heart rate (65%–75% of their HR max). Each session was super-
vised by one researcher in a municipal sport center. The participants wore a
portable heart rate monitor (Polar RS400, Finland) and heart rate was recorded
every 5min to check exercise intensity. Each session consisted of 5-minwarm-up
and stretching, followed by 45min of aerobic running and finally 5min at the end
for stretching.

Groups 1 and 3 were given precise instructions on how to follow a diet that
maintained their caloric and nutrient intakes but significantly reduced AGE
content; the latter was achieved mostly by changing cooking methods in food
preparation to avoid exposure to dry heat such as frying, broiling, grilling, and
roasting and to favor cooking with lower temperatures and high-water, content
as in stewing and poaching, as previously described [22]. The second group
continued consuming their habitual meals. The energy and nutrient consump-
tion was calculated with the program Nutrikcal (University of Monterrey,
M�exico) and AGE intake was calculated from a database ofw560 foods that listed
AGE values and expressed as AGE kU/d [23].

Of the initial 75 participants, only 43 completed the intervention (15 in the
diet plus exercise group, 14 in the exercise group, and 14 in the diet group). The
remainder of the participants were excluded because of lack of adherence with
the diet or exercise (attendance to <80% of the exercise sessions), or both. The
sample size was calculated according to expected changes in serum AGEs, as
previously reported [24] and considering a¼ 0.05 and b¼ 0.20 and power of 80%.

Measurement of biochemical markers

All participants underwent a complete physical examination and provided
fasting blood samples at baseline and at the completion of 12 wk of intervention
for measurement of several parameters.

Serum TG, TC, and HDL-C levels were measured by enzymatic colorimetric
kits (Spinreact, Spain). Plasma glucose was measured using glucose oxidase/
peroxidase (Lakeside, Mexico City). Nε-(Carboxymethyl)Lysine (CML) and
methylglyoxal (MG) derivatives in serum were quantified by enzyme-linked
immunosorbent assays (ELISAs), using two non–cross-reactive monoclonal
antibodies (mAbs; 4 G9 and MG3 D11 mAbs) raised against synthetic standards,
CML-bovine serum albumin (BSA) and MG-BSA, respectively. CML and MG were
measured by ELISA as previously described [25]. Test sensitivity for CML andMG
was 0.1 U/mL and 0.004 nmol/mL, respectively; the intra-assay variation was
�2.6% (for CML) and �2.8% (for MG), and the inter-assay variation was �4.1%
(CML) and �5.2% (MG).

The researchers involved in the assessment of metabolic parameters and
biochemical determinations were unaware of the group assignment of
participants.

Statistical analysis

All values are expressed as mean � SD. Difference of means between groups
were analyzed by Student’s t test or analysis of variance (ANOVA), followed by the
Bonferroni collection for multiple comparisons, depending on the number of
groups. We performed correlation analyses between changes in different pa-
rameters during the intervention using Spearman’s coefficients. There were only
two visits for blood tests: at baseline and at the end of 3 mo. Significance of
changes during the intervention was determined by comparing the changes
between baseline and end of study within each group by paired t test, and by
comparing the differences among means of the three groups at the end of the



Table 2
Changes in men on a low AGE diet intervention

Parameters Baseline* 3-mo follow-up* P-value

Weight (kg) 88.2 � 8.9 85.1 � 8.8 0.009
BMI (kg/m2) 29.4 � 2.23 28.3 � 1.9 0.010
Waist (cm) 103.4 � 7.0 99.1 � 6.6 0.008
SBP (mm Hg) 128.2 � 15.3 123.3 � 12.5 0.073
DBP (mm Hg) 81.1 � 12.4 78.8 � 10.21 0.284
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study by ANOVA. We also performed a two-way ANOVA with factors for group
and time. Linear regression analysis was used to examine the effect of dietary
AGE intake on several parameters in a model including weight change. First, we
determined the association between study group and each one of the other
biochemical/metabolic parameters (CML, MG); then we added weight change to
the model and determined the effect on the association.

All analyses were performed using SPSS 20.0 software (SPSS, Chicago, IL,
USA). Significance was defined as a value of P < 0.05 and based on two-sided
tests.
FBG* (mmol/L) 5.08 � 0.46 4.89 � 0.36 0.080
TG (mmol/L) 2.00 � 0.79 1.79 � 0.85 0.165
HDL-C (mmol/L) 1.45 � 0.22 1.34 � 0.19 0.075
LDL-C (mmol/L) 2.30 � 0.77 2.30 � 0.72 0.970
sCML (U/mL) 10.8 � 1.7 9.4 � 2.0 0.012
sMG (nmol/mL) 2.0 � 0.40 1.7 � 0.34 0.013
Diet-Cal (kcal/d) 2635 � 572 1940 � 301 0.000
Diet-AGE (kU/d) 14 311 � 5818 6389 � 2501 0.000
Diet-AGE density* 5.5 � 2.0 3.3 � 1.1 0.003
HR max (bpm) 180.6 � 9.0 178.6 � 11.5 0.322
VO2 max (mL$kg$min�1) 33.8 � 2.3 34.9 � 3.2 0.202

AGE, advanced glycation end product; BMI, body mass index; DBP, diastolic
blood pressure; bpm, beats per minute; Diet-Cal, low AGE diet; Diet-AGE density,
daily AGE intake/daily caloric intake; FBG, fasting blood glucose; HDL-C, high-
density lipoprotein cholesterol; HR, heart rate; LDL-C, low-density lipoprotein
cholesterol; SBP, systolic blood pressure; sCML, Nε-(Carboxymethyl)Lysine; sMG,
methylglyoxal; TG, triacylglycerol; VO2, oxygen consumption

* All values are expressed in means � SD.
Results

At baseline there were no differences among the three
groups, except for weight and HDL-C, suggesting adequate
randomization (Table 1).

Tables 2–4 describe the effect of the respective intervention
on anthropometric parameters, lipid profile, and serum AGE
levels. Table 2 demonstrates that a low AGE diet alone signifi-
cantly diminished weight, BMI, WC, and serum AGEs (both CML
and MG). Table 3 shows that exercise with habitual diet only
diminished weight, BMI, and WC. The combination of a low AGE
diet plus exercise demonstrated significant decrease of weight,
BMI, WC, Tgs, and serum AGEs (CML and MG), while increasing
HDL-C (Table 4).

As expected, both dietary intervention groups showed
significant decreases in dietary AGE intake, expressed in ab-
solute terms and as a fraction of dietary caloric intake. Both
exercise intervention groups with showed improvement of VO2
max, suggesting aerobic conditioning (Tables 2–4). No adverse
events attributable to the intervention were reported during
the duration of the study. Both changes of CML and MG
correlated with changes in dietary AGEs (r ¼ 0.353, P < 0.020;
r ¼ 0.317, P < 0.038, respectively) and changes in dietary kcal
(r ¼ 0.305, P < 0.047; r ¼ 0.287, P < 0.062, respectively).
Regression analyses including changes in dietary AGEs and
Table 1
Baseline characteristics of study population

Parameters Diet* þ
exercise

Diet*
alone

Exercise
alone

P-
valuey

n 15 14 14
Age (y) 44.3 � 5.3 40. � 4.8 43.5 � 7.1 0.139
Weight (kg) 82.7 � 9.6 88.2 � 8.9 80.3 � 5.8 0.046
BMI (kg/m2) 28.9 � 2.2 29.4 � 2.2 28.3 � 1.7 0.352
Waist (cm) 102.2 � 5.1 103.4 � 7.0 100.2 � 6.4 0.382
SBP (mm Hg) 125.1 � 12.5 128.2 � 15.3 126.7 � 10.4 0.814
DBP (mm Hg) 82.2 � 13.3 81.1 � 12.4 81.7 � 8.5 0.967
FBG* (mmol/L) 4.99 � 0.78 5.08 � 0.46 5.30 � 0.72 0.462
TG (mmol/L) 2.2 � 1.32 2.0 � 0.78 2.31 � 0.91 0.734
HDL-C (mmol/L) 1.27 � 0.16 1.45 � 0.22 1.28 � 0.16 0.022
LDL-C (mmol/L) 2.37 � 0.59 2.30 � 0.77 2.66 � 0.47 0.281
sCML (U/mL) 10.1 � 1.5 10.8 � 1.7 10.3 � 2.1 0.599
sMG (nmol/mL) 2.1 � 0.29 2.0 � 0.40 2.0 � 0.27 0.770
Diet-Cal (kcal/d) 2471 � 595 2635 � 572 2353.0 � 604 0.453
Diet-AGE (kU/d) 13 019 � 4526 14 311 � 5818 13 284 � 4983 0.777
Diet-AGE density* 5.3 � 1.4 5.5 � 2.0 5.8 � 1.9 0.781
Heart rate

max (bpm)
174.9 � 10.3 180.6 � 9.0 178.2 � 14.5 0.413

VO2 max
(mL$kg$min�1)

36.5 � 4.1 33.8 � 2.3 35.6 � 2.8 0.075

AGE, advanced glycation end product; BMI, body mass index; DBP, diastolic
blood pressure; bpm, beats per minute; Diet-Cal, low AGE diet; Diet-AGE density,
daily AGE intake/daily caloric intake; FBG, fasting blood glucose; HDL-C, high-
density lipoprotein cholesterol; HR, heart rate; LDL-C, low-density lipoprotein
cholesterol; SBP, systolic blood pressure; sCML, Nε-(Carboxymethyl)Lysine; sMG,
methylglyoxal; TG, triacylglycerol; VO2, oxygen consumption

* All values are expressed in means � SD.
y P-value, statistically significant differences among means by analysis of

variance.
changes in dietary energy intakes showed that changes in di-
etary AGEs were the independent determinants of changes in
CML (P < 0.020) and in MG (P < 0.038). Change in VO2 max
correlated inversely with changes in weight and changes in TGs
(r ¼ �0.464, P < 0.002; r ¼ �0.424, P < 0.005, respectively).
Change in VO2 max was the independent determinant of
changes in TGs (P < 0.026) in a model including changes in
dietary AGEs, changes in dietary kcal, and changes in weight.
Change in VO2 max also was the independent determinant of
changes in weight (P < 0.008) in a model including changes in
dietary kcals and changes in dietary AGEs.

ANOVA comparison of the means of the three groups at the
end of the study demonstrated significant changes in means for
dietary AGEs, serum CML, and serum MG in both, dietary inter-
vention groups comparedwith exercise alone and for VO2max in
both exercise groups compared with diet alone.
Table 3
Changes in men on the habitual diet þ exercise intervention

Parameters Baseline* 3-mo follow-up* P-value

Weight (kg) 80.3 � 5.8 78.5 � 6.3 0.022
BMI (kg/m2) 28.3 � 1.7 27.7 � 1.72 0.042
Waist (cm) 100.2 � 6.4 97.3 � 5.1 0.012
SBP (mm Hg) 126.7 � 10.4 122.8 � 13.4 0.063
DBP (mm Hg) 81.7 � 8.5 80.6 � 9.0 0.500
FBG* (mmol/L) 5.30 � 0.72 5.18 � 0.50 0.456
TG (mmol/L) 2.31 � 0.91 1.89 � 1.03 0.084
HDL-C (mmol/L) 1.28 � 0.16 1.37 � 0.19 0.074
LDL-C (mmol/L) 2.66 � 0.47 2.72 � 0.63 0.753
sCML (U/mL) 10.3 � 2.1 10.7 � 2.8 0.646
sMG (nmol/mL) 2.0 � 0.27 1.9 � 0.6 0.336
Diet-Cal (kcal/d) 2353 � 603 2310 � 757 0.737
Diet-AGE (kU/d) 13284 � 4983 11223 � 4147 0.052
Diet-AGE density* 5.8 � 2 5.1 � 2 0.114
HR max (bpm) 178.2 � 14.5 173.6 � 11.5 0.012
VO2 max (mL$kg$min�1) 35.6 � 2.8 37.5 � 2.93 0.001

AGE, advanced glycation end product; BMI, body mass index; DBP, diastolic
blood pressure; bpm, beats per minute; Diet-Cal, low AGE diet; Diet-AGE density,
daily AGE intake/daily caloric intake; FBG, fasting blood glucose; HDL-C, high-
density lipoprotein cholesterol; HR, heart rate; LDL-C, low-density lipoprotein
cholesterol; SBP, systolic blood pressure; sCML, Nε-(Carboxymethyl)Lysine; sMG,
methylglyoxal; TG, triacylglycerol; VO2, oxygen consumption

* All values are expressed in means � SD.



Table 4
Changes in men on the low AGE diet þ exercise

Parameters Baseline* 3-mo follow-up* P-value

Weight (kg) 82.7 � 9.6 79.3 � 9.3 0.015
BMI (kg/m2) 28.9 � 2.2 27.7 � 2.0 0.000
Waist (cm) 102.2 � 5.1 97.4 � 6.6 0.000
SBP (mm Hg) 125.1 � 12.5 126.3 � 13.7 0.667
DBP (mm Hg) 82.2 � 13.3 81.0 � 9.7 0.475
FBG* (mmol/L) 4.99 � 0.79 4.86 � 0.42 0.49
TG (mmol/L) 2.20 � 1.32 1.49 � 0.52 0.015
HDL-C (mmol/L) 1.27 � 0.16 1.44 � 0.18 0.003
LDL-C (mmol/L) 2.37 � 0.59 2.69 � 0.71 0.082
sCML (U/mL) 10.1 � 1.51 8.6 � 1.87 0.003
sMG (nmol/mL) 2.12 � 0.29 1.5 � 0.57 0.001
Diet-Cal (kcal/d) 2471 � 595 1826 � 410 0.000
Diet-AGE (kU/d) 13 019 � 4526 7306 � 2811 0.000
Diet-AGE density* 5.3 � 1.4 4.1 � 1.4 0.038
HR max (bpm) 174.9 � 10.3 174.9 �9.5 0.977
VO2 max (mL$kg$min�1) 36.5 � 4.1 38.6 � 4.3 0.000

AGE, advanced glycation end product; BMI, body mass index; DBP, diastolic
blood pressure; bpm, beats per minute; Diet-Cal, low AGE diet; Diet-AGE density,
daily AGE intake/daily caloric intake; FBG, fasting blood glucose; HDL-C, high-
density lipoprotein cholesterol; HR, heart rate; LDL-C, low-density lipoprotein
cholesterol; SBP, systolic blood pressure; sCML, Nε-(Carboxymethyl)Lysine; sMG,
methylglyoxal; TG, triacylglycerol; VO2, oxygen consumption

* All values are expressed in means � SD.
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Two-way ANOVA factored for group and time showed
significant difference for serum CML (P < 0.038); diet kcals
(P < 0.003), and diet AGEs (P < 0.002) and marginally significant
difference for serum MG (P ¼ 0.05) and diet AGE density
(P ¼ 0.06) (see Table 5).

Discussion

The present study showed that a 3-mo intervention with
either moderate aerobic exercise and/or dietary AGE restriction
in a group of overweight Mexican men had different effects in
metabolic risk factors depending on the specific intervention.
Although exercise alone was associated with a decrease in
weight, BMI andWC, a lowAGE diet had the same effects but also
decreased levels of circulating AGEs and when combined with
exercise reproduced all these effects together while inducing a
healthier lipid profile (lowering TGs and raising HDL-C).

Our findings in the group with exercise and habitual dietary
intake were similar to those of a previous study that demon-
strated decreased body weight, BMI, body fat, and TG levels
together with increased HDL-C concentration in a group of
healthy young women, aged 18 to 24 y [6]. In another study with
376 overweight men, aged 30 to 62y, who were subjected to
brisk walking lasting �10 min every day for 1 y a significant
decrease of WC and TG levels and an increase of HDL levels were
seen [26]. The sex and age of the latter individuals were similar
to our study participants, but although there was a tendency to
decrease TGs and increase HDL levels in our participants, the
changes did not reach statistical significance.

On study examined the effects of an exercise program con-
ducted daily (1.5 h duration) each week for �3 mo up to a
maximum of 18 mo in a group of 31 individuals, compared with
36 controls [27]. Weight, %body fat, WC, and levels of TG, TC,
HDL-C, and LDL-C improved significantly in the exercise group
compared with controls, although no differences were found for
BMI and blood glucose levels.

A study in obese men assigned to one of four study groups
(diet-induced weight loss, exercise-induced weight loss, exercise
without weight loss, and control) for 3 mo demonstrated that
VO2 max improved by approximately 16% in the exercise groups
[5]. Weight loss was 1.3 greater in the exercise-induced weight
loss group than in the diet-inducedweight loss group, raising the
importance of the intensity of exercise on the final effects. Blood
glucose levels did not change in the treatment groups compared
with controls; lipid profiles were not evaluated.

Most previous exercise interventions studied individuals of
different ages, lengths of interventions, and types and intensity
of exercise than our study. Although most exercise interventions
have shown a decrease in body weight and increment of VO2
max indicating cardiorespiratory conditioning, an effect in
improving lipid profile has not been uniform. Our failure to
demonstrate enough effect on lipid profile may reflect the mild
intensity of exercise in our study as VO2 max increased only by
5.7%. Recently, it has been reported that a mixed aerobic and
resistance training was more effective in the chronic modifica-
tion of lipid profile in overweight men [28]. Moreover, a meta-
analysis suggests that combined training might be the most
efficacious exercise modality to improve glycemic control and
blood lipids [29]. It is also important to consider the volume of
exercise. It has been reported that for most individuals the
positive effects of regular exercise on blood lipids at low training
volumes may take some time to show up, but noticeable differ-
ences frequently occurwith energy expenditures of 1200 to 2200
kcals/wk [30,31].

Wedid notfind an effect of 3-mo aerobic exercise intervention
alone on serum AGE levels. This differs from three previous re-
ported studies looking at the effect of exercise on AGE levels in
general. Thefirst studied theeffect of tai chi in ahealthyMalaysian
population matched with sedentary volunteers >45 y [16]. The
participants were randomized either to practice tai chi twice per
week or to a control group. Plasma malondialdehyde and AGE
concentrations decreased significantly after 12 mo only in the tai
chi group. The second study recruited 17 healthy women (aged
30–60 y) who participated in a lifestyle modification protocol
aimed at increasing physical activity for 3mo tomeasure changes
in AGEs [24]. Blood levels of CML decreased in the treatment
group compared with controls and changes in CML levels corre-
latedwith the intensityof exercise. Finally, the thirdgroupstudied
levels of MG in red blood cells during exercise in eight untrained
and five trained men [32]. Eachman performed runs of short and
long duration. MG content of red blood cells decreased markedly
after running, especially in the untrained men. After short runs,
the MG concentration had dropped to 13% in the untrained men
and 30% in the trainedmen, and after long runs the concentration
fell to 41% in the untrained and 60% in the trained men. Our
different results likely reflect the different populations studied
and, more importantly, the type and intensity of exercise inter-
vention. We should note that our study followed the American
Collegeof SportsMedicineGuidelines supportingaerobic exercise
performed 3 to 5 d/wk for 20 to 60 continuous minutes at an in-
tensity of 55% to 90% of HR max [33].

The effect of the low AGE diet on reducing serum AGE levels
in our study participants agrees with similar findings previously
reported in the literature [34]. A significant decrease in circu-
lating AGE levels was found in a previous study when healthy
individuals were exposed to a low AGE diet for 4 mo [35]. A
randomized, crossover, diet-controlled intervention trial of 62
healthy volunteers compared the effects of two diets, one con-
sisting of mild steam cooking and the other of high-temperature
cooking [36]. The latter group consumed a higher AGE diet and
had higher levels of serum CML. A significant effect of a low AGE
diet, without significantly changing caloric and nutrient intake,
in reducing body weight, BMI or WC, however, has not been
reported previously.
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Food is a major source of AGEs and these exogenous AGEs are
an important contributor to the body AGE pool as they have the
same pro-oxidative and proinflammatory actions as their
endogenous counterparts [17]. Food-derived AGEs are associated
with the development of IR, diabetes, renal disease, and
atherosclerosis in mice. Emerging data from several clinical trials
support an important role for a high intake of exogenous AGEs in
generating increased oxidative stress and inflammation. More
importantly, these trials have shown that reducing the dietary
AGE content decreases the high oxidative stress characteristic of
most chronic diseases [37,38]. A group of women with MetS
treated with a calorie-restricted diet with moderate carbohy-
drate restriction showed decreased diastolic blood pressure and
lower prevalence of MetS [39].

The most significant effects in our study were in the group of
men with combined exercise and dietary intervention. This
group not only decreased anthropometric parameters and serum
AGEs, but also improved the lipid profile with reduction of TGs
and an increase in HDL levels. We do not find any previous re-
ported studies examining the combined effect of exercise and an
AGE-restricted diet without caloric restriction; and this signifi-
cance remained when we evaluated the differences within and
between groups. Main limitations of our study were the rela-
tively small number of participants and a significant percent of
dropouts who could not be invited for assessment at the end of
the intervention as a control. Moreover, all the participants were
men, which limits its generalizability, and perhaps more
importantly, the intensity of the exercise might have not been
sufficient to elicit significant metabolic changes.

Conclusions

Wehave demonstrated a beneficial effect of an AGE-restricted
diet in reducing serum AGE levels and indices of body fat.
Although exercise alone did not have significant metabolic ef-
fects in our study, this type of moderate exercise appears to have
potentiated the effects of a low AGE diet and it should be
recommended.

Supplementary data

Supplementary data related to this article can be found at
http://dx.doi.org/10.1016/j.nut.2014.10.004
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