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Abstract-In this paper, we introduce and study a new class of set-valued nonlinear generalized 
variational inclusion with noncompact valued mappings and construct a new iterative algorithm. We 
prove the existence of solutions for this class of variational inclusion and the convergence of iterative 
sequences generated by this algorithm. 
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1. INTRODUCTION 

Variational inequalities, introduced by Hartman and Stampacchia [I] in the early sixties, are a 
very powerful tool of the current mathematical technology. These have been extended and gener- 
alized to study a wide class of problems arising in mechanics, physics, optimization and control, 
nonlinear programming, economics and transportation equilibrium and engineering sciences, etc. 
Quasivariational inequalities are a generalized form of variational inequalities in which the con- 
straint set depends on the solution. These were introduced and studied by Bensoussan, Goursat 
and Lions [2]. For further details we refer to [3-71. 

In 1991, Chang and Huang [8,9] introduced and studied some new class of complementarity 
problems and variational inequalities for set-valued mappings with compact values in Hilbert 
spaces. In the recent paper [lo], Hassouni and Moudafi have studied a new class of varia- 
tional inclusions, which included many variational and quasivariational inequalities considered 
by Noor [ll-131, Isac [14], and Siddiqi and Ansari [15,16] as special cases. 

The main purpose of this work is to extend their ideas to more general problems. Especially, 
let H be a real Hilbert space endowed with a norm ]] . (I, and inner product (., .). Given set-valued 
mappings T,A : H -+ 2H (where 2H denotes the family of all nonempty subsets of H) and 
single-valued mappings f, p, g : H + H with Img r)dom (a(p) # 4, we consider the following 
problem. 

Find u E H, w E Tu, y E Au, such that g(u) ndom (acp) # 4, and 

(f(w) -P(Y), 21 - g(u)) 2 ‘p Mu)) - cp(?J), Vu E H, (1.1) 

where dv denotes the subdifferential of a proper, convex and lower semicontinuous function 

cp : H + R U {+co}. This problem is called a set-valued nonlinear generalized variational 
inclusion. 

Typeset by An/zs-Tf$ 

25 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81102745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


26 N.-J. HIJANG 

It is clear that the set-valued nonlinear generalized variational inclusion (1.1) includes many 
kinds of variational inequalities and quasivariational inequalities of [6-191 as special cases. 

2. ITERATIVE ALGORITHM 

LEMMA 2.1. u, w and y are solutions ofproblem (1.1) if and only if there exists w E Tu, y E Au 
such that 

‘? 421) = J,” (g(‘lL) - a (f(w) - P(Y))) > (2.1) 

where (Y > 0 is a constant and J$ = (I + ads)-’ is the so-called proximal mapping on H. 

PROOF. From the definition of J$ one has 

g(u) - Q (f(w) -P(Y)) E g(u) + a% (g(u)) 7 

and hence 

P(Y) - f(w) E 89 (g(u)). 

From the definition of 89 we have 

P(V) L P (g(u)) + MY) - f(w), II- g(u)), Vu E H. 

Thus U, w and y are solutions of (1.1). This completes the proof. 
To obtain an approximate solution of (l.l), we can apply a successive approximation method 

to the problem of solving 

U E F(u) (2.2) 

where 

F(u) = u - s(u) + J,’ (g(u) - Q W’u) - PW))). 

Based on (2.1) and (2.2), we proceed with our algorithm. 

Let T,A : H -+ CB(H) (where CB(H) denotes the family of all nonempty closed bounded 
subsets of H). For given uo E H, let wg E Tuo, yo E Auo and 

~1 = uo - g(uo) + J: (duo) - a (f(wo) - P(Yo))) . 

By [20], there exists w1 E Tul and y1 E Au1 such that 

11~1 - ~011 2 (I+ l)H(Tul,Tuo), 11~1 - YOII I Cl+ ~P-WW,AUO), 

where g is the Hausdorff metric on H. By induction, we can obtain our algorithm as follows. 

ALGORITHM 2.1. Let T,A : H -+ CB(H), and f,p : H + H. For given ug E H, we can get an 
algorithm for (1.1) as follows: 

%a+1 = un - dwz) + J,” (dun) - Q (f(wn) - P(Y~>>) 7 

wn E Tun, lIWn+l - wnll I (1 + Cl+ 4-‘) @k+d%J, 
in E Aun, IIyn+l - ~nll I (I+ Cl+ 4-l) G &&+I, Ad, (2.3) 

12 = 0, 1,2, . . . . 

REMARK 2.1. Algorithm 2.1 includes several known algorithms of [6,8-l 3,15-191 as special cases. 
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3. EXISTENCE AND CONVERGENCE 

DEFINITION 3.1. A mapping g : H ---) H is said to he 
(i) strongly monotone if there exists some 6 > 0 such that 

(g(w) - L7(U2),% - u2) L qu1 - ‘1121121 tlui E H, i = 1,2, 

(ii) Lipschitz continuous if there exists some u > 0 such that 

IId%) - d~2)ll 5 41% - u2IL 

DEFINITION 3.2. A set-valued mapping T : H -+ 2H 
(i) strongly monotone with respect to a mapping 

that 

(f(w) - f(Z02),w - 212) L Pllw - u2112, 

Vui E H, i = 1,2. 

is said to be 

f : H + H if there exists some p > 0 such 

‘dui E H, wi E Tui, i = 1,2, 

(ii) G-Lipschitz continuous if there exists some 7 > 0 such that 

H (TN, 5542) 5 rllw - 74211, kfui E H, i = 1,2. 

THEOREM 3.1. Let g : H + H be strongly m_onotone and Lipschitz continuous, f, p : H + H be 
Lipschitz continuous, T, A : H ---t CB(H) be H-Lipschitz continuous and T be strongly monotone 
with respect to f. If the following conditions hold: 

Q _ P + ECL(k - 1) 
7272 - ,2p2 < 

&!I + (k - l)q)2 - (7272 - +9)k(2 - k) 
7272 - ,2p2 9 (3.1) 

p > (1 - k)E/J + J(q2+/2 - E2@)k(2 - k), 777 > % (3.2) 

~,LLE < 1 - k, k = 2Ji7%7, k < 1, (3.3) 

where ,4 and 6 are strongly monotone constants of T and g, respectively, 7 and j.~ are s-Lipschitz 
constants of T and A, respectively, and u, q and c are the Lipschitz constants of g, f and p, 
respectively then there exist u E H, w E Tu, y E Au, such that g(u) ndom (a(p) # C#J and (1.1) is 
satisfied. Moreover, u, --) u, 20, -+ w, yn -+ y, n -+ 00, where {un}, {w,} and {Pi} are defined 
in Algorithm 2.1. 
PROOF. From (2.3) we have 

II%+1 - %ll = 11% - %a-1 - (dun) -dun-l>) + J,’ (M’l~n)) - J,’ (h(un-1)) II, 
where h(un) = g(un) - o (f (w,J - ~(3,)). Also we have 

11 Jx (h(un)) - J$ (h(u,-I)) II 5 Ilh(un> - f-dun-l)11 I 11% - %-I- a(f (wn) - f (‘h-1)) /I 
+ II% - %-1 - M4 - d%-1)) II + allp(y4 - P(Yn-dll. 

That is 

II%+1 - %ll I 2II% - a-1 - M%> -9(%-l)) II 
+ II% - %-1 - CY (f(%) - f(wn--1)) II + QllP(Yn) - P(Yta-1)ll. 

By Lipschitz continuity and strong monotonicity of g, we obtain 

II% - %-1 - (d&d - d%-1)) II2 I (1 - 26 + ~2)ll%x - %t-1112. 

(3.4) 

(3.5) 
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Also from ii-Lipschitz continuity and strong monotonicity of T, and Lipschitz continuity 
we have 

llZln - u,-1 - cx (f(WJ - f(%-I)) II2 I (1 - 2@ + (-r2V2(l + n-1)2Y2) II% - %-1112. 

By %Lipschitz continuity of A, Lipschitz continuity of p and (2.3), we know 

alIP - P(Y,-1)ll 5 ac(l+ n-1)/+, - G-111. 

So by combining (3.4)-(3.7) and denoting 

8, := 2&xGG5 + Jl - 2pcy + a%+!(1 + ,-1)2y2 + M(l + n-1)/J, 

off, 

(3.6) 

(3.7) 

we get 
lbn+l - %ll 5 &llun - U,_lll. 

Letting 8 := 2& - 26 + u2 + Jl - 2@x + a2q2y2 + (Y+, we know that On \ 8. It follows 
from (3.1)-(3.3) that 6’ < 1. Hence On < 1, for n sufficiently large. Therefore {u,} is a Cauchy 
sequence and we can suppose that u, -+ u E H. 

Now we prove that w, + w E Tu, yn + y E Au. In fact, it follows from Algorithm 2.1 that 

II% - %-111 I (1+7+)-Y /I% - G&-111, 

IlYn - Yn-111 I (1 + n-lb II% - %lll; 

i.e., (2~~) ad {Y,) are Cauchy sequences. Let w, + w, yn + y. Further we have 

e(w,T~) = inf{llw - z/I : z E Tu} 5 IIw - w,II + e(wn,Tu) 

L IIw - wnll + G(Tu,, Tu) 5 Il’w - wnll + rllu, - 4 + 0. 

Hence, w E Tu. Similarly, y E Au. This completes the proof. 

REMARK 3.1. For a suitable choice of the operators g, T, A, f, p and the function cp, we can 
obtain several known results [6,8-191 as special cases of the main result of this paper. 
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