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Abstract

Background: Epidemics with multiple infection waves have been documented for some human diseases, most
notably during past influenza pandemics. While pathogen evolution, co-infection, and behavioural changes have
been proposed as possible mechanisms for the occurrence of subsequent outbreaks, the effect of public health
interventions remains undetermined.

Methods: We develop mean-field and stochastic epidemiological models for disease transmission, and perform
simulations to show how control measures, such as drug treatment and isolation of ill individuals, can influence
the epidemic profile and generate sequences of infection waves with different characteristics.

Results: We demonstrate the impact of parameters representing the effectiveness and adverse consequences of
intervention measures, such as treatment and emergence of drug resistance, on the spread of a pathogen in the
population. If pathogen resistant strains evolve under drug pressure, multiple outbreaks are possible with variability
in their characteristics, magnitude, and timing. In this context, the level of drug use and isolation capacity play an
important role in the occurrence of subsequent outbreaks. Our simulations for influenza infection as a case study
indicate that the intensive use of these interventions during the early stages of the epidemic could delay the
spread of disease, but it may also result in later infection waves with possibly larger magnitudes.

Conclusions: The findings highlight the importance of intervention parameters in the process of public health
decision-making, and in evaluating control measures when facing substantial uncertainty regarding the
epidemiological characteristics of an emerging infectious pathogen. Critical factors that influence population health
including evolutionary responses of the pathogen under the pressure of different intervention measures during an
epidemic should be considered for the design of effective strategies that address short-term targets compatible
with long-term disease outcomes.

Background
Epidemics of infectious diseases have been observed
throughout history, with substantial variability in their
dynamical patterns. The 1918 influenza pandemic is a
notorious case documented as the most devastating epi-
demic with over 50 million deaths and multiple out-
breaks in many geographic areas worldwide [1,2].
Distinct pandemic infection waves were recorded with
an 8 to 15 week interval; the latter were more severe
than the first and were associated with the majority of
deaths [2,3]. Although several factors may be involved,
such as the effect of seasonal changes, demographics,

and evolution of the virus, the true mechanism by
which subsequent waves occur is not fully understood.
Nor is it clearly understood how different control mea-
sures and strategies for deployment of limited health
resources may interfere with disease dynamics and the
occurrence of later infection waves.
Recent epidemiological and modelling studies have

attempted to provide explanatory theories for the
mechanisms of multiple outbreaks of an infectious
pathogen capable of establishing an epidemic [2,4-10].
Spontaneous behavioural changes (e.g., a change in the
number of contacts due to modified behaviour of sus-
ceptible individuals) have been shown to affect the
course of infection events and produce subsequent out-
breaks in an epidemic episode [9]. This has been further
investigated through modelling “concerned awareness”
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of individuals that may result in contagion dynamics of
fear and disease [6], and the implementation of public
health control measures (e.g., social distancing) that may
interfere with the individuals’ contact patterns during
the epidemic [5]. Co-infection has also been suggested
as a possible explanation for multiple infection out-
breaks as a result of increased transmissibility in co-
infected individuals and non-synchronicity in the time
course of the two co-circulating infections [8]. Other
possible mechanisms include transient post-infection
immunity and evolutionary changes that may occur in
the characteristics of the infectious pathogens [2,4,10].
In this study, we consider the occurrence of multiple

infection waves of a pathogen from a public health per-
spective, and develop mathematical models to investi-
gate how intervention measures may affect the
transmission dynamics in a population. Specifically, we
are interested in exploring the impact of changes in pol-
icy-relevant parameters on the patterns of disease spread
during the course of an epidemic. These parameters
may reflect the effectiveness of intervention strategies
(e.g., treatment or isolation of infected cases) in redu-
cing disease transmission, or their epidemiological con-
sequences (e.g., emergence of drug resistance), and may
therefore play an important role in determining the out-
come of disease control activities. The significance of
this work thus relates to the process of public health
decision-making, in particular when confronting the
emergence of a novel infectious disease with substantial
uncertainty regarding the epidemiological characteristics
of the invading pathogen.
For the purpose of this investigation, we develop both

mean-field and stochastic epidemiological models that
describe the transmission dynamics of a disease in the
population, and incorporate treatment and isolation of
infected cases as control measures. We parameterize
these models to simulate the spread of influenza as a
case study, and determine the impact of control para-
meters on disease dynamics. We illustrate the occur-
rence of multiple infection waves associated with
different treatment levels and the development of drug
resistance in the population under the scenario of lim-
ited capacity for treatment and isolation of infectious
individuals. We compare the results obtained by simu-
lating the mean-field model with those observed in the
stochastic model, and discuss our findings in the context
of epidemiology and public health.

Methods
The model structure
To formulate the models for describing disease epidemic,
we assume that the population is initially entirely suscep-
tible to the infectious pathogen. It is assumed that the
infection can be treated with drugs, but the pathogen

may develop resistance during the course of treatment
with potential for transmission. Since resistance emer-
gence may impose fitness cost on pathogen replication
and transmission [11], we assume that the drug-resistant
pathogen is less transmissible than the drug-sensitive
pathogen. Treatment is assumed to reduce transmissibil-
ity of the drug-sensitive infection, but remains ineffective
against drug-resistant infection. We also assume that the
recovery from infection confers immunity to re-infection
with either drug-sensitive or resistant pathogens. Consid-
ering epidemics with relatively short time-courses, we
ignore the effect of recruitment, natural death, and other
demographic variables of the population.
With the assumption of homogeneous mixing, we

divide the population into classes of susceptibles (S);
individuals exposed (not yet infectious) to sensitive (E)
and resistant (Er) infections; untreated individuals
infected with sensitive (I) and resistant (Ir) infections;
treated individuals infected with sensitive (IT) and resis-
tant (IT,r) infections; isolated individuals infected with
either sensitive or resistant infection (J); and recovered
individuals (R). Figure 1 shows the movements of indivi-
duals between these classes during the course of an epi-
demic. With parameters described in Table 1, the
dynamics of the mean-field model can be mathemati-
cally expressed by the following system of differential
equations:
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Details of the model in its stochastic form are pro-
vided in the Appendix.

Reproduction numbers
A key parameter in disease epidemiology is the basic repro-
duction number of the invading pathogen, commonly
denoted by R0, which is the average number of new infec-
tions generated by a single infected case introduced into an
entirely susceptible (non-immune) population [12]. The
quantity R0 can be used to estimate the growth rate of an
epidemic (during the initial phase) and the total number of
infections (final size of the epidemic) [13]. When public
health interventions are implemented, the reproduction
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number of disease is affected by parameters that determine
the effectiveness of control measures; and we therefore
introduce the control reproduction number ( Rc ) to evalu-
ate the impact of such parameters on transmissibility of the
pathogen and epidemic dynamics. Applying a previously
established method [12,14], for model (1), we obtain
R R Rc c

s
c
r= max{ , } , where Rc

s and Rc
r are respectively

the reproduction numbers of the sensitive and resistant
infections, expressed by
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where S0 is the size of the susceptible population at the
onset of the outbreak. In the absence of treatment and
isolation, Rc reduces to the basic reproduction number of
the sensitive pathogen, given by R0 = bS0/g. Using the

expression for Rc
s in (2), one can easily calculate the cri-

tical value p* at which Rc
s = 1 , and therefore the spread

of the sensitive infection can be contained for p >p*.
Rewriting Rc

s in terms of R0, the value p
* is given by
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However, the spread of disease caused by the sensitive
pathogen cannot be controlled if R0 exceeds the thresh-
old R* = (g + a)/δT qg, which results in p* > 1. Since 0 ≤
q ≤ 1, for parameter values used in simulations (Table
1), disease control becomes infeasible if R0 > 2.5. Simi-
larly, there is a critical value pr

* at which Rc
r = 1 , and

the spread of the resistant pathogen is contained if
p pr> * . Letting R Rr

r0 0=  , the value of pr
* can be

expressed as
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which highlights the importance of isolation for con-
trolling the spread of resistant infection.

Simulations and results
To simulate the models, we considered influenza infec-
tion as a case study, for which emergence and spread of
drug-resistance during an outbreak can result from
treatment of infected individuals. We assumed that the
epidemic is triggered by a drug-sensitive influenza virus,
and investigated the role of several key model para-
meters in changing the epidemic patterns and generat-
ing multiple waves of infection. These parameters
include the fractions of infected individuals identified
for treatment or isolation, and the basic reproduction
number of disease which varies within the estimated
range published in the literature (Table 1). Since public
health resources may be limited during an epidemic, we

Figure 1 The model. Model diagram for the movements of
individuals between population compartments.

Table 1 Parameter values

Parameter Description Value Source

b Baseline transmission rate of the sensitive infection variable

1/µE Expose period (duration between exposure and start of infectiousness) 1.25 days [4,15-18]

1/g Duration of infectiousness 4 days [4,15,16,18,19]

a Rate of developing drug resistance following start of treatment 10-4 days-1 [16,18]

δT Relative transmissibility of the sensitive infection following treatment 0.4 [15,16,18,20]

δr Relative transmissibility of the resistant infection 0.8 [15,16,18]

p Fraction of infectious individuals diagnosed for treatment or isolation variable

q Fraction of treated infectious individuals without isolation variable

Tc Capacity for treatment and isolation of infectious individuals variable

R0 Basic reproduction number of the sensitive infection variable [3,19,20]

Baseline values of the parameters used for simulations of the models with sources from published literature. For a given value of R0, the baseline transmission
rate b can be calculated using the expression R0 = bS0/g.
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also defined a parameter (Tc ) as the capacity for treat-
ment of infected individuals including those who are
isolated (i.e., the percentage of the total population that
can be treated). To illustrate various scenarios, we initi-
ally seeded a susceptible population of size S0 = 10,000
with E0 = 10 individuals exposed to the sensitive virus,
and assumed that treatment can result in the emergence
of resistance with the relative transmissibility δr = 0.8
during the outbreak. Other parameter values are given
in Table 1.
The mean-field model was simulated for a number of

scenarios to show the occurrence of multiple infection
waves during an epidemic episode (Figure 2). These
simulations indicate that variation in the transmissibility
of the pathogen (determined by R0 ), as well as para-
meters that govern the effectiveness of control measures
can significantly impact the epidemic profile, leading to
sequences of infection waves with different magnitudes
and time-courses. To explore the causes of these multi-
ple outbreaks, we plotted time-courses of treated and
untreated sensitive (black curves) and resistant infec-
tions (red curves), corresponding to epidemic profiles in
Figures 2a-2d. As illustrated in Figures 2a-2b, a large
scale use of treatment (combined with isolation) sup-
presses the spread of the sensitive infection quickly, but
leads to the emergence and spread of resistance that
causes the first wave of infection. Due to the limited
capacity of treatment and isolation (run-out scenario), a
second wave of infection follows as a result of wide-

spread resistance (red curves), which declines once a siz-
able portion of the susceptible population is infected
and the level of susceptibility reduces below a threshold
that is sufficient to block the transmission of the resis-
tant pathogen with reduced fitness. However, this level
of susceptibility may still be above the threshold
required for disease containment, and therefore the sen-
sitive pathogen can cause the third wave of infection
(black curves).
As the reproduction number of the sensitive infection

increases (Figures 2c-2d), higher treatment levels are
required for the resistant infection to prevail and cause
a significant outbreak [18]. For a reduced level of treat-
ment and a higher transmissibility of the sensitive virus,
corresponding to the epidemic profile in Figure 2c, we
observed two infection waves, both of which are caused
by the spread of the sensitive virus, with generation of
very few cases of resistant infection. In this scenario,
run-out occurs before epidemic is contained, and a sec-
ond infection wave takes place. Similar dynamics can
occur with two subsequent waves of resistant infections
for a significantly higher treatment level (Figure 2d).
However, the second wave that occurs after the treat-
ment capacity is fully dispensed (run-out scenario) leads
to a major reduction in susceptibility of the population;
thereby ending the epidemic. These simulations indicate
that multiple infection waves could occur due to limited
resources for treatment/isolation of infected cases, the
ways that such resources are deployed during the

Figure 2 Multiple infection waves during an epidemic episode. Simulations for the time-courses of epidemic using parameter values given
in Table 1 with: (a) R0 = 1.6; p = 0.68; q = 0.8; Tc = 12% (three infection waves); (b) R0 =1.7; p = 0.66; q = 0.71; Tc = 11% (three infection waves);
(c) R0 = 1.9; p = 0.47; q = 0.7; Tc = 18% (two infection waves); and (d) R0 = 2; p = 0.8; q = 0.64; Tc = 18% (two infection waves). Black and red
curves correspond respectively to the total untreated and treated sensitive ( I + IT ) and resistance ( Ir + IT,r) infections without isolation.
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outbreak, the evolutionary responses of the pathogen to
control measures (e.g., emergence of drug resistance), or
a combination thereof. We performed further experi-
ments with small changes in these parameters, and
observed significant influences on the epidemic
dynamics that can be associated with the elimination or
creation of an infection wave. It is worth noting that the
above scenarios can take place even for sufficient drug
stockpiles for which run-out does not occur, if a policy
for adaptation (e.g., reduction) of treatment at the popu-
lation level is implemented due to wide-spread drug-
resistance [15].
For comparison purposes, we simulated the stochastic

version of the model using a Markov Chain Monte Carlo
method and observed sequences of infection waves for
different sets of parameter values (see Appendix). Consis-
tent with previous observations [4], the stochastic model
displays a later peak time of infection waves (with lower
magnitudes) than the homogeneous mean-field model.
This depends not only on the treatment level, but also on
other parameters involved in the spread of sensitive and
resistant infections, such as the reduction in the poten-
tially infectious contacts and the fitness of resistance.
Furthermore, stochastic effects can play a significant role
in determining disease dynamics even during the
outbreak well past the initial establishment phase of the
epidemic. This is illustrated in Figure 4c of the Appendix
that the epidemic dies out after the first outbreak in the
stochastic model; whereas a second wave of infection

takes place in the mean-field model with a larger magni-
tude compared to the first outbreak.
In addition to parameters pertaining to the nature of dis-

ease and effectiveness of interventions, the number of
infected cases at the onset of an epidemic can greatly influ-
ence the dynamics of disease. Our simulations (Figure 3)
indicate that small changes in the initial number of infec-
tions may result in different epidemic profiles exhibiting
more than one infection wave. This suggests that the true
dynamics of an emerging disease (with unknown initial
number of infections) may not be predicted with certainty,
even when reliable estimates of other pathogen-related and
intervention parameters are available.

Discussion
Stellar advances in the prevention and management of
infectious diseases have been achieved since the great
influenza pandemic of 1918. Yet, emerging pathogens
often inflict incalculable devastation to humanity. The glo-
bal mobilization with rapid international transportation
between populations makes the impact of such diseases
even more dramatic with potential socioeconomic uphea-
val. This was recognized in 2003 with the appearance of
severe acute respiratory syndrome (SARS) as the first
major infectious disease threat of the 21st century [21],
and was recently experienced with the worldwide spread
of a swine-origin influenza A virus H1N1, that led the
World Health Organization to declare this virus as the
cause of an influenza pandemic on June 11, 2009 [22].

Figure 3 The effect of changes in the initial number of infections on epidemic profiles. Simulations for the time-courses of epidemic (total
number of infections without isolation: I + IT + Ir + IT,r) using parameter values given in Table 1. Other parameters are: (a,b) R0 =1.9; p = 0.72; q =
0.71; Tc = 22.2% and initial infected cases of (a) E0 = 6 (three infection waves) and (b) E0 = 12 (single infection wave); (c,d) R0 = 2.5; p = 0.55; q =
0.41; Tc = 26% and initial infected cases of (c) E0 = 8 (single infection wave) and (d) E0 = 10 (two infection waves).
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Public health responses to the emergence of new diseases
often involve difficult decisions on optimal use of health
resources over very short timelines. Such decisions are
further confounded by substantial uncertainties regarding
the epidemiological characteristics of the novel infectious
pathogen, the effectiveness of public health intervention
strategies, and the evolutionary responses of the pathogen
under the pressure of control measures [23]. From a popu-
lation health perspective, it is therefore imperative to look
beyond short-term targets and account for long-term dis-
ease outcomes in strategy development and implementa-
tion. This is particularly important for preventing multiple
infection outbreaks that may result from imprudent use of
resources or unintended adverse consequences of disease
containment strategies.
Given the historical evidence for the occurrence of

multiple infection waves [2,3,7], several modelling stu-
dies have attempted to provide explanatory theories for
these events in a single epidemic course [2,5,6,8-10]. In
this study, we developed mean-field and stochastic
models to investigate possible causes of sequential out-
breaks from a public health perspective. Our results
show that epidemic dynamics can be substantially
affected by factors that influence policy design and
implementation (e.g., treatment level or isolation of
infected individuals), and parameters that determine
the effectiveness and consequences of control measures
(e.g., reduction in infectiousness due to treatment or
emergence of drug-resistance). Furthermore, the initial

number of infections can influence disease outcomes.
While mean-field and stochastic models may exhibit
similar epidemic behaviour, we also observed differ-
ences in their predictions in terms of the speed with
which disease spreads through the population (with
further delay in the peak time of outbreaks in the sto-
chastic model); the magnitudes of infection outbreaks;
and more importantly, the occurrence of infection
waves (see Appendix). The latter is particularly influ-
enced by stochastic effects, in addition to the structure
of contact patterns and heterogeneity in population
interactions [4]. Previous work [4,24] provides a solid
foundation for extension of this study through the
development of network dynamical models of disease
transmission in which heterogeneous contacts between
individuals are accounted for.
In this study, we simplified the models and included

compartments corresponding to some possible stages
of a disease; yet we understand that different patho-
gens may cause infections with different clinical mani-
festations and infectiousness periods. For example,
influenza is known to have a short latent period of
less than 2 days before becoming infectious [17], fol-
lowed by a pre-symptomatic infection during which
disease can be transmitted without showing clinical
symptoms; however, the latent period of SARS is esti-
mated to be longer and may be comparable to the
duration of a complete course of influenza infection
[17]. It is also well-documented that influenza can be
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Figure 4 Stochastic simulations. Stochastic simulations for the time-courses of epidemic (including sensitive and resistant infections without
isolation) using parameter values given in Table 1 of the main text with: (a) R0 = 1.9, p = 0.65, q = 0.72, Tc = 19.5% (three infection waves); (b)
R0 = 1.9, p = 0.5, q = 0.65, Tc = 15% (two infection waves); and (c) R0 = 1.9, p = 0.5, q = 0.66, Tc = 16% (one infection wave). Black and red
curves correspond respectively to the sensitive (untreated and treated: I + Iτ) and resistant (untreated and treated: Ir + IT,r) infections. Blue curves
illustrate the corresponding scenarios for the total number of infections (I + IT + Ir + IT,r) during epidemic simulated in the mean-field model. In
all simulations, initial number of infected cases is E0 = 10.
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transmitted in asymptomatic form without developing
clinical symptoms [25]; while evidence for asympto-
matic transmission of SARS is rather scant. These dis-
crepancies in infection stages of human diseases,
combined with the ability of the pathogens to over-
come the pressures that are applied to limit their
replication and spread, can profoundly impact not
only the feasibility and effectiveness of control mea-
sures, but also the dynamics of disease over the course
of an epidemic. Our study highlights these considera-
tions for further investigation, while demonstrating
possible mechanisms for the occurrence of multiple
infection waves in a single epidemic. Future research
in this direction should address some limitations of
the present study, including a systematic exploration
of parameter space to characterize which intervention
parameter regimes are more likely to give rise to
sequences of infection outbreaks, and to determine
the sensitivity of model outputs (epidemic dynamics)
on parameter changes.
Although models considered here are simulated for

influenza infection as a case study, understanding the
interplay between intervention parameters, evolutionary
responses of the pathogens, and epidemic dynamics
remains a critical objective of public health for many
diseases [26], including HIV, tuberculosis, malaria, and
several bacterial infections. Such diseases often share
common features, including the emergence and preva-
lence of drug resistant pathogens under the pressure of
drug treatment. The initial rise of resistance is generally
associated with fitness costs that make the resistant
pathogen less capable of competing with the sensitive
pathogen (as the dominant competitor) in a given host
population [11]. However, evolutionary mechanisms
(e.g., compensatory mutations [27]) may improve the fit-
ness of resistant pathogens, and therefore intervention
measures may result in further selection of resistance, as
has been documented for the global spread of seasonal
influenza drug resistance that appears to be associated
with fitness enhancement processes [28]. This suggests
that future modelling efforts should integrate factors
that govern pathogen-host interactions with the
mechanisms of disease epidemiology to guide public
health in devising novel and effective means of infection
control.

Appendix: Stochastic model
With the same population compartments as defined in
the mean-field model described in the main text, we
develop a stochastic model for disease transmission
dynamics to investigate the epidemic patterns with
random effects. We consider time t as a continuous
variable, and define the following random vector for
t Î [0, ∞)


X t S t E t E t I t I t I t I t J tr T r T r( ) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )),,=

with Δ = + Δ −
  
X t X t t X t( ) ( ) ( ) that represents changes

that occur to the random vector at Δt units of time. We
define the transition probability as

Pr( ( )) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )),Δ =

X t S E E I I I I Jr T r T rΘ Θ Θ Θ Θ Θ Θ Θ || ( )),Δ


X t (3)

where

Θ( )⋅ =
− ⋅1 decrease in the class ( )

 0 no change in the class (⋅⋅
⋅

⎧

⎨
⎪

⎩
⎪

)

 1 increase in the class ( )

The function Θ(·) describes the status of an individual
in a subpopulation (i.e., Θ(·) = –1: an individual leaves
the subpopulation; Θ(·) = 0: no changes occur to the indi-
viduals’ status in the subpopulation; Θ(·) = 1: an indivi-
dual enters the subpopulation). We assume that Δt is
sufficiently small, so that at most one change of status
can occur during the time interval Δt, which can be
viewed as a Markov chain process. The resulting stochas-
tic model can be described as a continuous time Markov
model, with the transition probabilities given in Table 2.

Algorithm for stochastic simulations
For simulating the stochastic model, we used the Markov
Chain Monte Carlo method, with an initial E(0) = 10
exposed individuals to sensitive infection in a population
of S0 = 10, 000 susceptibles. A key parameter in these
simulations is the step-size of the Monte Carlo method.
Using a fixed step-size requires a large number of steps
to guarantee that the transitions between subpopulations
take place and disease transmission can occur, which is
computationally very demanding in terms of both timing
and resources. To reduce such a computational load, we
implemented an adaptive step-size method [29] to esti-
mate the transition time to the next event (Δt) by calcu-
lating the sum of the frequencies of all possible events,
given by h = b(I + δTIT)S(t) + δrb(Ir + IT,r)S(t) + (1 – p)µE
(E + Er) + pqµE(E + Er) + aIT + p(1 – q)µE(E + Er) + g(I +
Ir + IT,r + J + IT). Then, by choosing Δt = U1/h, where U1

is uniform distribution in the interval [0,1], we ordered
all possible events as an increasing fraction of h and gen-
erated another uniform deviate (U2 Î [0,1]) to determine
the nature of the next event. For the convergence of the
results, we ran these simulations for 1000 samples, and
considered the average of sample realizations of the sto-
chastic process to generate infection curves.

Stochastic simulations
We ran stochastic simulations with parameter values
given in Table 1 to illustrate the possibility of multiple
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infection waves for different scenarios with variation in
the basic reproduction number, fractions of treated and
isolated ill individuals, and the capacity for treatment
and isolation. Figure 4a shows that, since the transmis-
sion of the sensitive infection is largely blocked by a
high treatment level, resistance emerges and causes the
first infection wave of the outbreak. The second wave of
resistant infections follows after the capacity of treat-
ment and isolation (Tc) is exhausted, and declines when
susceptibility of the population falls below a certain
threshold that is sufficient to end the resistant outbreak
(red curve). However, due to higher fitness of the sensi-
tive infection, a third wave of outbreak occurs which
results in depletion of the susceptible population to
levels sufficient for ending the epidemic (black curve).
We observed similar behaviour in the mean-field model,
as illustrated by the blue curve in Figure 4a. When
treatment level is reduced by a significant margin, gen-
erated resistant infection is out-competed by the sensi-
tive infection which has a higher fitness advantage
(Figure 4b), and only outbreaks of the sensitive infection
occur; the second wave takes place after the capacity of
treatment is fully dispensed (black curve). While, the
mean-field model also produces similar results (blue
curve), we observed differences in the behaviour of the
stochastic model. A small reduction in the fraction of
isolated individuals leads to the elimination of the sec-
ond wave in the stochastic model, while mean-field
model still produces a second wave with even a larger
magnitude than the first wave of the outbreak (Figure
4c). This suggests that not only are stochastic effects
important during the early stages of disease outset, but
they also can play a critical role in shaping the epidemic
well beyond the establishment phase of the disease.
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