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Abstract
Background: Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and 
left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic 
dysfunction (LVSD). We hypothesized that a ~5-min resting 12-lead advanced ECG test ("A-ECG") that combined results 
from both the advanced and conventional ECG could more accurately screen for these conditions than strictly 
conventional ECG.

Methods: Results from nearly every conventional and advanced resting ECG parameter known from the literature to 
have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with 
imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-
parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for 
disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then 
compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional 
individuals.

Results: Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score 
validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-
84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In 
diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-
98%) (P < 0.0001) without compromising related negative predictive value.

Conclusion: Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH 
and LVSD.

Background
Although conventional resting electrocardiography
(ECG) has an important role in managing acute coronary
syndromes and suggestive but non-diagnostic acute chest

pain, it has well-recognized limitations in the detection of
heart disease[1]. For both isolated and pooled ECG
abnormalities, the sensitivity of conventional resting ECG
as a predictor for coronary artery disease (CAD) and left
ventricular hypertrophy (LVH) has been too low for it to
be practical as a screening tool[2,3]. Although conven-
tional resting ECG, when normal, has excellent negative
predictive value (NPV) for left ventricular systolic dys-
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function (LVSD), the simultaneously poor positive pre-
dictive value (PPV) of abnormal ECG findings also limits
conventional ECG's utility in heart failure screening[4,5].
Thus, any improvements to the resting ECG that might
notably increase its sensitivity for identifying CAD and
LVH (without compromising related specificity) and/or
its PPV in screening for LVSD (without compromising
related NPV) would be clinically relevant.

Over the past two decades, several advanced tech-
niques implemented within software have improved the
diagnostic and/or predictive value of resting ECG. These
techniques have included derived "3-dimensional" (spa-
tial/spatiotemporal) ECG;[6-9] high-frequency (HF) QRS
ECG;[10] detailed studies of waveform complexity by sin-
gular value decomposition (SVD); [8,11-13] and beat-to-
beat QT variability (QTV) [14-17] and R-wave to R-wave
variability (RRV)[18,19]. A theoretical advantage of com-
puterized ECG systems is that they allow for multiple
conventional and advanced ECG techniques to be per-
formed in software during a single digital recording.
Related results can then be integrated automatically by
using statistical pattern recognition techniques [20] to
maximize diagnostic or predictive accuracy. In practice,
these procedures can also be performed rapidly and rela-
tively inexpensively.

The hypotheses of the present study were that a ~5-min
resting 12-lead advanced ECG test ("A-ECG"), defined as
the multivariate logistical integration of key results from
both the conventional and advanced ECG, could detect
common cardiac conditions such as CAD and concentric
LVH with greater sensitivity and accuracy than optimized
pooled criteria from the strictly conventional ECG and
also predict LVSD with greater PPV and accuracy.

Methods
Participants
Data from all individuals who volunteered for resting ~5-
min high-fidelity ECG studies from 2001 through mid-
2007 (training set) or thereafter (test set) were considered
for inclusion. These included data from: 1) Cardiac clinic
patients who volunteered for individual studies at any of
the following clinical sites: Texas Heart Institute (Hous-
ton, TX); the University of Texas Medical Branch
(Galveston, TX); the University of Texas Health Sciences
Center (San Antonio, TX); Brooke Army Medical Center
(San Antonio, TX); St. Francis Hospital (Charleston,
WV); the Universidad de los Andes (Mérida, Venezuela);
and Lund University Hospital (Lund, Sweden); and 2)
Asymptomatic individuals who volunteered as "controls"
at any of the following sites: Johnson Space Center (Hous-
ton, TX); the Universidad de los Andes and Lund Univer-
sity Hospital. For the test set, additional data from
patients whose ~5-min ECGs had been collected at the
Charleston Area Medical Center as part of earlier studies

but that became available to us during 2007 (i.e., the
STAFF III database)[7] were also utilized. All participants
gave original informed consent, and the Institutional
Review Boards of one or more of the institutions
approved the studies.

Inclusion criteria
For both the training and the test sets, to define our "Dis-
ease" groups, we included data only from those cardiac
clinic patients whose disease (CAD, LVH and/or LVSD)
was proven based on ECG-independent information
derived from standard clinical imaging tests [16,21-23]
performed within one month of ECG testing by investiga-
tors or other clinicians blinded to the automatically-pro-
duced A-ECG results. Disease was defined as the
presence of at least one of the following: 1) CAD, defined
as a coronary angiogram showing at least one obstruction
≥50% in at least one major native coronary vessel or coro-
nary graft, or, if for clinical reasons angiography was not
performed, then one or more reversible perfusion defects
on 99 m (Tc)-tetrofosmin single-photon emission com-
puted tomography (SPECT); [16,21,23]2) LVH, defined as
moderate or greater concentric hypertrophy or concen-
tric remodeling according to the guidelines of the Ameri-
can Society of Echocardiography;[24] and/or 3) LVSD of
any etiology, defined as LVEF <50% by echocardiography,
cardiac magnetic resonance imaging (CMR) or SPECT.
Diseased individuals who met none of these three inclu-
sion criteria but who had isolated right ventricular
pathology, isolated LV diastolic dysfunction, isolated LV
cavity enlargement or isolated fixed defect on SPECT
were excluded from the study.

To derive correspondingly definitive "Healthy" groups
for both the training and test sets, we included data only
from low-risk asymptomatic controls who had no evi-
dence of cardiovascular or other systemic disease based
on a negative history and physical examination. Asymp-
tomatic controls who were hypertensive (BP≥140/90),
receiving treatment for hypertension, diabetic or active
smokers were excluded. All cardiac clinic patients or
asymptomatic individuals who had complete bundle
branch block, sinus tachycardia, non-sinus rhythm, paced
rhythm, pre-excitation, or an incomplete ECG recording
were also excluded from both the training and test sets.

Training set
Of the 952 individuals who were considered for the train-
ing set, 708 met the above inclusion criteria, including
290 for the Disease group training set and 418 for the
Healthy group training set. Of the 290 patients constitut-
ing the Disease group training set, 188 had normal LV
function (136 had CAD; 25 had LVH; and 27 had both
CAD and LVH) and constituted a "Disease without
LVSD" training subset, whereas another 102 had LVEF
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<50% (77 with ischemic cardiomyopathy; 25 with nonis-
chemic dilated cardiomyopathy) and constituted a "Dis-
ease with LVSD" training subset. Of the 418 controls in
the Healthy group training set, a majority also had their
disease-free status further demonstrated through normal
or unremarkable results on a conventional or SPECT
exercise stress test, echocardiogram, and/or CMR test
performed for research purposes within 2 years of their
~5-min ECG. These included 55 elite, endurance-trained
normotensive Swedish athletes (38 males) who had had
clinically unremarkable CMR results.

Test set
Data for the test set were obtained from an additional 315
individuals, including from an additional 208 diseased
patients and an additional 107 healthy controls. The 208
individuals in the Disease group test set consisted of 139
patients with CAD, 17 with concentric LVH, 11 with both
CAD and LVH, and 41 with LVSD (27 with ischemic and
14 with nonischemic dilated cardiomyopathy). The
Healthy group test set consisted of 107 consecutive indi-
viduals over age 35 (including 9 elite athletes) who met
the Healthy group inclusion criteria, recruited after mid-
2007 mainly at NASA's Human Test Subject Facility in
Houston. Within the Disease Group test set, data for 97
of the 208 patients came from the pre-procedural portion
of the STAFF III database[7]. Since all patients in the
STAFF III database had catheterization-proven CAD but
unreported LV function, their data, as well as data from
another 26 diseased patients with unknown LV function
were by necessity withheld from the LVSD-related sub-
analyses in the test set.

ECG data collection and analyses
At all sites, a high-fidelity (1000 samples/sec) computer-
ized 12-lead ECG system (Siemens-Elema AB, Solna,
Sweden or CardioSoft, Houston, TX) was used to acquire
at least 256 waveforms acceptable for signal averaging
and variability analyses.

A. Conventional ECG parameters and criteria
Signals from the first 10 sec of the conventional ECG
recording were analyzed automatically in software to
quantify all major intervals, axes, and voltages as well as
ST segment levels. Initial candidate criteria used for
defining these strictly conventional 12-lead ECGs as
"abnormal" were: 1) LVH according to traditional
Sokolow-Lyon voltage criteria (SV1 + RV5 or RV6 ≥3.5
mV) or to gender-specific Cornell voltage (RaVL + SV3
≥2.8 mV in men or ≥2.0 mV in women) or Cornell prod-
uct (244 mV*ms with a 0.8 mV adjustment for women)
criteria;[25]2) old infarction according to Anderson et al's
subset of Selvester's criteria;[26]3) resting ST depressions
or T-wave abnormalities according to computerized Min-
nesota Codes 4.1 to 4.4 and 5.1 to 5.3; 4) prolonged QTc

(≥450 ms in men and ≥460 ms in women) or QRS (>110
ms) interval (individuals with complete bundle branch
blocks being excluded from the study); or 5) left axis devi-
ation (≤-30°).

B. Advanced ECG parameters obtained after signal 
averaging
Signal averaging was performed over the entire ~5-min
(256-beat) recording using software developed by the
authors[10,13] to generate results for parameters of: 1)
12-lead HF QRS ECG;[10]2) derived 3-dimensional ECG,
using the regression-related Frank-lead reconstruction
technique of Kors et al[27] to generate several vectocar-
diographic parameters, including for example the spatial
mean QRS-T angle,[6,8,28] the spatial maximums
("peaks") QRS-T angle[9] and the magnitude, [28] direc-
tion[28] and beat-to-beat variation[29] of the spatial ven-
tricular gradient and its components; and 3) QRS and T-
waveform complexity via SVD, to derive for example the
principal component analysis (PCA) ratio,[11,13,30] the
relative residuum[12,13] and the dipolar and nondipolar
voltage equivalents[8] of the QRS and T waveforms. The
majority of these parameters and their related detailed
methods have been described in other recent publica-
tions[10,13,31]. We also generated results for several
other potentially promising parameters (see Additional
file 1: Supplemental Table 1 for partial list), including, for
example, for the spatial ventricular activation time [32]
and the total integral of the Z-lead QRS complex above 5
Hz ("Z integral")[33].

C. Advanced parameters derived from variability analyses
Several parameters of 256-beat RRV and QTV described
in previous publications[17,31,34] were again evaluated
via custom software programs[17]. These included the
QT variability index (QTVI), but using the means and
variances of the RR interval[15] rather than those of the
heart rate[14] in the denominator of the QTVI equation,
and the "unexplained" part of QTV[31,34].

Statistical Analyses (including generation, validation and 
testing of A-ECG scores)
Using the training set, promising candidate subsets of
ECG parameters for potential inclusion in primary
("Healthy versus Disease") and secondary ("Disease with
versus without LVSD") A-ECG scores were first identified
using a branch-and-bound feature selection procedure
[20] implemented in SAS 9.1.3 (Cary, NC). To avoid the
so-called "curse of dimensionality", the number of ECG
parameters incorporable into any potential A-ECG score
was limited to fewer than one-tenth of the minimum
number of training samples available in a given group or
subgroup[20]. Logistic regression was used to retrospec-
tively estimate the probability of any subject in the train-
ing set being a member of the Disease group, and of any
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diseased subject in the training set being a member the
"Disease with LVSD" subgroup, based strictly on his/her
A-ECG-based independent variables and a cutoff pre-
dicted probability of >0.5. The best candidate subsets of
parameters (A-ECG scores) were then further validated
by bootstrap analysis[35] in which for each fixed score,
the data were iteratively resampled 1000 times and the
logistic regression coefficients for each parameter in the
given score re-estimated. The bootstrap analyses, imple-
mented in Stata 10.0 (College Station, TX), revealed not
only the variability in the coefficients, but also those can-
didate A-ECG scores that should be discarded because of
their doubtful utility for classifying later subjects in the
test set, for example scores with coefficients that varied
greatly or that did not have the expected sign over all
1000 bootstraps. Prior to subsequent evaluation in the
test set, the bootstrap-validated A-ECG scores were fur-
ther evaluated within the training set via a jackknife pro-
cedure[35] in which the score's sensitivity, specificity,
accuracy or predictive values were assessed by using the
data for all but one observation in the training set to clas-
sify the omitted observation, then repeating the process
for each observation in turn. Comparisons of accuracies
(sensitivities and specificities) and predictive values
between strictly conventional and A-ECG classifiers were
performed using Cochran's Q[36] and Wald tests, respec-
tively, the latter employing the difference-based weighted
least squares method[37]. For simple illustrative compari-
sons between groups, the Wilcoxon rank sum and
receiver operating curve characteristic statistics were
used.

Results
Table 1 shows baseline characteristics of the Disease and
Healthy groups and of the two Disease subgroups in the
training set. Besides being free of hypertension and dia-
betes and having lower body mass index and medication
use, the Healthy group training set also was younger than
the Disease group training set. Because of the age dispar-
ity, two sets of primary A-ECG scores were constructed
and validated in the training set for later evaluation in the
test set: one wherein all healthy subjects were included
and one wherein only those healthy subjects >40 years of
age (mean 51 ± 8 years, N = 133, 63% men) were
included. For the additional 315 individuals who com-
prised the test set, the distributions of hypertension, dia-
betes, body mass index, LVEF, and medication use were
similar to those shown in Table 1. The mean ages in the
test set were 59 ± 12, 59 ± 13, 56 ± 12 and 49 ± 11 years
for the Disease group, the with-LVSD and without-LVSD
Disease subgroups and the Healthy group respectively,
men comprising 65%, 74%, 60% and 57% of those groups,
respectively.

Figures 1 and 2 show how the performance of an A-
ECG score in the training set depended on the number of
ECG parameters the score incorporated. For primary
("Healthy versus Disease") A-ECG scores (Figure 1, N =
708), only negligible further gains in cross-validated
accuracy occurred with scores containing more than ~9
parameters. For secondary ("Disease with versus without
LVSD") A-ECG scores (Figure 2, N = 290), this same cut-
off occurred at only ~5 parameters. The first and second
parameters incorporated into primary A-ECG scores by
the automatic selection procedures were the QTVI in
lead II and the spatial mean QRS-T angle, respectively
(Figure 1). For secondary (LVSD) A-ECG scores, the first
and second parameters incorporated by the same proce-
dures were the Z integral and the spatial mean QRS-T
angle, respectively (Figure 2).

Table 2 shows the performances in the training set of
the pooled, strictly conventional ECG criteria, along with
those of the most relevant single parameters and A-ECG
scores. The candidate conventional ECG criteria outlined
in the Methods section were retrospectively optimized
when their Sokolow-Lyon subcriteria were dropped and
replaced instead by subcriteria for left atrial abnormality
(P-wave duration >120 ms or terminal negative compo-
nent of a biphasic P-wave in lead V1 >4 ms*mV in area).
Thus, only the resulting optimized set of conventional
ECG criteria was carried forward for later use with the
test set. Not unexpectedly, the retrospectively optimized
A-ECG scores outperformed the retrospectively opti-
mized pooled conventional ECG criteria in the training
set. Of note, the optimal primary A-ECG scores made use
of the entire ~5-min (so called "full-disclosure") 12-lead
recording because they incorporated results from QTVI
(Figure 1). Inasmuch as most 12-lead ECG machines do
not yet have full-disclosure capabilities, Table 2 also
shows the diagnostic performance in the training set of
an optimized primary A-ECG score that was only allowed
to incorporate results from parameters likely yielding
reliable and reproducible results within strictly "snap-
shot" (10-sec) ECG recordings.

Table 3 shows the performances in the test set of the
optimized pooled conventional ECG criteria and of the
most relevant single parameters and A-ECG scores gen-
erated in the training set. Although as expected most A-
ECG scores tended to have slightly diminished perfor-
mance in the test set compared to the training set (com-
pare Table 3 to Table 2), several primary A-ECG scores
generated from the training set still had accuracies of 90%
or greater in the test set. For example, compared to the
optimized pooled criteria from the strictly conventional
ECG, the best 7-parameter primary full-disclosure A-
ECG score generated in the training set increased the
sensitivity of resting ECG for identifying Disease in the
test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001)
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while also increasing specificity from 85% (77-91%) to
94% (88-98%) (P < 0.05). Another 7-parameter A-ECG
score that only incorporated parameters likely yielding
reliable and reproducible results within "snapshot" ECG
recordings was only slightly less accurate. In diseased
patients, another 5-parameter secondary A-ECG score
generated in the training set also increased the PPV of

ECG for additionally predicting LVSD in the test set from
53% (41-65%) to 92% (78-98%) (P < 0.0001) without sig-
nificantly compromising NPV. This secondary A-ECG
score had corresponding positive and negative likelihood
ratios for LVSD in the test set of 12.16 and 0.18, respec-
tively, versus 1.23 and 0.21 for the optimized pooled con-
ventional ECG criteria. The exact components and

Table 1: Demographic Characteristics of the Training Set Disease Group, Disease Subgroups and Healthy Group

Parameter Disease Group (N = 290)  Disease Subgroup A 
With LVSD (LVEF < 50%, 

N = 102)

 Disease Subgroup B 
Without LVSD 

(LVEF≥50%, N = 188)

Healthy Group (N = 418)

Age [years] 59 ± 11 56 ± 13 60 ± 10 36 ± 12

Males 189 (65) 72 (71) 117 (62) 255 (61)

BMI [kg/m2] 29 ± 7 29 ± 7 29 ± 6 26 ± 4

LVEF (%) 48 ± 16 29 ± 10 59 ± 8 NA

Diabetes 111 (38) 32 (31) 79 (42) 0 (0)

Hypertension 116 (40) 30 (29) 86 (46) 0 (0)

Beta blockers 222 (77) 85 (83) 137 (73) 4 (1)

ACEIs or ARBs 127 (44) 42 (41) 85 (45) 0 (0)

Nitrates 104 (36) 30 (29) 74 (39) 0 (0)

Diuretics 130 (45) 79 (77) 51 (27) 0 (0)

Inotropes 50 (17) 44 (43) 6 (3) 0 (0)

Values are mean ± standard deviation for age, BMI (body mass index) and left ventricular ejection fraction (LVEF). All other values represent 
total number (percent) of affected individuals. NA, not applicable; ACEIs, angiotensin converting enzyme inhibitors; ARBs, angiotensin 
receptor blockers.

Figure 1 Effect of number of parameters in a primary ("Healthy versus Disease") Advanced ECG (A-ECG) score on the score's jackknifed ac-
curacy in the training set (N = 708).



Schlegel et al. BMC Cardiovascular Disorders 2010, 10:28
http://www.biomedcentral.com/1471-2261/10/28

Page 6 of 11
coefficients of those training set-generated primary and
secondary A-ECG scores that performed best in the test
set are shown in Additional file 2 (Supplemental Table 2).

Discussion
The results of this study suggest that resting 12-lead A-
ECG tests can detect the presence of catheterization-
proven or other imaging-proven CAD and LVH with
higher sensitivity and specificity than optimized pooled
criteria from the strictly conventional ECG. This
improved detection is accomplishable via the use of opti-
mal combinations of 7 or fewer advanced and conven-
tional ECG parameters within computerized multivariate
A-ECG scores. Similar A-ECG scores can also increase
the PPV of resting ECG for predicting LVSD without
compromising related NPV.

Beginning in the 1960s, Pipberger et al applied a multi-
variate approach to the conventional ECG (orthogonal ±
12-lead) to obtain excellent diagnostic accuracies, albeit
generally only for those conditions considered classically
diagnosable by ECG, such as ventricular hypertrophy and
previous infarction[38,39]. Our results therefore confirm
Pipberger et al's suggestion that the diagnostic utility of
resting ECG could be continuously improved through
computer-automated multivariate analyses validated
against ECG-independent diagnostic information. Our
results also suggest that the use of 21st-century software
technology can now extend the reach of resting ECG
toward the detection of conditions previously thought

not to be detectable by it, for example CAD without prior
infarction. The basic premise of A-ECG is that a ~5-min
resting 12-lead recording contains sufficient information,
if assiduously sought, to allow gross detection of most car-
diac pathology. Although the ECG equipment used in this
study was "high fidelity," the best-performing A-ECG
scores likely did not require such equipment and thus
should also be derivable from many "standard-fidelity"
ECG devices.

The present results suggest that with further validation,
resting A-ECG might join other methods that are pres-
ently recommended [40,41] or suggested [42] as initial
tests for individuals at intermediate pretest epidemiologic
risk for CAD. The main advantages of A-ECG are that it
can be performed rapidly and inexpensively, including in
patients who are unable to exercise, and it does not
expose patients to the potentially health-compromising
effects of radiation. The convenience of A-ECG is also
high in that the majority of individuals who are clinically
discerned as being at intermediate pretest epidemiologic
risk for CAD will likely have resting 12-lead ECGs any-
way. Finally, A-ECG also has a multifunctional aspect in
that it can potentially aid screening not only for CAD but
also for LVH and LVSD.

Heart failure is an increasing and expensive problem
worldwide. Because the adequate and timely treatment of
LVSD can reduce mortality and frequency of hospitaliza-
tions,[43,44] it would be beneficial if a simple resting
ECG could serve as a reasonably accurate initial screen-

Figure 2 Effect of the number of parameters in a secondary ("Disease with versus without left ventricular systolic dysfunction", LVSD) Ad-
vanced ECG (A-ECG) score on the score's jackknifed accuracy in the training set (N = 290).
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ing test. Although our results corroborate the findings of
others that a normal resting conventional 12-lead ECG
has a very high NPV for LVSD (typically >95% in individ-
uals with suspected heart failure in the general popula-
tion),[4,5] conventional ECG's predictive value for LVSD
is nonetheless limited by its simultaneously poor PPV
(typically ≤35% in the same studies)[4,5]. Notably, in our
study, the best secondary A-ECG scores nearly doubled
the PPV of resting ECG for LVSD without compromising
NPV. Given that the use of A-ECG therefore mitigates
resting ECG's principal weakness in LVSD screening
(poor PPV) and the fact that even conventional ECG
alone sometimes outperforms other proposed modalities
for LVSD screening such as B-type natriuretic peptide,[5]
A-ECG might serve as a useful adjunct to conventional
ECG and natriuretic peptides in heart failure screening,

particularly for better guiding referrals to more definitive
but costly echocardiography tests.

Limitations
We did not nominally allow age, a continuous parameter
that correlates with many ECG changes,[45] to be incor-
porated into A-ECG scores. We took this approach not
only because the incorporation of age might ultimately
compromise the ability of A-ECG to detect disease in
younger individuals, but also because our principal aim
was to compare the performance of A-ECG to that of
optimized, strictly conventional ECG criteria that like-
wise do not incorporate age. While we are able to con-
struct primary A-ECG scores that incorporate age and
that, compared to the primary A-ECG scores described
herein, have non-significantly increased accuracy in the

Table 2: Accuracies and Predictive Values of Pooled Conventional versus A-ECG Criteria in the Training Set

Disease (N = 290) Healthy (N = 418)

TP FN TN FP Sensitivity(CLs) Specificity(CLs) Accuracy(CLs)

Conventional ECG status

Abnormal (nominal pooled criteria) 221 69 352 66 76%(71-81%) 84%(80-88%) 81%(78-84%)

Abnormal (optimized pooled criteria) 223 67 368 50 77%(72-82%) 88%(85-91%) 83%(81-86%)

Best individual parameter status

Abnormal QTVI in lead II (>-1.64 units) 242 48 359 59 83%(79-88%) 86%(82-89%) 85%(82-87%)

Best 1° A-ECG scores status

"Full Disclosure" (5-min) A-ECG:

Abnormal 9-parameter score* 273 17 402 16 94%(91-97%)‡ 96%(94-98%)‡ 95%(94-97%)‡

Abnormal 7-parameter score* 268 22 398 20 92%(89-95%)‡ 95%(93-97%)‡ 94%(92-95%)‡

"Snapshot" (10-sec) A-ECG:

Abnormal 7-parameter score 258 32 395 23 89%(85-92%)‡ 94%(92-96%)‡ 92%(90-94%)‡

Disease
+LVSD
(N = 102)

Disease
no LVSD
(N = 188)

TP FN TN FP PPV (CLs) NPV (CLs) +LR -LR

Conventional ECG status

Abnormal (nominal pooled criteria) 92 10 60 128 42%(35-49%) 86%(75-93%) 1.32 0.31

Abnormal (optimized pooled criteria) 94 8 59 129 42%(36-49%) 88%(78-95%) 1.34 0.25

Best individual parameter status

Abnormal Z integral (>12.4 mV*ms) 77 25 153 35 69%(59-77%)† 86%(80-91%) 4.05 0.30

Best 2° A-ECG scores status

Abnormal 5-parameter score 79 23 173 15 77%(68-85%)‡ 92%(87-95%) 9.71 0.25

See text for definitions of nominal versus optimized pooled criteria for "abnormal" conventional ECGs. A-ECG, advanced ECG; LVSD, left 
ventricular systolic dysfunction; TP and FP, true and false positives; TN and FN, true and false negatives; CLs, exact 95% binomial confidence 
limits; PPV and NPV, positive and negative predictive values; +LR and -LR, positive and negative likelihood ratios; QTVI, QT interval variability 
index; Z integral, the total integral of the Z-lead QRS complex above 5 Hz.
*The 9-parameter 1° A-ECG score performed best in the training set whereas the 7-parameter 1° A-ECG score ultimately performed best in the 
test set (Table 3). All results shown for A-ECG scores are jackknifed.
†P < 0.05 and ‡P < 0.0001 versus the optimized pooled conventional ECG criteria.
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full training set (where age differences between Healthy
and Disease groups are greatest), these same age-incor-
porating scores also have non-significantly decreased
accuracies in the arguably more important test set. Simi-
larly, while we're also able to construct A-ECG scores on a
gender-specific basis, doing so does not statistically sig-
nificantly improve performance for either gender, neither
in the training set nor in the test set. This finding may
relate to the fact that the best performing non-gender
specific scores all contained at least one parameter
known to have higher values in men, for example spatial
QRS-T angle,[46] balanced by at least one parameter
known to have higher values in women, for example a
measure of T-wave complexity[47]. Clearly, however, the
use of gender-specific A-ECG scores validated in larger
data sets might further optimize performance in the
future.

Because our hypothesis involved assessing the relative
performance of A-ECG versus conventional ECG and we
were not able to assess coronary microvascular function,
[48,49] we excluded from our "Healthy" groups asymp-
tomatic diabetics, hypertensives and smokers as well as
all individuals with angina or subclinical CAD (luminal
stenoses <50% by catheterization). From the perspective
of assessing absolute performance this might of course be
construed as a limitation. To therefore further address
this issue, we have proceeded to analyze the ECG data
from these excluded higher risk individuals (N = 136; 55
± 11 years, 51% females), the results revealing that just
over one half (69/136) would have had positive optimized
conventional ECG criteria for "Disease" and just over
one-third (49/136; 51/136) positive full-disclosure and
snapshot primary A-ECG scores, respectively. Thus, had
we simply ignored any possible effect of subclinical CAD
on the ECG (in spite of evidence to the contrary [50]) and

Table 3: Accuracies and Predictive Values of Pooled Conventional versus A-ECG Criteria in the Test Set

Disease
(N = 208)

Healthy
(N = 107)

TP FN TN FP Sensitivity(CLs) Specificity(CLs) Accuracy(CLs)

Conventional ECG status

Abnormal (optimized pooled criteria) 163 45 91 16 78%(72-84%) 85%(77-91%) 81%(76-85%)

Best individual parameter status*

Abnormal QTVI in lead II (>-1.64 units) 161 47 87 20 77%(71-83%) 81%(73-88%) 79%(74-83%)

Best 1° A-ECG scores status*
"Full Disclosure" (5-min) A-ECG:

Abnormal 9-parameter score 185 23 98 9 89%(84-93%)‡ 92%(85-96%) 90%(86-93%)†

Abnormal 7-parameter score 194 16 101
 

6 92%(88-96%)‡ 94%(88-98%)† 93%(90-96%)†

"Snapshot" (10-sec) A-ECG:

Abnormal 7-parameter score 192 16 92 15 92%(88-96%)‡ 86%(78-92%) 90%(86-93%)†

Disease
+LVSD
(N = 41)

Disease
no LVSD
(N = 44)

TP FN TN FP PPV (CLs) NPV (CLs) +LR -LR

Conventional ECG status

Abnormal (optimized pooled criteria) 39 2 10 34 53%(41-65%) 83%(51-98%) 1.23 0.21

Best individual parameter status*

Abnormal Z integral (>12.4 mV*ms) 28 13 31 13 68%(52-82%) 70%(55-83%) 2.31 0.45

Best 2° A-ECG scores status*

Abnormal 5-parameter score 34 7 41 3 92%(78-98%)‡ 85%(72-94%) 12.16
 

0.18

A-ECG, advanced ECG; LVSD, left ventricular systolic dysfunction; TP and FP, true and false positives; TN and FN, true and false negatives; CLs, 
exact 95% binomial confidence limits; PPV and NPV, positive and negative predictive values; +LR and -LR, positive and negative likelihood 
ratios; QTVI, the QT interval variability index; Z integral, the total integral of the Z-lead QRS complex above 5 Hz.
*The best individual parameters and their cut-off values and the best A-ECG scores are all carried over from the training set and are not 
necessarily fully optimized with respect to the test set.
†P < 0.05 and ‡P < 0.0001 versus the optimized pooled conventional ECG criteria.
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just assigned these higher risk individuals to our
"Healthy" group, not only would the specificity of all ECG
testing been decreased, but the specificity of the primary
A-ECG scores would also have been further increased rel-
ative to that of the optimized, strictly conventional ECG
criteria. Additional studies, ideally using direct physio-
logical assessment of coronary arteries [49] as the gold
standard, are therefore required to determine whether
any clinical importance should be attached to the mod-
estly lower prevalence of A-ECG compared to conven-
tional ECG abnormalities in these higher risk individuals.

Nearly all our patients with LVSD had experienced
symptoms and had begun medical therapy prior to their
~5-min ECG tests. Therefore, although we demonstrated
that A-ECG scores have better predictive value for medi-
cally-managed LVSD than do pooled criteria from the
strictly conventional ECG, the ability of A-ECG to better
predict pre-symptomatic LVSD was not directly tested
and requires further study. Additional study limitations
include the grouping together of CAD and LVH (keeping
in mind that these conditions are commonly co-morbid
plus the more important fact that a high suspicion of
either during initial screening would prompt further
characterization through imaging); the relatively small
number of patients with isolated LVH in the test set; the
absence of a larger prospectively studied test group with-
out prior known Disease; and the use of multiple different
imaging modalities. Finally, we have not studied the prog-
nostic utility of A-ECG scores. Additional studies are
therefore required to determine whether A-ECG scores
can further augment the known prognostic utility of cer-
tain of their key constituent parameters [6,8,9,11,12,15].

Conclusions
Resting 12-lead ECG tests that combine 7 or fewer
advanced and conventional ECG parameters within com-
puterized A-ECG scores are more accurate than opti-
mized pooled criteria from the strictly conventional ECG
in detecting obstructive CAD and concentric LVH and in
screening for LVSD in individuals with known cardiac
disease.
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