Generalized Nonlinear Variational Inclusions with Noncompact Valued Mappings

Nan-Jing Huang
Department of Mathematics, Sichuan University
Chengdu, Sichuan 610064, P.R. China

(Received and accepted November 1995)

Abstract

In this paper, we introduce and study a new class of set-valued nonlinear generalized variational inclusion with noncompact valued mappings and construct a new iterative algorithm. We prove the existence of solutions for this class of variational inclusion and the convergence of iterative sequences generated by this algorithm.

Keywords-Variational inclusion, Set-valued mapping, Algorithm, Existence, Convergence.

1. INTRODUCTION

Variational inequalities, introduced by Hartman and Stampacchia [1] in the early sixties, are a very powerful tool of the current mathematical technology. These have been extended and generalized to study a wide class of problems arising in mechanics, physics, optimization and control, nonlinear programming, economics and transportation equilibrium and engineering sciences, etc. Quasivariational inequalities are a generalized form of variational inequalities in which the constraint set depends on the solution. These were introduced and studied by Bensoussan, Goursat and Lions [2]. For further details we refer to [3-7].

In 1991, Chang and Huang [8,9] introduced and studied some new class of complementarity problems and variational inequalities for set-valued mappings with compact values in Hilbert spaces. In the recent paper [10], Hassouni and Moudafi have studied a new class of variational inclusions, which included many variational and quasivariational inequalities considered by Noor [11-13], Isac [14], and Siddiqi and Ansari [15,16] as special cases.

The main purpose of this work is to extend their ideas to more general problems. Especially, let H be a real Hilbert space endowed with a norm $\|\cdot\|$, and inner product $\langle\cdot, \cdot\rangle$. Given set-valued mappings $T, A: H \rightarrow 2^{H}$ (where 2^{H} denotes the family of all nonempty subsets of H) and single-valued mappings $f, p, g: H \rightarrow H$ with $\operatorname{Im} g \cap \operatorname{dom}(\partial \varphi) \neq \phi$, we consider the following problem.

Find $u \in H, w \in T u, y \in A u$, such that $g(u) \bigcap \operatorname{dom}(\partial \varphi) \neq \phi$, and

$$
\begin{equation*}
\langle f(w)-p(y), v-g(u)\rangle \geq \varphi(g(u))-\varphi(v), \quad \forall v \in H \tag{1.1}
\end{equation*}
$$

where $\partial \varphi$ denotes the subdifferential of a proper, convex and lower semicontinuous function $\varphi: H \rightarrow R \cup\{+\infty\}$. This problem is called a set-valued nonlinear generalized variational inclusion.

It is clear that the set-valued nonlinear generalized variational inclusion (1.1) includes many kinds of variational inequalities and quasivariational inequalities of [6-19] as special cases.

2. ITERATIVE ALGORITHM

Lemma 2.1. u, w and y are solutions of problem (1.1) if and only if there exists $w \in T u, y \in A u$ such that

$$
\begin{equation*}
g(u)=J_{\alpha}^{\varphi}(g(u)-\alpha(f(w)-p(y))), \tag{2.1}
\end{equation*}
$$

where $\alpha>0$ is a constant and $J_{\alpha}^{\varphi}=(I+\alpha \partial \varphi)^{-1}$ is the so-called proximal mapping on H. Proof. From the definition of J_{α}^{φ} one has

$$
g(u)-\alpha(f(w)-p(y)) \in g(u)+\alpha \partial \varphi(g(u)),
$$

and hence

$$
p(y)-f(w) \in \partial \varphi(g(u))
$$

From the definition of $\partial \varphi$ we have

$$
\varphi(v) \geq \varphi(g(u))+\langle p(y)-f(w), v-g(u)\rangle, \quad \forall v \in H
$$

Thus u, w and y are solutions of (1.1). This completes the proof.
To obtain an approximate solution of (1.1), we can apply a successive approximation method to the problem of solving

$$
\begin{equation*}
u \in F(u) \tag{2.2}
\end{equation*}
$$

where

$$
F(u)=u-g(u)+J_{\alpha}^{\varphi}(g(u)-\alpha(f(T u)-p(A u))) .
$$

Based on (2.1) and (2.2), we proceed with our algorithm.
Let $T, A: H \rightarrow C B(H)$ (where $C B(H)$ denotes the family of all nonempty closed bounded subsets of H). For given $u_{0} \in H$, let $w_{0} \subset T u_{0}, y_{0} \in A u_{0}$ and

$$
u_{1}-u_{0}-g\left(u_{0}\right)+J_{\alpha}^{\varphi}\left(g\left(u_{0}\right)-\alpha\left(f\left(w_{0}\right)-p\left(y_{0}\right)\right)\right) .
$$

By [20], there exists $w_{1} \in T u_{1}$ and $y_{1} \in A u_{1}$ such that

$$
\left\|w_{1}-w_{0}\right\| \leq(1+1) \widehat{\mathbf{H}}\left(T u_{1}, T u_{0}\right), \quad\left\|y_{1}-y_{0}\right\| \leq(1+1) \widehat{\mathbf{H}}\left(A u_{1}, A u_{0}\right)
$$

where $\hat{\mathbf{H}}$ is the Hausdorff metric on H. By induction, we can obtain our algorithm as follows.
Algorithm 2.1. Let $T, A: H \rightarrow C B(H)$, and $f, p: H \rightarrow H$. For given $u_{0} \in H$, we can get an algorithm for (1.1) as follows:

$$
\begin{array}{rlrl}
u_{n+1} & =u_{n}-g\left(u_{n}\right)+J_{\alpha}^{\varphi}\left(g\left(u_{n}\right)-\alpha\left(f\left(w_{n}\right)-p\left(y_{n}\right)\right)\right), \\
w_{n} \in T u_{n}, & & \left\|w_{n+1}-w_{n}\right\| & \leq\left(1+(1+n)^{-1}\right) \widehat{\mathbf{H}}\left(T u_{n+1}, T u_{n}\right), \\
y_{n} \in A u_{n}, & \left\|y_{n+1}-y_{n}\right\| & \leq\left(1+(1+n)^{-1}\right) \widehat{\mathbf{H}}\left(A u_{n+1}, A u_{n}\right), \tag{2.3}\\
n & =0,1,2, \ldots
\end{array}
$$

Remark 2.1. Algorithm 2.1 includes several known algorithms of $[6,8-13,15-19]$ as special cases.

3. EXISTENCE AND CONVERGENCE

Definition 3.1. A mapping $g: H \rightarrow H$ is said to be
(i) strongly monotone if there exists some $\delta>0$ such that

$$
\left\langle g\left(u_{1}\right)-g\left(u_{2}\right), u_{1}-u_{2}\right\rangle \geq \delta\left\|u_{1}-u_{2}\right\|^{2}, \quad \forall u_{i} \in H, \quad i=1,2,
$$

(ii) Lipschitz continuous if there exists some $\sigma>0$ such that

$$
\left\|g\left(u_{1}\right)-g\left(u_{2}\right)\right\| \leq \sigma\left\|u_{1}-u_{2}\right\|, \quad \forall u_{i} \in H, \quad i=1,2
$$

Definition 3.2. A set-valued mapping $T: H \rightarrow 2^{H}$ is said to be
(i) strongly monotone with respect to a mapping $f: H \rightarrow H$ if there exists some $\beta>0$ such that

$$
\left\langle f\left(w_{1}\right)-f\left(w_{2}\right), u_{1}-u_{2}\right\rangle \geq \beta\left\|u_{1}-u_{2}\right\|^{2}, \quad \forall u_{i} \in H, \quad w_{i} \in T u_{i}, \quad i=1,2
$$

(ii) $\widehat{\mathbf{H}}$-Lipschitz continuous if there exists some $\gamma>0$ such that

$$
\widehat{\mathbf{H}}\left(T u_{1}, T u_{2}\right) \leq \gamma\left\|u_{1}-u_{2}\right\|, \quad \forall u_{i} \in H, \quad i=1,2 .
$$

Theorem 3.1. Let $g: H \rightarrow H$ be strongly monotone and Lipschitz continuous, $f, p: H \rightarrow H$ be Lipschitz continuous, $T, A: H \rightarrow C B(H)$ be $\widehat{\mathbf{H}}$-Lipschitz continuous and T be strongly monotone with respect to f. If the following conditions hold:

$$
\begin{align*}
\left|\alpha-\frac{\beta+\epsilon \mu(k-1)}{\eta^{2} \gamma^{2}-\epsilon^{2} \mu^{2}}\right| & <\frac{\sqrt{(\beta+(k-1) \epsilon \mu)^{2}-\left(\eta^{2} \gamma^{2}-\epsilon^{2} \mu^{2}\right) k(2-k)}}{\eta^{2} \gamma^{2}-\epsilon^{2} \mu^{2}}, \tag{3.1}\\
\beta> & >(1-k) \epsilon \mu+\sqrt{\left(\eta^{2} \gamma^{2}-\epsilon^{2} \mu^{2}\right) k(2-k)}, \quad \eta \gamma>\epsilon \mu, \tag{3.2}\\
\alpha \mu \epsilon & <1-k, \quad k=2 \sqrt{1-2 \delta+\sigma^{2}}, \tag{3.3}
\end{align*}
$$

where β and δ are strongly monotone constants of T and g, respectively, γ and μ are $\widehat{\mathbf{H}}$-Lipschitz constants of T and A, respectively, and σ, η and ϵ are the Lipschitz constants of g, f and p, respectively, then there exist $u \in H, w \in T u, y \in A u$, such that $g(u) \cap \operatorname{dom}(\partial \varphi) \neq \phi$ and (1.1) is satisfied. Moreover, $u_{n} \rightarrow u, w_{n} \rightarrow w, y_{n} \rightarrow y, n \rightarrow \infty$, where $\left\{u_{n}\right\},\left\{w_{n}\right\}$ and $\left\{y_{n}\right\}$ are defined in Algorithm 2.1.
Proof. From (2.3) we have

$$
\left\|u_{n+1}-u_{n}\right\|=\left\|u_{n}-u_{n-1}-\left(g\left(u_{n}\right)-g\left(u_{n-1}\right)\right)+J_{\alpha}^{\varphi}\left(h\left(u_{n}\right)\right)-J_{\alpha}^{\varphi}\left(h\left(u_{n-1}\right)\right)\right\|,
$$

where $h\left(u_{n}\right)=g\left(u_{n}\right)-\alpha\left(f\left(w_{n}\right)-p\left(y_{n}\right)\right)$. Also we have

$$
\begin{aligned}
\left\|J_{\alpha}^{\varphi}\left(h\left(u_{n}\right)\right)-J_{\alpha}^{\varphi}\left(h\left(u_{n-1}\right)\right)\right\| \leq & \left\|h\left(u_{n}\right)-h\left(u_{n-1}\right)\right\| \leq\left\|u_{n}-u_{n-1}-\alpha\left(f\left(w_{n}\right)-f\left(w_{n-1}\right)\right)\right\| \\
& +\left\|u_{n}-u_{n-1}-\left(g\left(u_{n}\right)-g\left(u_{n-1}\right)\right)\right\|+\alpha\left\|p\left(y_{n}\right)-p\left(y_{n-1}\right)\right\| .
\end{aligned}
$$

That is

$$
\begin{align*}
\left\|u_{n+1}-u_{n}\right\| \leq & 2\left\|u_{n}-u_{n-1}-\left(g\left(u_{n}\right)-g\left(u_{n-1}\right)\right)\right\| \\
& +\left\|u_{n}-u_{n-1}-\alpha\left(f\left(w_{n}\right)-f\left(w_{n-1}\right)\right)\right\|+\alpha\left\|p\left(y_{n}\right)-p\left(y_{n-1}\right)\right\| . \tag{3.4}
\end{align*}
$$

By Lipschitz continuity and strong monotonicity of g, we obtain

$$
\begin{equation*}
\left\|u_{n}-u_{n-1}-\left(g\left(u_{n}\right)-g\left(u_{n-1}\right)\right)\right\|^{2} \leq\left(1-2 \delta+\sigma^{2}\right)\left\|u_{n}-u_{n-1}\right\|^{2} . \tag{3.5}
\end{equation*}
$$

Also from $\widehat{\mathbf{H}}$-Lipschitz continuity and strong monotonicity of T, and Lipschitz continuity of f, we have

$$
\begin{equation*}
\left\|u_{n}-u_{n-1}-\alpha\left(f\left(w_{n}\right)-f\left(w_{n-1}\right)\right)\right\|^{2} \leq\left(1-2 \beta \alpha+\alpha^{2} \eta^{2}\left(1+n^{-1}\right)^{2} \gamma^{2}\right)\left\|u_{n}-u_{n-1}\right\|^{2} . \tag{3.6}
\end{equation*}
$$

By $\widehat{\mathbf{H}}$-Lipschitz continuity of A, Lipschitz continuity of p and (2.3), we know

$$
\begin{equation*}
\alpha\left\|p\left(y_{n}\right)-p\left(y_{n-1}\right)\right\| \leq \alpha \epsilon\left(1+n^{-1}\right) \mu\left\|u_{n}-u_{n-1}\right\| . \tag{3.7}
\end{equation*}
$$

So by combining (3.4)-(3.7) and denoting

$$
\theta_{n}:=2 \sqrt{1-2 \delta+\sigma^{2}}+\sqrt{1-2 \beta \alpha+\alpha^{2} \eta^{2}\left(1+n^{-1}\right)^{2} \gamma^{2}}+\alpha \epsilon\left(1+n^{-1}\right) \mu
$$

we get

$$
\left\|u_{n+1}-u_{n}\right\| \leq \theta_{n}\left\|u_{n}-u_{n-1}\right\| .
$$

Letting $\theta:=2 \sqrt{1-2 \delta+\sigma^{2}}+\sqrt{1-2 \beta \alpha+\alpha^{2} \eta^{2} \gamma^{2}}+\alpha \epsilon \mu$, we know that $\theta_{n} \searrow \theta$. It follows from (3.1)-(3.3) that $\theta<1$. Hence $\theta_{n}<1$, for n sufficiently large. Therefore $\left\{u_{n}\right\}$ is a Cauchy sequence and we can suppose that $u_{n} \rightarrow u \in H$.

Now we prove that $w_{n} \rightarrow w \in T u, y_{n} \rightarrow y \in A u$. In fact, it follows from Algorithm 2.1 that

$$
\begin{aligned}
\left\|w_{n}-w_{n-1}\right\| & \leq\left(1+n^{-1}\right) \gamma\left\|u_{n}-u_{n-1}\right\|, \\
\left\|y_{n}-y_{n-1}\right\| & \leq\left(1+n^{-1}\right) \mu\left\|u_{n}-u_{n-1}\right\| ;
\end{aligned}
$$

i.e., $\left\{w_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences. Let $w_{n} \rightarrow w, y_{n} \rightarrow y$. Further we have

$$
\begin{aligned}
\varrho(w, T u) & =\inf \{\|w-z\|: z \in T u\} \leq\left\|w-w_{n}\right\|+\varrho\left(w_{n}, T u\right) \\
& \leq\left\|w-w_{n}\right\|+\widehat{\mathbf{H}}\left(T u_{n}, T u\right) \leq\left\|w-w_{n}\right\|+\gamma\left\|u_{n}-u\right\| \rightarrow 0 .
\end{aligned}
$$

Hence, $w \in T u$. Similarly, $y \in A u$. This completes the proof.
Remark 3.1. For a suitable choice of the operators g, T, A, f, p and the function φ, we can obtain several known results [$6,8-19$] as special cases of the main result of this paper.

REFERENCES

1. P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta. Math. 115, 271-310, (1966).
2. A. Bensoussan, M. Goursat and J.L. Lions, Control impulsinnel et inequations quasivariationalles stationaries, C. R. Acad. Sci. 276, 1279-1284, (1973).
3. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Application to Free Boundary Problems, Wiley, New York, (1984).
4. A. Bensoussan, Stochastic Control by Functional Analysis Method, North-Holland, Amsterdam, (1982).
5. A. Bensoussan and J.L. Lions, Impulse Control and Quasivariational Inequalities, Gauthiers-Villers, Bordas, Paris, (1984).
6. Shih-Sen Chang, Variational Inequality and Complementarity Problem Theory with Applications, Shanghai Scientific and Tech. Literature Publishing House, Shanghai, (1991).
7. U. Mosco, Implicit variational problems and quasi-variational inequalities, In Lecture Notes in Mathematics, Vol. 543, pp. 83-156, Springer-Verlag, Berlin, (1976).
8. Shih-Sen Chang and Nan-Jing Huang, Generalized strongly nonlinear quasi-complementarity problems in Hilbert spaces, J. Math. Anal. Appl. 158, 194-202, (1991).
9. Shih-Sen Chang and Nan-Jing Huang, Generalized mutivalued implicit complementarity problems in Hilbert spaces, Math. Japonica 36, 1093-1100, (1991).
10. A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl. 185, 706-712, (1994).
11. M.A. Noor, Strongly nonlinear variational inequalities, C. R. Math. Rep. Acad. Sci. Canada 4, 213-218, (1982).
12. M.A. Noor, On the nonlinear complementarity problem, J. Math. Anal. Appl. 123, 455-460, (1987).
13. M.A. Noor, Quasivariational inequalities, Appl. Math. Lett. 1 (4), 367-370, (1988).
14. G. Isac, A special variational inequality and the implicit complementarity problem, J. Fac. Sci. Univ. 37, 109-127, (1990).
15. A.H. Siddiqi and Q.H. Ansari, Strongly nonlinear quasivariational inequalities, J. Math. Anal. Appl. 149, 444-450, (1990).
16. A.H. Siddiqi and Q.H. Ansari, General strongly nonlinear variational inequalities, J. Math. Anal. Appl. 166, 386-392, (1992).
17. Shih-Sen Chang and Nan-Jing Huang, Generalized quasi-complementarity problems for a pair of fuzzy mappings, Fuzzy Sets and Systems (to appear).
18. Nan-Jing Huang and Xin-Qi Hu, Generalized multi-valued nonlinear quasi-complementarity problems in Hilbert spaces, J. Sichuan Univ. 31, 306-310, (1994).
19. Lu-Chuan Zheng, Completely generalized strongly nonlinear quasicomplementarity problems in Hilbert spaces, J. Math. Anal. Appl. 193, 706-714, (1995).
20. S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30, 475-488, (1969).
