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Abstract

Local influence is a method of sensitivity analysis for assessing the influence of small
perturbations in a general statistical model. In the present paper, this popular method is applied
to multivariate elliptical linear regression models. Several schemes of perturbation, including
perturbations in case-weights, explanatory variables and response variables are considered.
The observed information matrix under the postulated model and Delta matrices under the
corresponding perturbed models are derived. Assessment of local influence is made.
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1. Introduction

The multivariate normal distribution, normal distribution-based linear models and
multivariate analysis have played an essential role in statistics, see e.g. [1]. However,
there are findings the normality assumption does not cope well in certain situations.
Alternative distributions are then needed to consider and one choice is the ellipti-
cal distribution family. As known, studies and applications of non-normal elliptical
distributions and statistical inference have been progressing rapidly during the last
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two decades. For an extensive review on the non-normal cases, we refer to [2]. For a
relevant paper, see e.g. [16,17], and for a comprehensive volume, see e.g. [8,13].

Meanwhile, sensitivity analysis and diagnostic techniques have been paid con-
siderable attention, see e.g. [4]. Among other techniques, the local influence method
with key concepts and applications to a simple normal distribution-based linear
model has been popularized by Cook’s landmark contribution [5]. The concept of
the influence of an observation and some historical notes have been given in a very
recently published monograph by Farebrother [10]. A useful discussion on local
influence and its connection with other concepts can be found in [9,24,26]. A com-
parison of the local influence method with the influence function method and the
case deletion method is presented by Jung et al. [14]. For local influence in ridge
regression, see e.g. [25]. For Bayesian local influence, see e.g. [22]. Recently, the
local influence method has been applied to multivariate normal linear regression
models by Kim [15] and Fung and Tang [11]. Local influence analysis for ellip-
tical linear regression models in the univariate case has been made by Galea et al.
[12] and Liu [19]. However, local influence analysis for non-normal elliptical linear
regression models in the multivariate case has not yet been developed.

In this paper, a general framework is introduced so that the local influence
method can be applied to elliptical linear regression models in the multivariate
case. As seen, the results obtained can reduce to those for the normal distribution
assumption studied by Kim [15] and Fung and Tang [11]. In Section 2, the multi-
variate elliptical linear models and maximum likelihood estimation are introduced.
In Section 3, the local influence method with the concepts of the observed informa-
tion matrix and the so-called Delta matrix are outlined. In Section 4, the observed
information matrix under the postulated model is given. In Sections 5, 6 and 7, Delta
matrices under the perturbed models of perturbations in case-weights, explanatory
variables and response variables are derived, respectively. Based on these results, an
assessment of local influence is made. Remarks are given in Section 8.

2. Elliptical linear models

In this section, we briefly introduce the notations to be used in the paper. Early
studies on maximum likelihood estimators for elliptical distributions are in [3] and
some of the other papers collected in [7]. For further details on elliptical matrix
distributions, linear models and maximum likelihood estimators, see e.g. [8,13].

Let U = (u1, . . . , un)
′ be an n× p (n � p) data matrix, where u1, . . . , un can

be viewed as a sample from a p-dimensional population. Consider U, following an
elliptical matrix distribution such that

U ∼ EMnp(0,�, In, ψ), (1)

where � is a p × p positive definite scale matrix, In is an n× n identity matrix and
ψ is the characteristic generator. That is, u1, . . . , un are uncorrelated and their joint
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distribution is elliptically contoured and absolutely continuous. If U has finite first
and second moments, then E(vecU ′) = 0 and Var(vecU ′) = −2φ(0)In ⊗ �, where
vec indicates the vectorization operator, which stacks the columns of a matrix one
underneath the other, φ is the first derivative of ψ , and ⊗ indicates the Kronecker
product. Suppose that (1) has a density of the form

f (U) = |�|−n/2g(trU�−1U ′), (2)

where g is the known density generator.
This is an extension of the univariate distribution Eln(0, αIn) used by Galea et al.

[12] and Liu [19] where p = 1, � becomes a positive scalar and α > 0 is the scale
parameter.

Consider the following model:

Y = XB + U, (3)

where Y is an n× p observation matrix, X is an n×m model matrix of full column
rank, B is an m× p unknown parameter matrix, and U is an n× p error matrix as
defined in (1) with � unknown, in general.

Clearly, (3) covers the model under the normality investigated by Kim [15] and
Fung and Tang [11] as a special case. Note that a multivariate model such as (3)
cannot be simply reduced to an existing univariate model by vectorization. This is
because in the multivariate model the second moment (when it exists) is a partic-
ular positive definite matrix −2φ(0)In ⊗ �, and obviously in the univariate model
studied by Galea et al. [12] and Liu [19] a counterpart, say of αIn, is inadequate.

Assume that h(z) = znp/2g(z), z � 0, has a finite maximum at z = zg > 0. Then
we can see that the maximum likelihood estimators of B and � in model (3) are as
follows:

B̂ = (X′X)−1X′Y, (4)

�̂ = p

zg
(Y −XB̂)′(Y −XB̂)

= p

zg
Y ′(In −X(X′X)−1X′)Y

= p

zg
Û ′Û , (5)

where

Û = (
In −X(X′X)−1X′)Y. (6)

For (2)–(6), see e.g. [13, Chapter 9]. We see that �̂ in (5) is dependent on B̂ in
(4); for the relation of �̂ to B̂ under the normality assumption, we refer to [1, Section
8.2]. For additional background when p > 1, see [8]. In particular, if p = 1, then
model (3) changes to the univariate case studied by Galea et al. [12] and Liu [19].
Accordingly, (4) and (5) above reduce to (3) in [12].
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Moreover, for continuous and differentiable g, we define

G = G(z) = � ln g(z)

�z
= g′(z)
g(z)

, (7)

F = F(z) = �G(z)
�z

. (8)

We find for the multivariate normal distribution

g(z) = c1 exp
(
− z

2

)
,

G(z) = −1

2
,

F (z) = 0,

zg = np,

where c1 is a normalizing constant and z � 0.
For the multivariate t distribution with r degrees of freedom

g(z) = c2

(
1 + z

r

)−(np+r)/2
,

G(z) = −np + r

2r

(
1 + z

r

)−1
,

F (z) = np + r

2r2

(
1 + z

r

)−2
,

zg = np,

where c2 is a normalizing constant.
We refer to [13, Section 2.7] for g(z), and [12] for g(z), G(z) and F(z) when

p = 1, used in the assessment of local influence of several elliptical distributions.

3. Local influence

To implement the procedures for local influence analysis we introduce several
concepts and the method. For a recent introduction, see [6]. Let ω = (ω1, . . . , ωq)

′
denote a q × 1 vector of perturbations confined to some open subset of Rq and ω0
denote a no-perturbation vector. Let θ indicate an r × 1 vector of parameters of inter-
est. Let L(θ) and L(θ, ω) = L(θ |ω) denote the log-likelihood functions of the pos-
tulated (i.e. unperturbed) and the perturbed models, respectively. Note that L(θ) =
L(θ, ω0). The idea of the local influence method is to investigate how much the
estimates are affected by those corresponding perturbations. The likelihood displace-
ment LD(ω) is useful to measure the distance between θ̂ and θ̂ω, which are the maxi-
mum likelihood estimates under the two models, respectively. It is given by

LD(ω) = 2
[
L(θ̂)− L(θ̂ω)

]
.
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Define

Hθ = �2L(θ)

�θ �θ ′ , �θ = �2L(θ, ω)

�θ �ω′ , (9)

where Hθ is the r × r Hessian matrix and �θ is an r × q matrix.
Then, based on (9) evaluated at θ = θ̂ and ω = ω0 we can find −H = −Hθ(θ̂),

the observed information matrix for the postulated model and � = �θ (θ̂ , ω0), the
so-called Delta matrix for the perturbed model. Actually, in Sections 4–7 we obtain
H and � in a more efficient way as in [19]: We first use the matrix differential
method (instead of derivatives), see e.g. [8, Section 1.5.4] and [21], to derive
d2
θL(θ) = (dθ)′Hθdθ for the postulated log-likelihood and d2

θωL(θ |ω) = (dθ)′�θdω
for the perturbed log-likelihood with Hθ and �θ defined in (9). Then we evaluate
d2
θL(θ) and d2

θωL(θ |ω) at θ = θ̂ and ω = ω0 to obtain H and �; we do not need
explicit expressions of Hθ and �θ .

Based on LD(ω), Cook [5] shows that the curvature in direction l is

Cl(θ) = 2
∣∣l′�′H−1�l

∣∣, (10)

where l is a q × 1 vector of unit length. That is, Cl(θ) is the local influence on the
estimation of θ of perturbing the postulated model; Large values of Cl(θ) indicate
sensitivity to the induced perturbations in direction l.

We can then carry out our local influence analysis by finding M = �′H−1�, its
largest absolute eigenvalue λmax and the associated eigenvector lmax. If the absolute
value of the ith element of lmax is the largest, then the ith observation of the data may
be most influential. A nice way to examine this is to make an indexed scatter plot of
lmax. The plot may indicate which observations are more influential than the others.

When θ = (θ ′
1, θ

′
2)

′ and only θ1 is of interest, we partition H according to the
partition of θ . Let

H =
(
H11 H ′

21
H21 H22

)
, A22 =

(
0 0
0 H−1

22

)
. (11)

Then

Cl(θ1) = 2
∣∣l′�′(H−1 − A22)�l

∣∣, (12)

and therefore we have to examine the eigenvector lmax associated with the largest
eigenvalue λmax of M1 = �′(H−1 − A22)�.

4. Information matrix

Consider θ = (b′, s′)′ with b = vecB and s = vech �, where b is an mp × 1
vector, s is an (p + 1)p/2 × 1 vector, vech denotes the vectorization operator which
eliminates all supradiagonal elements of the matrix, and θ is an r × 1 vector (r =
mp + (p + 1)p/2). The postulated log-likelihood of model (3) is
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L = L(θ) = −n
2

ln |�| + ln g(z), (13)

where z = trU ′U�−1 and U = Y −XB.
Taking the differentials of L with respect to B, we obtain

dbL = G(dbz) = −2G tr �−1U ′X(dB), (14)

d2
bL = 4F tr(dB)′X′U�−1 tr �−1U ′X(dB)+ 2G tr(dB)′X′X(dB)�−1. (15)

Since Û = (I −X(X′X)−1X′)Y as given in (6), and then Û ′X = 0, we have

d2
bL
∣∣
θ=θ̂ = 2Ĝ tr(dB)′X′X(dB)�̂−1

= 2Ĝ(d vecB)′(�̂−1 ⊗X′X)(d vecB), (16)

where Ĝ = G(ẑ) with ẑ = zg , and �̂ is the same as in (5).
From (14) it follows that

d2
sbL = −2(dsG) tr �−1U ′X(dB)− 2G tr(ds�

−1)U ′X(dB), (17)

and then using (17) and Û ′X = 0 leads to

d2
sbL

∣∣
θ=θ̂ = 0. (18)

Taking the differentials of L in (13) with respect to �, we get

dsL = −n
2

tr �−1(d�)+G(dsz)

= −n
2

tr �−1(d�)−G tr �−1U ′U�−1(d�), (19)

d2
sL = n

2
tr(d�)�−1(d�)�−1 + F tr(d�)�−1U ′U�−1 tr �−1U ′U�−1(d�)

+ 2G tr(d�)�−1U ′U�−1(d�)�−1, (20)

then

d2
sL
∣∣
θ=θ̂ = n

2
(d vech �)′D′(�̂−1 ⊗ �̂

−1)
D(d vech �)

+ F̂ (d vech �)′D′D vech
(
�̂

−1
Û ′Û �̂

−1)
× vech′(�̂−1

Û ′Û �̂
−1)

D′D(d vech �)

+ 2 Ĝ(d vech �)′D′(�̂−1 ⊗ �̂
−1
Û ′Û �̂

−1)
D(d vech �)

=
(
n

2
+ 2zgĜ

p

)
(d vech �)′D′(�̂−1 ⊗ �̂

−1)
D(d vech �)

+ z2
gF̂

p2
(d vech �)′D′D vech(�̂

−1
)vech′(�̂−1

)

×D′D(d vech �), (21)
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where Ĝ = G(ẑ), F̂ = F(ẑ) and Û ′Û = ẑ�̂/p with ẑ = zg , and D is the p2 × (p +
1)p/2 duplication matrix with vec � = D vech �. For properties of D, see e.g. [21].

Hence, it follows from (16), (18) and (21) that

H =
(

2Ĝ(�̂
−1 ⊗X′X) 0

0 Hs

)
, (22)

where

Hs =
(
n

2
+ 2zgĜ

p

)
D′(�̂−1 ⊗ �̂

−1)
D

+ z2
gF̂

p2
D′D vech

(
�̂

−1)
vech′(�̂−1)

D′D. (23)

For the normal distribution case, where Ĝ = − 1
2 , F̂ = 0 and zg = np, we obtain

from (22) and (23)

Hnor = −
(

�̂
−1 ⊗X′X 0

0 n
2D

′(�̂−1 ⊗ �̂
−1
)D

)
. (24)

For H and Hnor when p = 1 (and therefore � and D = 1 are both scalars), we refer
to [12] and [5], respectively.

5. Perturbation in case-weights

We consider three situations in order.

5.1. Full parameters

In this case, we defineW = diag(w1, . . . , wn) of case-weights of perturbation for
model (3), where diag indicates a diagonal matrix andwi is the weight of the ith case
(i = 1, . . . , n). Under this perturbation scheme, we haveU ∼ EMnp(0,�,W−1, ψ),
with W (replacing W0 = In) in the perturbed model; the perturbed model reduces to
the postulated model when W = W0.

First, we consider � as unknown, and both B and � are of interest. Due to the
definition of �θ which involves θ and w jointly, we need only the relevant part Lw
of the perturbed log-likelihood L(θ,w)

Lw = Lw(θ,w) = ln g(zw), (25)

where θ = (b′, s′)′, b = vecB, s = vech �, zw = trU ′WU�−1, w = (w1, . . . , wn)
′

for q = n, W = diag(w1, . . . , wn), W0 = In, U = Y −XB and U ∼ EMnp(0,�,
W−1, ψ).
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Taking the differentials of Lw, first with respect to W and then B, we have

dwLw = G(dwzw) = G trU�−1U ′(dW) (26)

and

d2
bwLw=−2F tr(dB)′X′WU�−1 trU�−1U ′(dW)

− 2G tr(dB)′X′(dW)U�−1. (27)

As W0 = In and X′Û = 0, we have

d2
bwLw|

θ=θ̂ ,w=w0
= −2Ĝ(d vecB)′

(
�̂

−1
Û ′ ⊗X′)J (dw), (28)

where J is the n2 × n selection matrix with d vecW = J dw. For properties and ap-
plications of J, see e.g. [18,20].

Also, taking the differential of (26) with respect to � we have

d2
swLw=−F tr(d�)�−1U ′WU�−1 trU�−1U ′(dW)

−G tr(d�)�−1U ′(dW)U�−1, (29)

and therefore

d2
swLw

∣∣
θ=θ̂ ,w=w0

= −F̂ (d vech �)′D′D vech
(
�̂

−1
Û ′Û �̂

−1)
vech′(Û �̂

−1
Û ′)D′J (dw)

− Ĝ(d vech �)′D′(�̂−1
Û ′ ⊗ �̂

−1
Û ′)J (dw)

= −zgF̂
p

(d vech �)′D′D vech(�̂
−1
) vech′(Û �̂

−1
Û ′)D′J (dw)

− Ĝ (d vech �)′D′(�̂−1
Û ′ ⊗ �̂

−1
Û ′)J (dw), (30)

where Ĝ = G(ẑ), F̂ = F(ẑ), Û ′Û = ẑ�̂/p with ẑ = zg , D is the p2 × (p + 1)p/2
duplication matrix as in (21) and J is the n2 × n selection matrix as in (28).

Then, (28) and (30) lead to

� =
(

−2Ĝ
(
�̂

−1
Û ′ ⊗X′)J

�s

)
, (31)

where

�s = −zgF̂
p

D′D vech
(
�̂

−1)
vech′(Û �̂

−1
Û ′)D′J

− ĜD′(�̂−1
Û ′ ⊗ �̂

−1
Û ′)J. (32)
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For the normal distribution case (Ĝ = − 1
2 and F̂ = 0), we have

�nor =
(

(�̂
−1
Û ′ ⊗X′)J

1
2 D

′(�̂−1
Û ′ ⊗ �̂

−1
Û ′)J

)
. (33)

For � and �nor when p = 1, see [12] and [5], respectively.
Hence, we can calculate M and Cl(θ) as defined in (10). Using (22) and (31), we

obtain

M = �′H−1�

= 2ĜJ ′(Û �̂
−1 ⊗X

)(
�̂

−1 ⊗X′X
)−1(�̂−1

Û ′ ⊗X′)J + �′
sH

−1
s �s

= 2ĜÛ �̂
−1
Û ′ 
X(X′X)−1X′ + �′

sH
−1
s �s , (34)

where Hs is the same as in (23), �s is the same as in (32), 
 indicates the Hadamard
product, which links with the Kronecker product via J, see e.g. [18].

Second, we consider � as known and only B is of interest. Clearly, (34) leads to

Cl(θ) = 4
∣∣l′(ĜÛ�−1Û ′ 
X(X′X)−1X′)l

∣∣. (35)

For the normal distribution case with � unknown and both � and B of interest,
using (24) and (33) we establish that

Mnor = �′
norH

−1
nor �nor

= −J ′(Û �̂
−1 ⊗X

)(
�̂

−1 ⊗X′X
)−1(�̂−1

Û ′ ⊗X′)J
− 1

2n
J ′(Û �̂

−1 ⊗ Û �̂
−1)

D
[
D′(�̂−1 ⊗ �̂

−1
)D
]−1

×D′(�̂−1
Û ′ ⊗ �̂

−1
Û ′)J

= −Û �̂
−1
Û ′ 
X(X′X)−1X′ − 1

2n
Û �̂

−1
Û ′ 
 Û �̂

−1
Û ′. (36)

We now show that our Mnor is the same as (the two different but identical ex-
pressions of) Mnor obtained by Kim [15] and Fung and Tang [11], respectively, and
therefore our Cl(θ) is the same as theirs. Clearly, the first part of the right-hand side
of (36) is the same as the first part of the expression of Mnor of [15], and therefore is
identical to that of [11]. The second part of the right-hand side of (36) is derived as

− 1

2n
J ′(Û �̂

−1 ⊗ Û �̂
−1
)D[D′(�̂−1 ⊗ �̂

−1
)D]−1D′(�̂−1

Û ′ ⊗ �̂
−1
Û ′)J

= − 1

2n
J ′(Û �̂

−1 ⊗ Û �̂
−1
)DD+(�̂ ⊗ �̂)D′+D′(�̂−1

Û ′ ⊗ �̂
−1
Û ′)J

= − 1

2n
J ′(Û �̂

−1 ⊗ Û �̂
−1
)(�̂ ⊗ �̂)(�̂

−1
Û ′ ⊗ �̂

−1
Û ′)J

= − 1

2n
J ′(Û ⊗ Û )(�̂

−1 ⊗ �̂
−1
)(Û ′ ⊗ Û ′)J (37)

= − 1

2n
Û �̂

−1
Û ′ 
 Û �̂

−1
Û ′, (38)
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where we use the following properties of D and J, see e.g. [21]:[
D′(�̂−1 ⊗ �̂

−1
)D
]−1 = D+(�̂ ⊗ �̂)D′+,

D′+D′ = DD+,
DD+(�̂−1

Û ′ ⊗ �̂
−1
Û ′)J = (

�̂
−1
Û ′ ⊗ �̂

−1
Û ′)J.

By noting that

U = (u1, . . . , un)
′,

(Û ′ ⊗ Û ′)J = (û1 ⊗ û1, . . . , ûn ⊗ ûn),
(39)

we see that (37) is the same as the second part of Mnor of [11]; expression (38) is
simpler.

When � is known and only B is of interest, we have Ĝ = − 1
2 and

Cnor(θ) = 2
∣∣l′(Û�−1Û ′ 
X(X′X)−1X′)l

∣∣.
5.2. Subset of regression parameters

In some situations, only a subset, say B1, of the rows of the parameter matrix
B = (B ′

1, B
′
2)

′ is of interest, and the columns of X = (X1, X2) are rearranged cor-
respondingly to the partition of B, where B1 is of order m1 × p, B2 is of m2 × p,
X1 is of n×m1 and X2 is of n×m2 (m1 +m2 = m). We denote θ = (θ ′

1, θ
′
2)

′ =
(vec′ B ′

1, vec′ B ′
2, s

′)′ = (vec′ B ′, s′)′, where θ1 = vecB ′
1 and θ2 = (vec′ B ′

2, s
′)′

with s = vech �.
To use (12) we rewrite model (3) as

Y = XB + U = X1B1 +X2B2 + U, (40)

and then

vecY ′ =(X ⊗ Ip)vecB ′ + vecU ′

=(X1 ⊗ Ip)vecB ′
1 + (X2 ⊗ Ip)vecB ′

2 + vecU ′. (41)

Note that

vecB = K ′vecB ′, (42)

where K is the mp ×mp commutation matrix, see e.g. [21].
Based on (9) and (42), we obtain

d2
bL
∣∣
θ=θ̂ = (d vecB)′Hb(d vecB) = (d vecB ′)′KHbK ′(d vecB ′), (43)

d2
bwLw

∣∣
θ=θ̂ ,w=w0

= (d vecB)′�bdw = (d vecB ′)′K�bdw, (44)

where Hb and �b are the corresponding (to B) parts of H and �, respectively.
We see from (43) and (44) that Hbnew = KHbK

′ and �bnew = K�b. Hence, by
virtue of H in (22), we obtain
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Hnew =
(

2Ĝ
(
X′X ⊗ �̂

−1)
0

0 Hs

)
(45)

and

H22new =
(

2Ĝ
(
X′

2X2 ⊗ �̂
−1)

0
0 Hs

)
, (46)

where Hs is the same as (23).
By � in (31), we obtain

�new =
(

−2ĜK
(
�̂

−1
Û ′ ⊗X′)J

�s

)
, (47)

where �s is the same as in (32).
Especially, for the normal distribution case we have

Hnornew = −
(
X′X ⊗ �̂

−1
0

0 n
2D

′(�̂−1 ⊗ �̂
−1)

D

)
, (48)

Hnor22new = −
(
X′

2X2 ⊗ �̂
−1

0

0 n
2D

′(�̂−1 ⊗ �̂
−1)

D

)
, (49)

and

�nornew =
(

K
(
�̂

−1
Û ′ ⊗X′)J

1
2 D

′(�̂−1
Û ′ ⊗ �̂

−1
Û ′)J

)
. (50)

Based on (12), (45), (46) and (47), we obtain

M1 = �′
new

(
H−1

new − A22
)
�new

= 2ĜJ ′(Û �̂
−1 ⊗X

)
K ′(E ⊗ �̂)K

(
�̂

−1
Û ′ ⊗X′)J

= 2ĜÛ �̂
−1
Û ′ 
XEX′, (51)

where E is an m×m positive semidefinite matrix defined as

E = (X′X)−1 −
(

0 0
0 (X′

2X2)
−1

)
� 0. (52)

It thus follows that

Cl(θ1) = 4
∣∣l′(ĜÛ �̂

−1
Û ′ 
XEX′)l

∣∣. (53)

Especially, for the normal distribution (Ĝ = − 1
2 )

Cnor(θ1) = 2
∣∣l′(Û �̂

−1
Û ′ 
XEX′)l

∣∣.



170 S. Liu / Linear Algebra and its Applications 354 (2002) 159–174

5.3. Individual cases

Comparing with the case deletion, we consider only the situation where the weight
for the ith case is perturbed, i = 1, . . . , n. Therefore we write W = diag(1, . . . , wi,
. . . 1)′, wherewi is located as the ith diagonal element. Suppose � is known and only
B is of interest, we have

H = 2Ĝ�−1 ⊗X′X, (54)

� = −2Ĝ (�−1Û ′ ⊗X′)Ri, (55)

where Ri is an n2 × 1 vector with one in the (n(i − 1)+ i)th position and zeros
elsewhere.

The curvature is simplified as

Cl(vecB) = 4
∣∣l′(ĜR′

i (Û�−1Û ′ ⊗X(X′X)−1X′)Ri)l
∣∣

= 4|Ĝ|û′
i�

−1ûiPii , (56)

where ui is the ith column of U ′ and Pii is the ith diagonal element ofX(X′X)−1X′.
For the normal distribution case, (56) becomes

Cnor = 2û′
i�

−1ûiPii , (57)

which is the same as (13) of [11], and has a connection with Cook’s distance in the
simpler mulptiple regression case; see [5].

6. Perturbation in explanatory variables

If perturbation in the explanatory variables is of interest, the perturbed log-likeli-
hood is constructed with X replaced by Xw = X +WS, where W = (wij ) =
(w1, . . . , wj , . . . , wm) is an n×mmatrix of perturbations, S = diag(s1, . . . , sm), sj
(j = 1, . . . , m) is the scale factor and W0 = 0. We obtain the relevant part of the
perturbed log-likelihood

Lw = ln g(zw), (58)

where θ = (b′, s′)′, b = vecB, s = vech �, zw = trU ′
wUw�−1 andUw = Y − (X +

WS)B.
By taking the differential of Lw with respect to W, we get

dwLw = −2G tr �−1U ′
w(dW)SB. (59)

Taking the differentials of dwLw with respect to B and �, we get d2
bwLw and d2

swLw,
respectively. We evaluate them as follows:

d2
bwLw

∣∣
θ=θ̂ ,w=w0

= 2Ĝ tr(dB)′X′(dW)SB̂�̂
−1

− 2Ĝ tr(dB)�̂
−1
Û ′(dW)S, (60)
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d2
swLw

∣∣
θ=θ̂ ,w=w0

= 2F̂ tr �̂
−1
Û ′Û �̂

−1
(d�)tr �̂

−1
Û ′(dW)SB

+ 2Ĝ tr(d�)�̂
−1
Û ′(dW)SB�̂

−1
. (61)

Hence, we obtain

� =
(

�b
�s

)
, (62)

where

�b = 2Ĝ
(
�̂

−1
B̂ ′S ⊗X′)− 2ĜK ′(S ⊗ �̂

−1
Û ′), (63)

�s = 2zgF̂

p
D′D vech(�̂

−1
)vech′(Û �̂

−1
B̂ ′S

)
+ 2ĜD′(�̂−1

B̂ ′S ⊗ �̂
−1
Û ′), (64)

zg is the same as in (5) and S is the same as defined above.
Using H in (22) and � in (62), we obtain M in (10)

M = 2ĜSB̂�̂
−1
B̂ ′S ⊗X(X′X)−1X′

− 2Ĝ
(
SB̂�̂

−1
Û ′ ⊗X(X′X)−1S

)
K ′

− 2ĜK
(
Û �̂

−1
B̂ ′S ⊗ S(X′X)−1X′)

+ 2ĜS(X′X)−1S ⊗ Û �̂
−1
Û ′ + �′

sH
−1
s �s , (65)

where Hs is the same as in (23) and �s is the same as in (64).
If � is known and only B is of interest, (65) leads to

MB = 2ĜSB̂�−1B̂ ′S ⊗X(X′X)−1X′

− 2Ĝ
(
SB̂�−1Û ′ ⊗X(X′X)−1S

)
K ′

− 2ĜK
(
Û�−1B̂ ′S ⊗ S(X′X)−1X′)

+ 2ĜS(X′X)−1S ⊗ Û�−1Û ′ (66)

and

Cl(vecB) = 2
∣∣l′MBl

∣∣. (67)

For the normal distribution case with both B and � of interest, from (24), (63) and
(64) we get

Mnor = −SB̂�̂
−1
B̂ ′S ⊗X(X′X)−1X′ + (

SB̂�̂
−1
Û ′ ⊗X(X′X)−1S

)
K ′

+K
(
Û �̂

−1
B̂ ′S ⊗ S(X′X)−1X′)− S(X′X)−1S ⊗ Û �̂

−1
Û ′

− 2

n

(
SB̂�̂

−1 ⊗ Û �̂
−1)

DD+(B̂ ′S ⊗ Û ′), (68)
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and therefore

Cl(θ) = 2
∣∣l′Mnorl

∣∣, (69)

which corresponds to (18) of [11].

7. Perturbation in response variables

For perturbation in the response variables, the perturbed log-likelihood is con-
structed with Y replaced by Yw = Y +WS, where W = (wij ) = (w1, . . . , wj , . . . ,

wp) is an n× p matrix of perturbations, S = diag(s1, . . . , sp), sj (j = 1, . . . , p) is
the scale factor andW0 = 0. We have the relevant part of the perturbed log-likelihood

Lw = ln g(zw), (70)

where θ = (b′, s′)′, b = vecB, s = vech �, zw = trU ′
wUw�−1 andUw = Y +WS −

XB.
We obtain

d2
bwLw

∣∣
θ=θ̂ ,w=w0

= −2Ĝ tr(dB)′X′(dW)S�̂
−1

(71)

and

d2
swLw

∣∣
θ=θ̂ ,w=w0

= −2F̂ tr(d�)�̂
−1
Û ′Û �̂

−1
tr �̂

−1
Û ′(dW)S

− 2Ĝ tr(d�)�̂
−1
Û ′(dW)S�̂

−1
. (72)

Then

� =
(

�b
�s

)
, (73)

where

�b = −2Ĝ
(
�̂

−1
S ⊗X′), (74)

�s = −2zgF̂

p
D′D vech(�̂

−1
)vec′(Û �̂

−1
S
)

− 2ĜD′(�̂−1
S ⊗ �̂

−1
Û ′), (75)

zg is the same as in (5) and S is the same as defined above.
Hence, we use H in (22) and � in (73) to derive M in (10) as

M = 2ĜS�̂
−1
S ⊗X(X′X)−1X′ + �′

sH
−1
s �s , (76)

where Hs and �s are the same as in (23) and (75), respectively.
For the normal distribution case, from (24), (74) and (75) we get

Mnor = −S�̂
−1
S ⊗X(X′X)−1X′

− 2

n

(
S�̂

−1 ⊗ Û �̂
−1)

DD+(S ⊗ Û ′), (77)
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and therefore

Cl(θ) = 2
∣∣l′Mnorl

∣∣, (78)

which is (20) of [11].

8. Remarks

Instead of presenting an index plot to illustrate the methodology described in this
paper, we refer to two sets of plots. The first is that given by Galea et al. [12] and
Liu [19] for the data set reported by Ruppert and Carrol [23] on the salinity of water
during the spring in Pamlico Sound, North Carolina in the univariate elliptical linear
regression models. The second is given by Kim [15] and Fung and Tang [11] for the
data set collected by W.D. Rohwer on children’s performances in the multivariate
linear regression models under the normality assumption. We note that the local in-
fluence method suggests accord with those provided by the case deletion and other
methods (in the univariate case), see e.g. [12]. However, different observations need
special attention under different perturbation schemes of the local influence analysis
(in the multivariate case), as explained by Fung and Tang [11].
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