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Abstract—In this paper, we introduce and study a new class of set-valued nonlinear generalized
variational inclusion with noncompact valued mappings and construct a new iterative algorithm. We
prove the existence of solutions for this class of variational inclusion and the convergence of iterative
sequences generated by this algorithm.
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1. INTRODUCTION

Variational inequalities, introduced by Hartman and Stampacchia [1] in the early sixties, are a
very powerful tool of the current mathematical technology. These have been extended and gener-
alized to study a wide class of problems arising in mechanics, physics, optimization and control,
nonlinear programming, economics and transportation equilibrium and engineering sciences, etc.
Quasivariational inequalities are a generalized form of variational inequalities in which the con-
straint set depends on the solution. These were introduced and studied by Bensoussan, Goursat
and Lions [2]. For further details we refer to [3-7].

In 1991, Chang and Huang [8,9] introduced and studied some new class of complementarity
problems and variational inequalities for set-valued mappings with compact values in Hilbert
spaces. In the recent paper [10], Hassouni and Moudafi have studied a new class of varia-
tional inclusions, which included many variational and quasivariational inequalities considered
by Noor [11-13], Isac [14], and Siddiqi and Ansari [15,16] as special cases.

The main purpose of this work is to extend their ideas to more general problems. Especially,
let H be a real Hilbert space endowed with a norm || - ||, and inner product {-,-). Given set-valued
mappings T, A : H — 2F (where 2F denotes the family of all nonempty subsets of H) and
single-valued mappings f,p,g : H — H with Img{dom (8¢) # ¢, we consider the following
problem.

Find u € H, w € Tu, y € Au, such that g(u) [ dom (9p) # ¢, and

(f(w) - p(y), v—g(u) = 0 (g(u)) —pv), VveH, (1.1)

where Jp denotes the subdifferential of a proper, convex and lower semicontinuous function
¢ : H - RU {+o0}. This problem is called a set-valued nonlinear generalized variational
inclusion.
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It is clear that the set-valued nonlinear generalized variational inclusion (1.1) includes many
kinds of variational inequalities and quasivariational inequalities of [6-19] as special cases.
2. ITERATIVE ALGORITHM

LEMMA 2.1. u, w and y are solutions of problem (1.1) if and only if there exists w € Tu, y € Au
such that

o g(w) = JE (9(w) —a(f(w) - p(), (2.1)

1

where a > 0 is a constant and J¢ = (I + adyp)™" is the so-called proximal mapping on H.

ProOF. From the definition of J¢ one has

g(u) —a(f(w) — p(y)) € g(u) + adp (g(u)),

and hence

p(y) — f(w) € 0p (9(u)) .

From the definition of ¢ we have

o(v) = ¢ (9(u) + (p(y) - f(w),v—g(w)), VveH.

Thus u, w and y are solutions of (1.1). This completes the proof.
To obtain an approximate solution of (1.1), we can apply a successive approximation method
to the problem of solving
u € F(u) (2.2)

where
F(u) = u—g(u) + J§ (9(u) — a (f(Tu) — p(Au))).

Based on (2.1) and (2.2), we proceed with our algorithm.
Let T,A : H — CB(H) (where CB(H) denotes the family of all nonempty closed bounded
subsets of H). For given ug € H, let wy € Tuy, yo € Aug and

uy =t — g(uo) + J§ (9(uo) — o (f(wo) — p(¥0))) -
By [20], there exists w1 € Tu; and y; € Au; such that
lwi —woll < 1+ VH(Tuy, Tuo), Iy — voll < (1 + 1)H(Au, Auo),

where H is the Hausdorff metric on H. By induction, we can obtain our algorithm as follows.

ALGORITEM 2.1. Let T,A: H — CB(H), and f,p: H — H. For given ug € H, we can get an
algorithm for (1.1) as follows:

Unt1 = Un — §(Un) + JE (9(un) — a (f(wn) — p(yn))),

W € Tn,  [Wnt1 — wall < (14 (1 +7)7Y) H(Tuns1, Tun), 23)
Yn € Aln, lyn+1 —ynl < (1 +(1+ n)_l) H (Aunt1, Auy), .
n=0,1,2,....

REMARK 2.1. Algorithm 2.1 includes several known algorithms of [6,8-13,15-19] as special cases.
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3. EXISTENCE AND CONVERGENCE
DEFINITION 3.1. A mapping g : H — H is said to be

(i) strongly monotone if there exists some § > 0 such that
(g(u1) — g(ua),uy — ug) > bllus —uall®,  Vu € H, i=1,2,
(ii) Lipschitz continuous if there exists some ¢ > 0 such that
llg(u1) — gu2)ll < ollus — vz, Vu; € H, i=12.

DEFINITION 3.2. A set-valued mapping T : H — 2F s said to be

(i) strongly monotone with respect to a mapping f : H — H if there exists some 8 > 0 such
that

(f(w1) — f(wz),u1 — ug) > Bllug —ua|?,  Vu; €H, wi€Tu;, i=1,2,

(it) fI—Lipschitz continuous if there exists some v > 0 such that

o~

H (Tuy, Tua) < ylju1 — w2, Yu; € H, i=1,2.

THEOREM 3.1. Let g : H — H be strongly monotone and Lipschitz continuous, f, p: H — H be
Lipschitz continuous, T, A : H — CB(H) be H-Lipschitz continuous and T be strongly monotone
with respect to f. If the following conditions hold:

Breuk—1)| _ (B+ (k—1en)? — (112 — Eu?)k(2 - k)

& - et — 22 < 2yt — 2 J (3.1)
B> (1= keu+ v (n*y? — u?)k(2 - k), m>en, (32
ape <1—k, k=2vV1-26+0% k<1, (3.3)

where 8 and § are strongly monotone constants of T and g, respectively, v and u are ﬁ-Lipschitz
constants of T and A, respectively, and o, n and ¢ are the Lipschitz constants of g, f and p,
respectively, then there exist u € H, w € Tu, y € Au, such that g(u) {Ydom (8y) # ¢ and (1.1) is
satisfied. Moreover, un — u, Wy — W, Y — Y, N — 00, where {u,}, {wn} and {y,} are defined
in Algorithm 2.1.

ProoOF. From (2.3) we have

[tnt1 = unll = ||un — tn-1 ~ (9(un) — g(un-1)) + J& (h(tn)) — JE (h(un-1)) |,
where h(u,) = g(un) — a(f(w,) — p(yn)). Also we have
1€ ((n)) = £ (-1 | < Nh(tn) ~ Altin-1)]| < lltm ~ tin-1 = @ (F(wn) = F(wn-1)) |
+ llun = vn—1 = (9(un) — g(un-1)) | + allp(yn) — p(yn-1)II-
That is

[unt1 = tnll < 2l|un — un-1 — (9(un) — g(tn-1)) |l

+ lum ~ tnet — @ (Fwn) = Fwn-1)) | + allp(un) — Pl P

By Lipschitz continuity and strong monotonicity of g, we obtain

llun = tn—1 = (g(tn) = g(tn-1)) I < (1 = 26 + 0®)llup — tn_1|* (3.5)
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Also from ﬁ-Lipschitz continuity and strong monotonicity of T, and Lipschitz continuity of f,
we have

e = tn—1 = @ (f(wn) = flwn-1)) 2 < (1 = 28a+ o®n*(1 +n71)%9?) [lup — un—alf*.  (3.6)
By ﬁ-LipschitZ continuity of A, Lipschitz continuity of p and (2.3), we know

allp(¥n) — P(Yn-1)|l < ae(l +n" ) pllun — a1l (3.7)

So by combining (3.4)—(3.7) and denoting

60 i=2V1—26+0% + /1 - 2Ba+ (L +n )%y + ae(l +n7)p,

we get
lunt1 — unll < Onllun — un—1]).

Letting 8 := 2v/1 — 26 + 02 + /1 — 2Ba + a2n2y2 + aeu, we know that 6, \ 8. It follows
from (3.1)—(3.3) that § < 1. Hence 6, < 1, for n sufficiently large. Therefore {u,} is a Cauchy
sequence and we can suppose that u, — u € H.

Now we prove that w, — w € Tu, y, — y € Au. In fact, it follows from Algorithm 2.1 that

llwn = wn1ll < (1 +07)7 flun — a1,

”yn - yn—l” < (1 + n_l)/‘ ”un - un—1”§

i.e., {wy} and {y,} are Cauchy sequences. Let w, — w, y, — y. Further we have

o(w,Tu) = inf{|lw — 2|| : z € Tu} < ||lw — wy || + o(wn, Tu)

IA

lw = wall + H(Tun, Tu) < ||w — wa|| + V]Jun — u) — 0.

Hence, w € Tu. Similarly, y € Au. This completes the proof.

REMARK 3.1. For a suitable choice of the operators g, T, A, f, p and the function p, we can
obtain several known results [6,8~19] as special cases of the main result of this paper.
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