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On the Filon and Levin methods for highly oscillatory integral∫ b

a
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Abstract

This paper shows that for any suitably smooth function f (x) and arbitrarily selected interpolation nodes c1, c2, . . . , cv in [a, b],
the Filon method and the Levin method for

∫ b
a f (x)ei�g(x) dx with the polynomial interpolation approach are identical when g(x)

is a linear function. Based on this result, a new efficient Levin quadrature for
∫ b
a f (x)ei�g(x) dx is presented.
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1. Introduction

The quadrature of highly oscillating integrals is important in many areas of applied mathematics. Highly oscillatory
integrals are allegedly difficult to calculate by the standard classic integration formulas when the frequency is signif-
icantly larger than the number of quadrature points. Many methods have been developed since Filon [2], such as in
[12,14,11,8,9,3,4,6,5], etc.

The Filon quadrature of the form
∫ b

a
f (x)ei�g(x) dx is achieved by approximating f (x) by a polynomial p(x) with

degree �v − 1 at interpolation nodes c1, c2, . . . , cv and calculating
∫ b

a
p(x)ei�g(x) dx instead of

∫ b

a
f (x)ei�g(x) dx.

Iserles [3,4] analyzed the convergent behavior in a range of frequency regimes and showed that the accuracy increases
when oscillation becomes faster. Recently Iserles and NZrsett [5,6] extended the approach of Iserles [3,4] and defined
the generalized Filon method for

∫ b

a
f (x)ei�g(x) dx and showed that the rate of decay of the error, once frequency

grows, can be increased. Both the Filon method and the generalized Filon method, an approach of f (x) by splines, are
efficient for suitably smooth functions under the condition that the first few moments

∫ b

a
xkei�g(x) dx can be explicitly

calculated (cf. [6]).
The Levin method (cf. [8]) is also efficient and applicable to a wider class of

∫ b

a
f (x)ei�g(x) dx without explicit

computation of the moments. The integration problem is transformed into a certain O.D.E. problem, and this is solved
by a collocation technique at nodes c1, c2, . . . , cv . Levin [10] showed that for � large enough the accuracy increases

� The Project is sponsored by SRF for ROCS, SEM, China and by JSPS Long-Term Invitation Fellowship Research Program.
E-mail address: xiangsh@mail.csu.edu.cn.

0377-0427/$ - see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.cam.2006.10.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81102694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:xiangsh@mail.csu.edu.cn


S. Xiang / Journal of Computational and Applied Mathematics 208 (2007) 434–439 435

when oscillation becomes faster. In this paper, we show that for any suitably smooth function f (x) and arbitrarily
selected interpolation nodes c1, c2, . . . , cv in [a, b], the Filon method and the Levin method for

∫ b

a
f (x)ei�g(x) dx

with the polynomial interpolation approach are identical in case that g(x) is a linear function. Based on this result, we
present a special efficient Levin quadrature for

∫ b

a
f (x)ei�g(x) dx.

2. The identity of the two methods with the polynomial interpolation approach in case that g(x) is a linear
function

Let I (f ) denote the following integral:

I (f ) =
∫ b

a

f (x)ei�g(x) dx, (2.1)

where f and g are suitably smooth functions.
The Filon quadrature is achieved by approximating f (x) by a polynomial p(x) with degree �v − 1 at interpolation

nodes c1, c2, . . . , cv and calculating

QF(f ) =
∫ b

a

p(x)ei�g(x) dx. (2.2)

The spirit of the Levin method (cf. [8]) is based upon the fact that if f were of the form

f (x) = �′(x) + i�g′(x)�(x) ≡ L(1)�(x), a�x�b,

then the integral could be evaluated as

I (f ) =
∫ b

a

(�′(x) + i�g′(x)�(x))ei�g(x) dx = �(b)ei�g(b) − �(a)ei�g(a).

Select a polynomial �(x) with degree �v − 1 such that

�′(cj ) + i�g′(cj )�(cj ) = f (cj ), j = 1, 2, . . . , v, (2.3)

and calculate

QL(f ) =
∫ b

a

(�′(x) + i�g′(x)�(x))ei�g(x) dx = �(b)ei�g(b) − �(a)ei�g(a). (2.4)

Theorem 2.1. The Levin method and the Filon method are identical for
∫ b

a
f (x)ei�Ax dx (A �= 0) for arbitrarily

selected interpolation nodes c1, c2, . . . , cv in [a, b] and any suitably smooth function f (x).

Proof. Let p(x) be the interpolation polynomial for the Filon method and �(x) be the polynomial for the Levin
collocation method. Then

�′(cj ) + i�A�(cj ) = f (cj ) = p(cj ), j = 1, . . . , v. (2.5)

Note that �′(x) + i�A�(x) is also a polynomial with degree �v − 1 and by the Fundamental Theorem of Algebra
(see [1, pp. 101–103]),

�′(x) + i�A�(x) ≡ p(x).

Hence

QL(f ) = �(b)ei�Ab − �(a)ei�Aa

=
∫ b

a

(�′(x) + i�A�(x))ei�Ax dx

=
∫ b

a

p(x)ei�Ax dx

= QF(f ). �
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Remark 2.1. (i) The Filon method and Levin method are identical when the interpolation degree is greater than or
equal to 3 and Gauss–Legendre nodes are used, a negative answer to a statement in [3].

(ii) If we consider Hermite interpolation approximation at c1 = a and c2 = b for the Filon method and Levin method
in Theorem 2.1, Theorem 2.1 is also true since in this case �′(x) + i�A�(x) is also the Hermite interpolation of f (x)

at c1 = a and c2 = b and �′(x) + i�A�(x) ≡ p(x).
(iii) Theorem 2.1 is true only in the case that g(x) is linear. If g(x) is nonlinear with g′(x) �= 0, ∀x ∈ [a, b], let

f (x)=p(x) ≡ 1, v=1 and cv=x0 ∈ [a, b], then QF(f )=I (f )=∫ b

a
ei�g(x) dx and QL(f )=ei�g(b)−ei�g(a)/i�g′(x0).

We can select an x0 ∈ [a, b] such that QF(f ) /≡ QL(f ) since g(x) is nonlinear and g′(x) cannot be a constant in [a, b].
Then the two quadratures are not identical. For nonlinear function g(x), in most cases, the moment

∫ b

a
xkei�g(x) dx

cannot be computed explicitly.

In the following we present a new efficient Levin quadrature for I (f ) = ∫ b

a
f (x)ei�g(x) dx and extend the Filon

method to I (f ) = ∫ b

a
f (x)ei�g(x) dx without computing the moments where g′(x) �= 0, ∀x ∈ [a, b].

By Darboux’s Intermediate Value Theorem (cf. [15, p. 84]), g′(x) has the same sign in [a, b] and g(x) is monotonic
in [a, b]. Let y = g(x), then x can be written as x = g−1(y) and

I (f ) =
∫ b

a

f (x)ei�g(x) dx =
∫ g(b)

g(a)

f (x)

g′(x)
ei�y dy =

∫ g(b)

g(a)

f (g−1(y))

g′(g−1(y))
ei�y dy. (2.6)

Let �(y) be the Levin collocation polynomial at nodes dj = g(cj ), j = 1, 2, . . . , v. Then �(y) satisfies

�′(dj ) + i��(dj ) = f (g−1(dj ))

g′(g−1(dj ))
, dj = g(cj ), j = 1, 2, . . . , v.

That is,

�′(g(cj ))g
′(cj ) + i��(g(cj ))g

′(cj ) = f (cj ), j = 1, 2, . . . , v.

By Theorem 2.1 in the case of Fourier transform (2.6), we get that:

Corollary 2.1. For
∫ b

a
f (x)ei�g(x) dx, let �(g(x)) =∑v−1

k=0 ak(g(x))k satisfy

{[�(g(x))]′ + i�g′(x)�(g(x))}|cj
= f (cj ), j = 1, 2, . . . , v,

then

QF(f, y) = QL(f, y) = QL(f ) = �(g(b))ei�g(b) − �(g(a))ei�g(a), (2.7)

where QF(f, y) and QL(f, y) are the Filon and Levin Quadratures at nodes dj = g(cj ), j = 1, 2, . . . , v for∫ g(b)

g(a) f (g−1(y))/g′(g−1(y))ei�y dy.

Based on the van der Corput lemma (cf. Stein [13, p. 332]) and Corollary 2.1, we give a numerical analysis for (2.7).
For convenience, here we only consider the case � > 0.

Lemma 2.1 (van der Corput). Suppose g(x) is real-valued and smooth in (a, b), and that |g(k)(x)|�1f or all x ∈
(a, b) for a fixed value of k. Then∣∣∣∣

∫ b

a

ei�g(x) dx

∣∣∣∣ �c(k)�−1/k

holds when (i) k�2, or (ii) k =1 and g′(x) is monotonic. The bound c(k) is independent of g and �, c(k)=5 ·2k−1 −2.

Lemma 2.2 (Stein [13, p. 334]). Under the assumptions on g(x) in Lemma 2.1, we can conclude that∣∣∣∣
∫ b

a

ei�g(x)�(x) dx

∣∣∣∣ �c(k)�−1/k

[
|�(b)| +

∫ b

a

|�′(x)|dx

]
.
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Theorem 2.2. Suppose that f (x) and g(x) are suitably smooth and g′(x) �= 0 for all x in [a, b]. Then the special
quadrature (2.7) at arbitrary interpolation nodes c1 < · · · < cv satisfies

E(f ) = |I (f ) − QL(f )|� 3(1 + v)‖G(v)(y)‖∞|g(b) − g(a)|v
�v! ,

where G(y) = f (g−1(y))/g′(g−1(y)) and y = g(x).

Proof. Let p(y) be the interpolation polynomial of f (g−1(y))/g′(g−1(y)) at nodes dj = g(cj ), j = 1, 2, . . . , v.
By Corollary 2.1 and (2.7)

E(f ) = |I (f ) − QL(f )| = |I (f ) − QF(f, y)| =
∣∣∣∣∣
∫ g(b)

g(a)

�(y)ei�y dy

∣∣∣∣∣ , (2.8)

where �(y) : =f (g−1(y))/g′(g−1(y)) − p(y) with �(dj ) = 0, j = 1, 2, . . . , v. Then for �(y) there exists yj ∈
(dj , dj+1) such that

�′(yj ) = 0, j = 1, 2, . . . , v − 1.

By Theorem 8.1 in [7, p. 157], �(y) and �′(y) can be represented by

�(y) = �(v)(�1)

v!
v∏

j=1

(y − dj ), �′(y) = �(v)(�2)

(v − 1)!
v−1∏
j=1

(y − yj ), (2.9)

for some �1, �2 ∈ [g(a), g(b)] depending on y. Then by Lemma 2.2 for k = 1 and c(1) = 3, (2.9) and noticing that
p(v)(y) ≡ 0, we have

E(f ) = |I (f ) − QL(f )| = |I (f ) − QF(f )| =
∣∣∣∣∣
∫ g(b)

g(a)

�(y)ei�y dy

∣∣∣∣∣
�c(k)�−1

(
|�(g(b))| +

∫ g(b)

g(a)

|�′(y)|dy

)

� 3(1 + v)‖G(v)(y)‖∞|g(b) − g(a)|v
�v! . �

Remark 2.2. (i) In Theorem 2.2, if c1 = a and cv = b, integrating by parts, we can get

E(f ) = 1

�

∣∣∣∣∣
∫ g(b)

g(a)

�′(y)ei�y dy

∣∣∣∣∣ .

Similar to the proof in Theorem 2.2, the above error can be represented by

E(f )� 3v‖G(v)(y)‖∞|g(b) − g(a)|v−1

�2(v − 1)! . (2.10)

(ii) The error of the composite quadrature of (2.7) with v interpolation nodes including the endpoints of each
subinterval is

Eh,L(f )� 3v‖G(v)(y)‖∞(b − a)‖g′(x)‖v−1∞ hv−2

�2(v − 1)! , (2.11)

where h is the length of each subinterval.

Example 2.1. Let us consider the numerical quadrature for
∫ 1

0 cos(sin x) cos xei� sin x dx by (2.7) and the error bound
(2.10) (Table 1; Figs. 1, 2)
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Table 1
Error bounds of Example 2.1 by (2.10) at c1 = 0, c2 = 1(v = 2) or c1 = 0, c2 = 0.5, c3 = 1(v = 3): G(y) = cos y

� 10 102 103 104

EL(f) 0.0022 2.3599e-5 7.2509e-7 5.4012e-9
bound (v = 2) 0.0600 6.0000e-4 6.0000e-6 6.0000e-8

EL(f) 5.2170e-4 4.5711e-5 1.1629e-8 3.2875e-10
bound (v = 3) 0.0450 4.5000e-4 4.5000e-6 4.5000e-8
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Fig. 1. The error of numerical quadrature for
∫ 1

0 cos(sin(x)) cos(x)ei� sin(x) dx by (2.7).
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v=2: c1=0, c2=1

v=3: c1=0, c2=0.5, c3=1

Numerical Quadrature of ∫1cos(sinx)cosxeiω sinxdx 0

Fig. 2. The error for
∫ 1

0 cos(sin(x)) cos (x)ei� sin(x) dx by (2.7), scaled by �2.
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