
JOURNAL OF 
COMPUTATIONAL AND 
APPUED MATHEMATICS 

ELSEVIER Journal of Computational and Applied Mathematics 72 (1996) 345-358 

A generator of high-order embedded P-stable methods for the 
numerical solution of the Schr6dinger equation 

G. Avdelas, T.E. Simos* 
Laboratory of Applied Mathematics and Computers, Technical University of Crete, Kounoupidiana, 73100 I-Iania, 

Greece 

Received 17 February 1995; revised 4 January 1996 

Abstract 

A generator of new embedded P-stable methods of order 2n + 2, where n is the number of layers used by the embedded 
methods, for the approximate numerical integration of the one-dimensional Schrfdinger equation is developed in this paper. 
These new methods are called embedded methods because of a simple natural error control mechanism. Numerical results 
obtained for one-dimensional differential equations of the Schrtdinger type show the validity of the developed theory. 
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1. Introduction 

Numerous numerical techniques exist in the literature for solving the Schrtdinger equation [1, 4, 
5, 8, 9, 11-15, 18-25, 27-29, 32-35, 37, 39-43, 46]. 

The one-dimensional Schrtdinger equation is a boundary value problem which has the form 

y " ( x )  = [ l ( l  + 1)/x 2 + V ( x )  - k 21 y ( x ) ,  (1) 

with one boundary condition given by 

y(0) = 0, (2) 

and the other boundary condition, for large values of x, determined by physical considerations. 
Equations of this type occur very frequently in theoretical physics (see [31]) and there is a real 
need to be able to solve them both efficiently and reliably by numerical methods. In (1) the function 
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W(x)  = l(l  + 1)Ix z + V(x)  denotes the effective potential, which satisfies W(x)  ~ 0 as x ~ cx~, k z 
is a real number denoting the energy, l is a given integer and V is a given function which denotes 
the potential. 

The two-step Numerov's method is extremely effective as a means of  solving the Schr6dinger 
equation. This method is only of order four, but in practice it has been found to have a superior 
performance to certain higher-order four-step methods. The reason for this is explained in [45]. 

Cash and Raptis [8] have proposed the well-known Runge-Kutta type or hybrid methods. These 
methods are more accurate compared with Numerov's  method. The reason for this is explained in 
[45]. 

Exponential fitting is another approach for developing efficient methods for the solution of (1). 
This approach is appropriate because for large x the solution of (1) is periodic. A Numerov-type 
exponentially fitted method has been derived in [35]. Numerical results presented there indicate that 
these fitted methods are much more efficient than Numerov's method for the solution of  (1). Many 
authors have investigated the idea of  exponential fitting, since Raptis and Allison. We mention the 
papers of  Ixaru and Rizea [20], Simos [40-43], Raptis [32, 34], Raptis and Cash [37], and Cash, 
et al. [9]. 

In Section 2 we will develop the basic theory for the construction of  the P-stable methods via 
the (m,m) Pad6 approximation of  the exponential function. In Section 3 we will develop the P- 
stable m-stages methods of  order 2m + 2. The computational implementation of the generator of  
the P-stable methods is presented in  Section 4. Finally, in Section 5 an application of  the new 
methods to the phase shift problem and to the resonance problem of  the Schrrdinger equation is 
presented. 

2. The basic theory 

When we applied any direct two-step integration method to the scalar test equation 

y" = -w2  y, (3) 

we obtain the next difference equation 

Qo(H)y,+I + Ql(H)yn + Qo(H)y , - I  : O, H = iwh, (4) 

where Qj,j  : 0, 1,2 are polynomials in H, h is the integration step and Yn is the numerical approx- 
imation to y(x , )  (n = 0, 1 . . . .  ). The general solution to the difference equation (4) is 

y, = B1z~ + B2z~, (5) 

where Bj ( j  = 1,2 . . . .  ,k)  are constants which may be determined from the initial conditions and zl 
and z2 are the zeros of  the stability polynomial 

P ( c , H )  -~ Qo(H)c 2 + Ql (H)c  + Qo(H) = 0. (6) 
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Definition 1 (Lambert et al. [30] ). A method to solve the problem 

y" (x )  = f ( x ,  y),  y(xo) = yo, y'(xo) -~ Y'o (7) 

is said to have a periodicity interval (0,H0) if, for all H E (0,H0), the roots of  the stability polynomial 
(6) satisfy 

Cl(H) -- e i0(H), c2(H) ~ e -i0(H), (8) 

where 0 is a real function of  H - - w h .  

Definition 2 (Lambert et al. [30]). A method is said to be P-stable if its interval of periodicity is 

We note here that for P-stable methods an important contribution is the paper of  Hairer [17]. 

Definition 3 (Franco et al. [16]). The solution of  the characteristic equation P ( c , H ) =  0 is said to 
be of  order p, if one of  the roots of  P ( c , H )  (i.e., one of  the roots (8)), say el, satisfies 

e/- / -  e l (H)  = CH p+I + O ( H  p+2 ) for H --~ 0 (9) 

where C ( #  0) is the error constant of Cl(H). 

Let us write the stability polynomial P(c, r) as 

P(c , r )  =-- [Rm(r)R,n(-r)]c 2 - [R2( r )+  R ~ ( - r ) ] c  + [Rm(r)Rm(-r)] (10) 

with r E C and Rm given by 

mr m(m - 1 ) r  2 m(m - 1). . .  l r  m 
Rm(r) ------ 1 + ~mm + 2m(2m - 1)2! + 2 m ( 2 m -  1 ) ( 2 m -  2 ) . . . ( m  + 1)m!" ( l l )  

The roots of  (10) are given by 

cl(r)  = c2(r) -1 = Rm(r) /Rm(-r) ,  (12) 

i.e., the roots of (10) are obtained as the (m ,m)  Pad6 approximant to exp(H) because it is valid [16]: 

e H --  C l ( H )  = CH 2m+l q- O ( H  2m+2) for H ~ 0. (13) 

Therefore, if we take H = iwh, those roots are going to be conjugate complex numbers and always 
lie in the unity circumference, i.e., the method is going to be P-stable. 

3. Construction of the generator of the high-order embedded P-stable methods 

Consider the following family of  two-step methods: 

--fi.,i = Y . -  hz (bo,,.+l-, Y'.+I + bl,m+l-i Yt;,i-I + bo, m+l-i Y'. ' - , ) ,  

( ,,) aoy.+l + a l y .  + aoy.-1 = h 2 boy'.+l lYn, m + boYn-1  , 

i =  l(1)m, 

(14) 



348 G. Avdelas, T.E. SimoslJournal of  Computational and Applied Mathematics 72 (1996) 345-358 

where y"  = f (Xn ,  y . ) ,Y" , i -1  = f (Xn,  y~,i-1,), i is the number of  layer, and m is the number of  the 
family. We note that Y.,0 = Y.- We choose the parameters of  the method bo, r.+~-i, bl,m+l-i, bo and 
b~ in order to construct P-stable methods with the maximum order. 

The calculation of  the values of  these parameters can be obtained with the requirement of  the 
verification of  the test equation 

y " = 2 2 y ,  2 = i w  and wETS. (15) 

Consequently, for the above family of  methods we will have 

Yn, i = Yn - H2 (bo, m+l-iYn+l + bl,m+l-iYn, i_l "q- bo, m+l- iYn- l )  , i =  l(1)m, (16) 

+ alYn + aoYn-I : n 2 (boYn+l + bl'-fin, m + boYn- l~ .  (17) aoYn+l \ / 

From the last relation we get 

o r  

aoy,,+1 + alyn + aoy,,-i  

: n  2 [boYn+l + bl [Yn - g2(bo,  lYn+l + bl, l-Yn, m_l + bo, lYn-1)] + boYn-l] 

(ao -- bo H2 + bo, lblH4)yn+l + (al - b lH2)y~ + (ao - bo H2 + bo, lb lH4)yn-1  

-- blbl, lH4-yn, m_l ~- -blbl ,1  H4 [Yn - H2(bo,2Yn+I --~ bl,2Yn,m_2 -~ bo,2Yn-1)] 

= -- b lb l , lH4yn  + blbl,lbo,2H6yn+l + blbl,lbl,2H6-fin,m_2 + blbl,  lbo,2H6y.-1.  

(18) 

(19) 

So, we have 

(ao - bol l  2 + bo, i b l H  4 - blbl,  lbo,2H6)y,,+l + (al - b l H  2 + b lb l , lH4)yn  

+(ao - bo H2 + bo, l b l H  4 - blbl,  lbo,2H6)yn-1 

= -- blbl,  lbl,2H6yn, m_2 

=bl  b1, l bl,2 H6 [Yn -- H2(bo,3Yn+l + bl,3Yn, m-3 -'~ bo,3Yn-l)] 

=blbl ,  lbl,2H6yn - blbl,  lbl,2bo,3HSyn+l - blb1,1bl,2bl,3Ha-fin, m_3 + blbl,  lbl,2bo,3HSyn_l. (20) 

From (20) we have 

(ao - bol l  2 + bo, lb lH 4 - bxbl, lbo,2H 6 + blbllbl2bo,3H8)y.+l 

+(al  - bl H2 + blbl,  l H  4 - b lb l , lb l ,2n6)yn  

+(ao - bo H2 + bo, l b l H  4 - blbl,  lbo,2H 6 + blbl,lbl,2bo, aHS)yn-1 

: - blbl, lbl,2bl,aH8yn, m_3 . (21) 

Finally, and based on the above relations and on the fact that Yn,o = Yn, we will have 

Qo(H)y~+l + Q I ( H ) y .  + Qo(H)y ._~ = O, H = iwh, (22) 
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where 

Qo(H) = ao - boll 2 + bo, lbl H4 - blbl,lbo,2 H6 + blbllbl2bo,3 H8 . . . .  + 

+ ( -  1 )m+l blbl, lbl,2 .. • bl,m-lbo, m HEm+2 : ao - bo HE + bo, lbl H4 

+ b i l l  6 ~--~(-1) i ba,j bo, i+lH , (23) 
i=1 j=l / 

QI(H) - al - b lH  2 + blbl , lH 4 - blbl, lbl,2H 6 + . . .  + ( - 1  )m+lblbl, lba,2.., bl,mH 2m+2 

m--1 ( i / 2i--2 
= a l - b l H  2 + b l H 4 Z ( - 1 )  i+l l - I b l j  H . (24) 

i=l j=l / 

Based on the theory developed in Section 2 in order to construct P-stable methods of order 2m + 2 
we require 

Qo(H) - Rm+I(H)Rm+I(-H),  (25a) 

Q~(H) =- - [R2+I(H) + R~+I(-H)] .  (25b) 

From (25) we will have a system of 2(m+2)  linearly independent equations with 2(m+2)  coefficient 
-parameters of the family of method (14). The order m + 1 of the Rk(H)  in (25) is the required 
one because it is easy to see in these relations that we have only even powers of H. Based on the 
general form (11 ) it is easy to calculate the coefficient Am,k of H 2k, k -- 2( 1 )m + 1, of the fight-hand 
side of (25b) which is given by 

2 [ ] : [  m + l - - J ]  2 
A ,k  j:o 

1 +4 H m +_ l- j_" ~ 
Li=l ( 2 k - i ) ! ( i ! )  .= 2 m + 2 - J j = o 2 m + 2 - j ]  

2k-- 1 1 1 m + l - j  
+ ~  j I~0 2 m + 2 - - - j  ' m = 3 , 4 , . . . ,  (26) 

while for the coefficient Bm,k of H 2k, k = 2(1)m + 1 of the fight-hand side of (25a) we have that: 

_ ( - 1 )  k 2 m + l - j  Bmk m + l - - J /  + 
' (k[)~ t. j=o 2m + 2 ~-J /  ~ j=o 2m + 2 - j 

k-l (_l)i +(_l)2k-12k-i-1 m+ l _ j  i~ m+ l _ j ,  
+ Y ~  ( 2 k - i ) ! ( i ! )  1-I 2 m - + - 2 ~ j  2 m + 2 -  m = 3 , 4  . . . .  (27) 

i=l j=0 j=o 
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From (23), (24) and (25) we have for the coefficient parameters ao, al ,bo and bl that 

a o : l ,  a l : - - 2 ,  
1 m 

b o -  
4 

1 
b l = ~ q - - -  

2(2m + 1) 4(2m + 1)' 

m 4 m +  1 

2m + 1 4m + 2" 

For the coefficient parameters bl,i, i = l(1)m, from (25a) we obtain 

b l b l , 1  = - A m , 2  o r  b1,1 

-b lb l , l b l , 2  : -Am,3,  

Am,2 

hi ' 

m+l (--1) blbl,  lbl,2 . . .bl,m =- -Am,  m+l. 

So, we have 

Am, k+l 
bl,k = - Am,k ' k = 2(1)m. 

Finally, for the coefficients parameters bo, i, i = l(1)m from (25a) we obtain 

blbo,1 = -Brn,2 

-b lb l , lbo ,2  = -Bm,3 

m+l (--1) blbl,  l b l ,2 . . . b l ,  m_lbo, m = - B m ,  m+l. 

From (31) and (29) we have 

Bin, 2 
bo,1-- bl ' 

Bin, k+l 
b0, k - -  

Am, k ' 

(28) 

(29) 

(30) 

(31) 

k : 2(1)m. (32) 

4. Computational implemantation 

4.1. Error  es t imat ion  - -  L o c a l  Pad~ approx ima t ion  error 

For the integration of  systems of  initial-value problems, several methods have been proposed for 
the estimation of  the local truncation error (LTE) (see, for example, [38]). 
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In this paper we base our local error estimation technique on an embedded pair of  integration 
methods and on the fact that when the order of  (m, m) Pad6 approximation of the exponential function 
of  the P-stable method is maximal, then the approximation of the solution for the problems with 
oscillatory solution is better (see also [3]). 

We denote the higher-order solution, i.e., the solution which we obtain using the family m + 1 as 
ym+l m . n+l and the lower-order solution which we obtain using the family m as Y,+I, then, we have the 

following definition. 

Definition 4. We define the Local Pad6 Approximation Error (LPAE) in lower-order solution ynm+l 
by the quantity 

LPAE= I - ,n+l m 
Y n + l  - -  Y n + l  l"  (33) 

Under the assumption that h is sufficiently small, the LPAE in ynm+l c a n  be neglected compared 
to that in m Y n + l "  

If the LPAE of  acc is required and the step size of  the integration used for the nth step length is 
h~ the estimated step size for the (n + 1)st step, which would give a local error of  acc, must be 

acc ~ 1/q 

h~+ l=h .  LPAE ,/ ' (34) 

where q is the order of  the Pad6 approximation of  the exponential function. 
However, for ease of programming we have restricted all step changes to halving and doubling. 

Thus, based on the procedure developed in [36] for the local truncation error, the step control 
procedure which we have actually used is 

If LPAE < acc, hn+l = 2h,, 

If 100acc > LPAE > acc, hn+l = h,, 

If  LPAE > acc, h,+l 1 = i h, and repeat the step. 

(35) 

(36) 

We note that the LPAE estimate is in the lower-order solution ynm+l . However, if  this error 
estimate is acceptable, i.e., less than acc, we adopt the widely used procedure of  performing local 
extrapolation. Thus, although we are actually controlling an estimate of  the LPAE in lower-order 
solution Yn+l, it is the higher-order solution - m+l m Yn+l which we actually accept at each point. 

4.2. Computational implementation 

Application of  method (14) to the Schr6dinger equation (1) gives the following difference equation: 

Dn+lYn+l -q- Dnyn + D,-I  = O, (37) 
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where 

m--1 

D.+, =- ao - boA+, + bo. ,b,A+,A + blfn+lfn 2 Z ( - 1 )  i 
i=1 

D n = - a , - b l f n + b l f Z Z ( - 1 )  i+1 bl,j f~-l ,  
i=1 j = l  

m-I 
D,-1 ---- ao -- boA-,  + bo, lb l fn- l fn  -'[- blf~-lfZn ~--~(-1) i 

i=1 

bl,j bo, i+lfn , 

(I-I bl,j) bo, i+lfin -1, 
j = l  

(38) 

(39) 

(40) 

with fk = [Z(Z + 1)Ix 2 + V ( x k ) -  El, k = n -  l(1)n + 1. 
Based on the above difference equation we have that in order to apply the developed generator 

of  high-order P-stable methods to the one-dimensional Schr6dinger equation we make the following 
steps: 

1. We calculate Am,k and Bm, k, k --- 2(1)m from (26) and (27). 
2. We calculate the values of Dn+~, Dn and D,_1 based on the Homer's scheme. 
3. Now our trick to estimate the LPAE in k yn+l using the order of  -k+l y~+~ is clear. At every 

step we start with k = 3, i.e., with a P-stable method of order eight, and go to m increasing 
k until the local error estimate be less than the bound acc (l~<k~<m). For reasons of  round 
of  errors of the computers, in which we have implemented our methods, m should not exceed 
the value 6, because for m higher the error becomes of  order near to the accuracy of  the 
computers. 

5. Numerical illustrations 

In this section we present some numerical results to illustrate the performance of  our method. We 
consider the numerical integration of  the one-dimensional Schrfdinger equation. 

The radial or one-dimensional Schr6dinger equation (1) is one of  the boundary-value problems, 
with y ( 0 ) =  0, and a second boundary condition for large values of  x determined by physical 
considerations. The precise form of  this second boundary condition depends crucially on the sign 
of  E. In the case where E = k 2 > 0, then, in general, the potential function V(x) dies away faster 
than the term l(l + 1)/x2; Eq. (1) then effectively reduces to y"(x) + (E - l(l + 1)/x2)y(x) = 0, for 
large x. The above equation has linearly independent solutions kxjt(kx) and kxnt(kx), where jt(kx) 
and nt(kx) are the spherical Bessel and Neumann functions, respectively. Thus, the solution of  Eq. 
(1) has the asymptotic form 

y(x ) -~x~oo Akxjt( kx ) - Blocnt( kx ) 

~ A [sin (kx - ½ ln) + tan fit cos (kx - ½lrc)], 



G. Avdelas, T.E. SimoslJournal of Computational and Applied Mathematics 72 (1996) 345-358 353 

where fit is the phase shift which may be calculated from the formula 

tan 6t = y(x2 )S(xl ) - y(xl )S(x2 ) (41) 
y(xl )C(x2 ) - y(x2 )C(xl ) 

for Xl and x2 distinct points on the asymptotic region with S(x) -- kxjl(kx) and C(x) = -Iccnt(kx). 

5.1. Case I." The phase shift problem--Lennard Jones potential 

We illustrate the new methods derived in Section 3 by applying them to the solution of (1), 
where V(x) is the Lennard-Jones potential which has been widely discussed in the literature. For 
this problem the potential V(x) is given by 

V(x) = m(1/x 12 - 1/x 6) where m = 500. (42) 

We solve this problem as an initial value one and, in order to be able to use a two-step method 
we need an extra initial condition to be specified, e.g. Yl (=y(h)) .  It is well known that, for values 
of  x close to the origin, the solution of  (1) behaves like 

y(x) ~- Cx TM as x ~ 0. (43) 

In view of this we use yl --hl+l as our extra initial condition. 
The problem we consider is the computation of  the relevant phase shifts correct to 4 decimal 

places for energies k = 5 and k = 10. We will consider four approaches based on 
(1) the well-known variable step method in [37], 
(2) the variable step procedure developed in [44], 
(3) the variable step procedure developed in [45], 
(4) the generator of  P-stable methods developed in Section 3. 
The procedures (1), (2) and (3) are exactly described in [37], in [44] and in [45] and are used 

without modification. 
The generator of  P-stable methods used in (4) is developed in Section 3 and the error control 

procedure is described in Section 4. 
In Figs. 1 and 2 we present the real time of  computation of  the phase shifts correct to 4 decimal 

places. 

5.2. Case 1I: The resonance problem 

In this section we present some numerical results to illustrate the performance of our new methods. 
We consider the numerical integration of  the Schrrdinger equation (1) in the well-known case where 
the potential V(x) is the Woods-Saxon potential 

W ( x )  = V ( x ) -  uo uoz 
(1 +z)  [a(1 +z)  2] (44) 
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with z=exp[(x-Xo)/a],  u0----50, a=0 .6 ,X0=7 .0  and I=0 .  In order to solve this problem numerically 
we need to approximate the true (infinite) interval o f  integration [0, oo) by a finite interval. For the 
purpose of  our numerical illustration we take the domain of  integration as 0~<x~< 15. We consider 
(1) in a rather large domain of  energies, i.e., E = kZE [0, 1000]. The problem we consider is the 
so-called resonance problem. 
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This problem consists either of  finding the phase shift fit or finding those E, for E E [0, 1000], at 
which 6t equals 5rr.1 We actually solve the earlier problem. 

The boundary conditions for this problem are 

y(0) = 0, 

y(x) = cos(v/-Ex) for large x. 

The domain of  numerical integration is [0, 15]. 
In our numerical illustration we find the phase shifts fit by the three variable-step methods men- 

tioned in case I. 
1 

The numerical results obtained for these methods were compared with the analytic solution 6l---in" 
Table 1 shows the absolute errors in 10 -6,  hmax and the CPU time of computation for the calculation. 
The empty areas indicate that the corresponding absolute errors are larger than 1. 

6. Conclus ions  

We have constructed a generator of  high-order P-stable embedded methods. The methods are 
embedded because of  a natural error control procedure. We have proposed for this generator of  
P-stable methods procedures to define automatically the coefficients of  the methods in order to 
maximize the order of  the (m,m) Pad6 approximation of  the exponential function. It can be seen 
from the theoretical and numerical results that the new methods is considerably more accurate than 
the other well-known variable-step procedure in [37], the variable step procedure developed in [44] 
and the variable step procedure developed in [45]. 

All computations were carried out on a PC i486 using double precision arithmetic (16 significant 
digits accuracy). 

References  

[1] A.C. Allison, Ph.D. Thesis, Glasgow University, Glasgow, 1967. 
[2] A.C. Allison, The numerical solution of coupled differential equations arising from the Schrrdinger equation, J. 

Comput. Phys. 6 (1970) 378-391. 
[3] G. Avdelas and T.E. Simos, A generator of high-order embedded P-stable methods for the numerical solution of 

the Schrrdinger equation, Technical Report 3/1995, Applied Mathematics and Computers Laboratory, Technical 
University of Crete, 1995. 

[4] R.B. Bemstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams, J. 
Chem. Phys. 33 (1960) 795-804. 

[5] R.B. Bernstein, A. Dalgarno, H. Massey and I.C. Percival, Thermal scattering of atoms by homonuclear diatomic 
molecules, Proc. Roy. Soc. Ser. A 274 (1963) 427-442. 

16] J.M. Blatt, Practical points concerning the solution of the Schrrdinger equation. J. Comput. Phys. 1 (1967) 382-396. 
[7] L. Brusa and L. Nigro, A one-step method for direct integration of structural dynamic equations, Int. J. Numer. 

Methods Eng. 15 (1980) 685-699. 
[8] J.R. Cash and A.D. Rapt'is, A high order method for the numerical solution of the one-dimensional Schrrdinger 

equation. Comput. Phys. Commun. 33 (1984) 299-304. 
[9] J.R. Cash, A.D. Raptis and T.E. Simos, A sixth-order exponentially fitted method for the numerical solution of the 

radial Schrrdinger equation. J. Comput. Phys. 91 (1990) 413-423. 



G. Avdelas, T.E. SimoslJournal of Computational and Applied Mathematics 72 (1996) 345-358 357 

[10] J.W. Cooley, An improved eigenvalue corrector formula for solving Schrrdinger's equation for central fields. Math. 
Comput. 15 (1961) 363-374. 

[11] V. Fack, H. De Meyer and G. Vanden Berghe, Dynamic-group approach to the x 2 + 2x2/(1 + gx2), J. Math. Phys. 
27 (1986) 1340-1343. 

[12] V. Fack, H. De Meyer and G. Vanden Berghe, Some finite difference methods for computing eigenvalues and 
eigenvectors of special two-point boundary value problems J. Comput. Appl. Math. 20 (1987) 211-217. 

[13] V. Fack and G. Vanden Berghe, A programm for the calculation of energy eigenvalues and eigenstates of a 
Schrodinger equation, Comput. Phys. Commun. 39 (1986) 187-196. 

[14] V. Fack and G. Vanden Berghe, (Extended) Numerov method for computing eigenvalues of specific Schrrdinger 
equations, J. Phys. A Math. Gen. 20 (1987) 4153--4160. 

[15] V. Fack and G. Vanden Berghe, A finite difference approach for the calculation of perturbed oscillator energies, J. 
Phys. A Math. Gen. 18 (1987) 3355-3363. 

[16] J.M. Franco and M. Palacios, High-order P-stable multistep methods, J. Comput. Appl. Math. 30 (1990) 1-10. 
[17] E. Hairer, Unconditionally stable methods for second order differential equations, Numer. Math. 32 (1979) 373-379. 
[18] R.J.W. Hodgson, Precise shooting methods for the Schrrdinger equation, J. Phys. A Math. Gen. 21 (1988) 679~583. 
[19] L.Gr. Ixaru and M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978). 
[20] L.Gr. Ixaru and M. Rizea, A Numerov-like scheme for the numerical solution of the Schrrdinger equation in the 

deep continuum spectrum of energies. Comput. Phys. Commun. 19 (1980) 23-27. 
[21] J.P. Killingbeck, Some applications of perturbation theory to numerical integration methods for the SchrSdinger 

equation. Comput. Phys. Commun. 18 (1979) 211-214. 
[22] J.P. Killingbeck, One-dimensional band calculations, J. Phys. A Math. Gen. 13 (1980) L35-L37. 
[23] J.P. Killingbeck, Direct expectation value calculations, J. Phys. A Math. Gen. 18 (1985) 245-252. 
[24] J.P. Killingbeck, Accurate finite difference eigenvalues. Phys. Lett. A. 115 (1986) 301-303. 
[25] J. Killingbeck, Shooting methods for the Schrrdinger equation. J. Phys. A Math. Gen. 20 (1987) 1411-1417. 
[26] H. Kobeissi, On an 'eigenvalue function', associated to the electronic potential of any diatomic molecule, J. Phys. 

B At. Mol. Phys. 15(1982) 693-700. 
[27] H. Kobeissi and M. Kobeissi, On testing difference equations for the diatomic eigenvalue problem. J. Comput. 

Chem. 9 (1988) 844-850. 
[28] H. Kobeissi and M. Kobeissi, A new variable step method for the numerical integration of the one-dimensional 

Schrrdinger equation. J. Comput. Phys. 77 (1988) 501-512. 
[29] H. Kobeissi, M. Kobeissi and Ali E1-Hajj, On computing eigenvalues of the SchrSdinger equation for symmetrical 

potentials, J. Phys. A Math. Gen. 22 (1989) 287-295. 
[30] J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems. J. Inst. Math. 

Appl. 18 (1976), 189-202. 
[31] L.D. Landau and F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965). 
[32] A.D. Raptis, On the numerical solution of the Schrrdinger equation. Comput. Phys. Commun. 24 (1981) 1-4. 
[33] A.D. Raptis, Two-step methods for the numerical solution of the Schrrdinger equation. Computing 28 (1982) 373- 

378. 
[34] A.D. Raptis, Exponentially-fitted solutions of the eigenvalue SchrSdinger equation with automatic error control. 

Comput. Phys. Commun. 28 (1983) 427-431. 
[35] A.D. Raptis and A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrrdinger equation. 

Comput. Phys. Commun. 14 (1978) 1-5. 
[36] A.D. Raptis and J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrrdinger 

equation, Comput. Phys. Commun. 36 (1985) 113-119. 
[37] A.D. Raptis and J.R. Cash, Exponential and Bessel fitting methods for the numerical solution of the Schrfdinger 

equation. Comput. Phys. Commun. 44 (1987) 95-103. 
[38] L.F. Shampine, H.A. Watts, and S.M. Davenport, Solving nonstiff ordinary differential equations - -  The state of the 

art, SIAM Rev. 18 (1976) 376-411. 
[39] T.E. Simos, Numerical solution of ordinary differential equations with periodical solution. Doctoral Dissertation, 

National Technical University of Athens, 1990. 
[40] T.E. Simos, A four-step method for the numerical solution of the Schrrdinger equation. J. Comput. Appl. Math. 

30 (1990) 251-255. 



358 G. Avdelas, T.E. Simos/Journal of Computational and Applied Mathematics 72 (1996) 345-358 

[41] T.E. Simos, Some new four-step exponential-fitting methods for the numerical solution of the radial Schr6dinger 
equation. IMA J. Numer. Anal. 11 (1991) 347-356. 

[42] T.E. Simos, Exponential fitted methods for the numerical integration of the Schr6dinger equation. Comput. Phys. 
Commun. 71 (1992) 32-38. 

[43] T.E. Simos, Error analysis of exponential-fitted methods for the numerical solution of the one-dimensional 
Schr6dinger equation. Phys. Lett. A 177 (1993) 345-350. 

[44] T.E. Simos, New variable-step procedure for the numerical integration of the one-dimensional Schr6dinger equation, 
J. Comput. Phys. 108 (1993) 175-179. 

[45] T.E. Simos and G. Mousadis, A two-step method for the numerical solution of the radial Schr6dinger equation, 
Comput. Math. Appl. 83 (1994) 1145-1153. 

[46] G. Vanden Berghe, V. Fack and H.E. De Meyer, Numerical methods for solving radial Schr6dinger equation, J. 
Comput. Appl. Math. 29 (1989) 391-401. 


