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Abstract
Background: The knowledge about proteins with specific interaction capacity to the protein partners is very 
important for the modeling of cell signaling networks. However, the experimentally-derived data are sufficiently not 
complete for the reconstruction of signaling pathways. This problem can be solved by the network enrichment with 
predicted protein interactions. The previously published in silico method PAAS was applied for prediction of 
interactions between protein kinases and their substrates.

Results: We used the method for recognition of the protein classes defined by the interaction with the same protein 
partners. 1021 protein kinase substrates classified by 45 kinases were extracted from the Phospho.ELM database and 
used as a training set. The reasonable accuracy of prediction calculated by leave-one-out cross validation procedure 
was observed in the majority of kinase-specificity classes. The random multiple splitting of the studied set onto the test 
and training set had also led to satisfactory results. The kinase substrate specificity for 186 proteins extracted from 
TRANSPATH® database was predicted by PAAS method. Several kinase-substrate interactions described in this database 
were correctly predicted. Using the previously developed ExPlain™ system for the reconstruction of signal transduction 
pathways, we showed that addition of the newly predicted interactions enabled us to find the possible path between 
signal trigger, TNF-alpha, and its target genes in the cell.

Conclusions: It was shown that the predictions of protein kinase substrates by PAAS were suitable for the enrichment 
of signaling pathway networks and identification of the novel signaling pathways. The on-line version of PAAS for 
prediction of protein kinase substrates is freely available at http://www.ibmc.msk.ru/PAAS/.

Background
The reconstruction of signal transduction networks is
intensively applied in different fields of biomedicine, par-
ticularly, for identification of promising drug targets.
Designed for biological network analysis databases sup-
port the effective integration of huge data obtained in
large-scale experiments [1,2]. However, the experimen-
tally derived data has many gaps, which lead to difficul-
ties in simulating the cell signaling pathways. This
problem can be settled by the network enrichment with
predicted interactions. In this study we propose to apply

the previously published method PAAS (Projection of
Amino Acid Sequences) [3,4] for the enrichment of signal
transduction networks through the recognition of pro-
teins phosphorylated by certain kinases. We applied
PAAS method to TRANSPATH® database to estimate its
efficiency and to predict of the new interactions that
could be used for the enrichment of signal transduction
networks. The TRANSPATH® database is manually
curated information resource providing both specific and
general information on signal transduction that can has
also the means for network analysis [5]. TRANSPATH®

database is one of the most comprehensive collections of
experimentally verified data on signal transduction in
eukaryotic cells. Still, many signaling interactions in vari-
ous cell types are not documented in TRANSPATH®. This
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gap of knowledge can hamper the analysis of signaling
networks and the prediction of functionally important
elements. We suppose that addition of interactions pre-
dicted by the algorithm presented here will be useful for
filling up of these gaps.

Several bioinformatics approaches were applied for
prediction of the new functional characteristics of pro-
teins with the aim of determination of new network
nodes and edges [6]. Using the predictive tools one can
significantly enrich the database and reconstruct more
relevant models. It allows detection of promising drug
targets.

Several well known algorithms use the network context
information based on the protein location in the network
[6] and on the comparison of the networks constructed
for different species [7]. Frequently, such context infor-
mation is very sparse. The amino acid sequences of pro-
teins can serve as an important informational source for
increasing the reliability of predicted proteins that partic-
ipate in signal transduction.

The signaling network can be represented as a series of
protein-protein interactions; therefore, the methods for
prediction of the interacting protein pairs can also be
used for the network enrichment. Some methods are
based on the calculation of co-variation of positional sub-
stitutions in aligned sequences of interacting protein
families [8]. In other methods, the members of the query
pair are compared to the training set with the known pro-
tein interactions [9]. PIPE-like methods [10] calculate the
similarity of short regions for the input sequence pair and
the training sets and estimate the putative interactions
based on the resulting matrix with the number of
matches above the given threshold included. PPI-SP
method is also based on the sequence comparison, but
each input sequence pair is represented as vector of simi-
larity scores calculated by the Smith-Waterman align-
ment [11]. The prediction of interacting pairs is
performed by SVM algorithm.

In the sequence-based method for prediction of pro-
tein-protein interactions the both members of each pair
are compared with the sets of sequences of known inter-
acting proteins. We used an original sequence-based
method of protein classification PAAS [3,4]. In this study
the training set consisted of the known protein kinase
substrates, classified according to the kinase types that
can be considered as recognition of substrate specificity
class using only the substrate sequences. PAAS method
[3,4] is particularly appropriate for the situation when the
single kinase phosphorylates many different substrates
and, therefore, participates in many pathways. So, the
suggested method can be applied in wide area of signal
transduction pathways.

Generally, the proposed positional score is close to the
measures used in other approaches - summation of

weights of coincided positions (e.g. BLOSUM or PAM
matrices) over the sliding window. All such methods
require the shifting of sequences to each other. The more
sophisticated local alignment procedure can also be con-
sidered as merging the local un-gapped similarities.
Unlike other algorithms, in our approach the projection
scores are assigned to each position of the query
sequence. The maximal value of scores is calculated for
all regions containing this position. It resembles the local
alignment algorithm with more simple realization. The
training sequences are projected onto the query
sequence, and the summarized values obtained for all
positions and all training set classes are the input to the
classifier. This simple procedure does not require the
large memory space. Unlike the methods based on the
algorithmic alignment, PAAS algorithm does not contain
the time-consuming steps.

It was shown that PAAS provides high accuracy of the
functional class prediction composed of homologous
amino acid sequences revealing the global sequence simi-
larity. The proteins interacting with the same protein
partner can also be characterized by the global sequence
similarity. However, in many cases the proteins reveal
only the local similarity. We consider that the proposed
approach can be useful for determination of the proteins
in the interaction network.

The proposed approach was applied for prediction of
new interactions in protein phosphorylation networks.
The interaction cascades between protein kinases and
their substrates play a key role in cell cycle regulation, in
the normal and tumor cells [12]. Protein phosphorylation
(including substrate specificity of different protein kinase
types, phosphorylated peptides and regions responsible
for kinase-substrate binding) is well studied, providing a
lot of information necessary for the evaluation and
improvement of the method. The proteins included into
the training set were classified according to the kinase's
specificity, so that each class consisted of the proteins
phosphorylated by the same kinase.

The common approach for prediction of protein kinase
substrates involves the recognition of specific regions in
amino acid sequences. The data set of experimentally
determined phosphorylated peptides is used to compose
the sequence motifs surrounding the modified Thr, Ser or
Tyr residues. However, the phosphorylation motifs are
not sufficient for provision of strongly specific interaction
of the kinase and its substrates. The additional regions
located in the substrate proteins are responsible for the
enzyme recruitment, i.e. for increasing the probability of
binding between kinase and substrate [13].

The algorithms based on the recognition of phosphory-
lation motifs and other interaction regions are used for
searching of these motifs in the annotated sequences.
The software like ScanSite [14], NetPhosK [15], Pred-
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Phospho [16] use the different mathematical approaches
including Hidden Markov Models or Support Vector
Machine. They provide the prediction of the substrates of
certain kinases with high accuracy on the basis of
sequence mapping [17]. In contrast to the above men-
tioned methods the data from the signal transduction
networks frequently do not allow to make the sequence
mapping. In this study we investigated the efficiency of
our approach, if the amino acid sequences of training set
were not mapped.

At the first stage of this study, we validated PAAS
method on the basis of the known kinase-substrate inter-
actions. At the second stage, we applied the suggested
approach for prediction of new interactions for the pro-
teins stored in TRANSPATH® database. At the third stage,
the predicted interactions were used for the enrichment
of network. It helped us to reconstruct potential cell sig-
naling cascades.

Methods
Sequence local similarity score
In PAAS algorithm, the query amino acid sequence is
described by the series of local similarity scores [3]. These
values are defined by shifting the sequence D (retrieved
from the training dataset) versus the query sequence Q
(Figure 1). The score of similarity with the sequence D is
calculated for each position i of sequence Q as follows:

where sim(q, d) is the similarity of superposed amino
acid residues according to the given measure - e.g. the
residue identity or substitution matrix; qx and dy are the
residues in the indexed positions of Q and D, respectively;
h is the current shift value; F is the value given by the
parameter "frame"; Ri is the score of maximal similarity of
the sequence Q region (equal F in length and terminated
at position i upright) with sequence D; Si is defined as
maximal value of scores Ri+j calculated for all regions,
which include the position i.

In this study, all sequence comparisons were performed
by residue similarity measure on the basis of Blosum62
matrix [18].

Prediction algorithm
We used the algorithm described in detail in our previous
publications [3,4]. The query sequence Q is compared to
each sequence of the training set. Thus, we obtained the
local similarity scores for the sequence Q with all training
sequences. These values were used as the input data for
the classifier. Belonging of the query protein Q to class C
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is estimated by special statistic BQ(C) [3,19-22] calculated
as follows:

where N is a number of amino acid sequences in the
training set; Wk(C) and Wk(¬C) are the weights of the kth

training sequence in class C and its complement (in sim-
plest case takes the value 0 or 1), Sik is a similarity score in
position i of the query sequence with the kth training
sequence, n is a number of amino acid residues in the
sequence Q.

The qualitative results of prediction ("belong or not
belong") are calculated for each class of proteins. The pre-
diction result is presented in PAAS by the list of classes
with the probabilities of belonging to the particular class
and its complement - P1 and P0, respectively. P1 and P0 are
the functions of B-statistic for the query sequence. The
list is arranged in descending order of P1-P0; thus, the
more significant results are at the top of the list. The
default cut-off is P1 > P0.

The relationships necessary for estimating the P1 and P0
probabilities, are determined by Leave-One-Out Cross-
Validation (LOO CV) procedure as follows. One
sequence is removed from the training set and is used as
the query set. The B-statistic values are calculated for
each class C of the training set. The procedure is repeated
for each sequence of the training set. Using the calculated
B-statistic values, smooth estimations of the distribution
functions P1(B) and P0(B) are obtained for each class
[19,20]. Substituting the arguments for BQ(C) we can esti-
mate the probability of the query protein belonging to the
given class. This training procedure enables to save statis-
tical model, which can be used for the estimation of new
proteins.

Evaluation of prediction accuracy
LOO CV and multiple splitting of the initial data on the
training and test sets with calculation of Invariant Accu-

racy of Prediction (IAP) criterion were used for the evalu-
ation of prediction accuracy. IAP is calculated as the ratio
between the number of correctly classified pairs and that
of all possible pairs [20,22]:

Mathematically, IAP value is equal to the sample esti-
mation of the probability when the classifier ranks of the
randomly chosen member M for the given class C are
higher than the randomly chosen member U of the class
complement ¬C. Formally, IAP criterion coincides with
the Area Under the ROC Curve (AUC), which is very
popular for the accuracy evaluation [23], but calculation
of the IAP criterion is more simple.

Data on protein kinase substrates
The substrates of different protein kinase types, phospho-
rylating the Ser/Thr and Tyr residues were studied. Phos-
pho.ELM database [24] was chosen as the source of
information with experimentally confirmed protein sub-
strates of the known Ser/Thr and Tyr protein kinases. We
selected the substrates of 45 protein kinase types: each
class of kinase-specificity contained at least 10 proteins.
The list of selected proteins (as designated in Phos-
pho.ELM is presented in Table 1.

The UniProt accession numbers of protein substrates
were retrieved from Phospho.ELM and the correspond-
ing sequences were included into the non-redundant
dataset of 1021 proteins. The obtained training set con-
tained the proteins of the following species: the major
part (971) belonged to the mammals including 709
human proteins; the remaining sequences related to
other vertebrata, fungi, viruses and insects. Thus, 45
intersecting kinase specificity classes were composed
(each class contained at least 10 proteins). As can be seen
from Table 1, the sequence length significantly varies
within each class. The average number of kinase types
per one substrate protein was 1.6. The distribution of the
number of kinase types per substrate is shown in Figure 2.

The certain classes were the subgroups of other classes
(e.g. CDK1 and CDK2 are subclasses of CDKgroup).
Sequence set of the class cannot completely cover the sets
of subclasses that is typical for biological databases.

External validation set
For further prediction, we selected 186 proteins from the
commercial version of TRANSPATH® database (release
2009.2) not included in the training set as a test set. It is
known that the substrates of kinases are involved in vari-
ous important processes, like carcinogenesis, inflamma-
tion, apoptosis, etc. Therefore, the prediction of the new
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Table 1: Designations and descriptions of kinases whose substrates were included into the training set

Kinase type Description Lmin Lmax

ABL1 Proto-oncogene tyrosine-protein kinase 178 1271

ATM Ataxia telangiectasia mutated 118 3056

AURORA_A Serine/threonine-protein kinase 6 (STK6) 136 1863

AURORA_B Serine/threonine-protein kinase 12 (AURKB) 136 923

CAM_KII_group Calcium/calmodulin-dependent protein kinase II 52 5037

CAM_KII_alpha Calcium/calmodulin-dependent protein kinase II alpha 52 4967

CDK1 Cell division control protein 2 homolog (Cyclin-dependent kinase 1) 107 4684

CDK2 Cell division protein kinase 2 119 1971

CDKgroup Cyclin-dependent kinases 149 1863

CK1alpha Casein kinase 1, alpha 140 911

CK1group Casein kinases 1 195 2843

CK2group Casein kinase 2 98 2346

DNA_PK DNA-dependent protein kinase catalytic subunit 270 4128

EGFR Epidermal growth factor receptor (Receptor tyrosine-protein kinase ErbB-1) 76 1291

ERK2 Mitogen-activated protein kinase 1 196 2225

ERK1 Mitogen-activated protein kinase 3 168 2749

FYN Proto-oncogene tyrosine-protein kinase Fyn 164 2758

GSK3beta Glycogen synthase kinase 3 beta 164 2470

GSKgroup Glycogen synthase kinases 3 157 1914

INS_R Insulin receptor 132 1382

JNK1 c-Jun N-terminal kinase 1 196 1242

JNK2 c-Jun N-terminal kinase 2 196 1075

LCK Lymphocyte-specific protein tyrosine kinase 220 2472
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LKB1 Serine/threonine kinase 11 (LKB1) 433 1263

LYN Tyrosine-protein kinase Lyn 202 1827

MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2 168 1807

MAPKgroup P38, JNK and ERK 136 1914

PAK1 Serine/threonine-protein kinase PAK1 89 2647

PDK-1 3-phosphoinositide dependent protein kinase 1 268 1374

PKAalpha Protein kinase, cAMP-dependent, catalytic, alpha 52 2749

PKAgroup cAMP-dependent protein kinase 30 5037

PKBgroup Protein kinases B 130 5890

PKCalpha Protein kinase C, alpha type 72 2441

PKCbeta Protein kinase C, beta 1 149 1531

PKCdelta Protein kinase C, delta type 187 2414

PKCgroup Protein kinase 30 2442

PKCzeta Protein kinase C, zeta type 147 1242

PKGgroup cGMP-dependent protein kinases 90 5037

PLK1 Polo like kinase 1 163 3418

ROCKgroup Rho-associated, coiled-coil containing protein kinases 309 737

RSKgroup Ribosomal protein S6 kinases 198 2647

SGKgroup Serum/glucocorticoid regulated kinase 341 3144

SRC Proto-oncogene tyrosine-protein kinase Src 101 4544

SYK Tyrosine-protein kinase SYK (Spleen tyrosine kinase). 113 1290

P38alpha mitogen-activated protein kinase 14 168 902

Lmin and Lmax are the minimal and maximal values of the sequence length of proteins referred to the given class.

Table 1: Designations and descriptions of kinases whose substrates were included into the training set (Continued)
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interactions wherein the proteins from the test set could
be involved is interesting for further investigations of the
appropriate processes.

Reconstruction of signal transduction pathways
We applied the ExPlain™ software, version 2.4.1 [25],
which can be used for the iterative building of the signal
transduction cascades on the basis of full network from
TRANSPATH® database and the shortest path algorithm.
The microarray data published by Viemann et al. [26]
were also used in the study.

Microarray data
We have analyzed the microarray gene expression data on
TNF-alpha stimulation of primary human endothelial
cells (HUVEC) taken from GEO (GSE2639) [26]. Gene
expression profiles were measured by Affymetrix®

GeneChip® Human Genome U133A array in HUVEC,
stimulated for 5 hours with TNF, and in untreated
HUVEC too. Four repeated experiments were used for
each condition. We applied the criteria of at least two-
fold change in gene expression and p-value < 0.01
revealed by t-test. The expression of 74 genes appeared to
be significantly higher after TNF-alpha treatment.

Results
Leave-one-out cross-validation
LOO CV procedure was performed for the set of 1021
amino acid sequences of protein kinase substrates
assigned for 45 classes. The results obtained for different
frame values are given in Table 2.

Table 2 shows that the highest average accuracy was
reached at the frame equal to 25 or 30 residues. Thirty
eight classes of kinase specificity were recognized with
the reasonable accuracy. Seven classes (in italics) were
recognized with IAP values less 0.6.

Validation with multiple splitting
The procedure of multiple splitting of the initial data on
the training and test sets (2/3 and 1/3, respectively) was
applied for the estimation of the robustness of PAAS
method. In this test we have used the total evaluation set
of 1021 sequences, which represents the substrates of 45
kinase types. The subset of 907 human proteins was also
used in the study. Twenty random divisions were made
for each kinase type with the frame value = 25. The
results are shown in Table 3.

Average IAP values for LOO CV and multiple splitting
are sufficiently close to each other proving the robustness
of the approach.

Prediction for proteins from TRANSPATH®

The training set of 1021 substrates of kinases with the
frame value = 25 was used for prediction of 186 proteins
from the external validation set. All results, wherein P1
value exceeded P0 value, were considered as the putative
substrates of kinases. 38 types of kinases from the train-
ing set with IAP value > 0.6 were selected for further
investigation.

With the threshold P1 > P0, 2656 kinase-substrate inter-
actions for 38 selected types of kinases were predicted for
the test set. We found 55 phosphorylation reactions
related to 30 proteins from TRANSPATH® set (substrates)
and to the studied kinase types. Table 4 displays 44 cor-
rectly predicted interactions mentioned in TRANSPATH®

annotations. Thus, the prediction accuracy for the inde-
pendent external test set was 80% (44 confirmed reac-
tions of 55).

The scores obtained for the correctly predicted interac-
tions varied from 0.013 to 0.915. It should be noted that
several predictions were obtained for the superclass or
subclass of the kinase type, which can be determined in
TRANSPATH® entry (marked by asterisks).

All the interactions predicted with P1 > P0 are given in
the Additional file 1: Predicted kinase substrate interac-
tions.

Application of predicted interactions for the reconstruction 
of signal cascades
Cytokines and other signal molecules bind to their recep-
tors on the cell surface and trigger cascades of phospho-
rylation events inside the cell, leading to the activation or
inactivation of transcription factors. Then, these specific
regulatory proteins are relocated to the cell nucleus and
bind to DNA sites switching on and off their target genes.
Prediction of kinase-substrate interactions enriches the
knowledge on potential phosphorylation cascades in cells
and helps to understand the molecular mechanisms of
regulation of important cellular functions in response to
extracellular signals.

Figure 2 Intersection of the kinase substrate classes.
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Table 2: IAP values obtained by LOO CV for the training set

Kinase type Number of substrates Frame values

10 15 20 25 30 35 40 45

ABL1 32 0.652 0.665 0.672 0.661 0.675 0.685 0.683 0.664

ATM 30 0.787 0.780 0.786 0.779 0.785 0.781 0.782 0.786

AURORA_A 12 0.747 0.732 0.743 0.792 0.784 0.773 0.769 0.744

AURORA_B 14 0.857 0.840 0.819 0.858 0.871 0.879 0.871 0.876

CAM_II_group 40 0.689 0.708 0.699 0.707 0.680 0.692 0.693 0.703

CAM_KII_alpha 21 0.616 0.592 0.591 0.531 0.532 0.528 0.519 0.529

CDK1 69 0.640 0.645 0.641 0.648 0.656 0.657 0.662 0.658

CDK2 28 0.767 0.747 0.754 0.761 0.753 0.748 0.730 0.725

CDKgroup 47 0.693 0.715 0.702 0.682 0.664 0.663 0.667 0.670

CK1alpha 11 0.578 0.553 0.575 0.609 0.625 0.642 0.594 0.560

CK1group 18 0.642 0.644 0.639 0.637 0.627 0.630 0.660 0.662

CK2group 122 0.745 0.740 0.735 0.746 0.742 0.737 0.742 0.748

DNA_PK 11 0.492 0.506 0.458 0.508 0.529 0.563 0.537 0.545

EGFR 27 0.840 0.843 0.883 0.861 0.893 0.887 0.891 0.888

ERK2 71 0.714 0.700 0.695 0.697 0.698 0.700 0.696 0.702

ERK1 61 0.655 0.639 0.634 0.632 0.632 0.631 0.622 0.634

FYN 25 0.687 0.697 0.695 0.696 0.651 0.627 0.619 0.632

GSK3beta 26 0.654 0.661 0.690 0.688 0.706 0.718 0.716 0.725

GSKgroup 20 0.650 0.640 0.664 0.616 0.589 0.592 0.557 0.566

INS_R 13 0.709 0.641 0.643 0.685 0.668 0.632 0.623 0.569

JNK1 20 0.762 0.773 0.754 0.766 0.783 0.770 0.777 0.779

JNK2 10 0.672 0.631 0.605 0.653 0.632 0.599 0.638 0.655
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LCK 29 0.813 0.820 0.831 0.824 0.826 0.834 0.838 0.835

LKB1 16 0.996 0.995 0.994 0.994 0.993 0.989 0.990 0.991

LYN 26 0.751 0.771 0.743 0.722 0.705 0.706 0.711 0.712

MAPKAPK2 17 0.618 0.637 0.629 0.641 0.571 0.542 0.511 0.522

MAPKgroup 36 0.677 0.664 0.676 0.676 0.666 0.668 0.665 0.669

PAK1 21 0.500 0.517 0.570 0.573 0.569 0.575 0.576 0.541

PDK-1 24 0.957 0.958 0.956 0.957 0.955 0.948 0.949 0.950

PKAalpha 22 0.367 0.356 0.356 0.409 0.388 0.424 0.420 0.398

PKAgroup 206 0.658 0.660 0.669 0.668 0.672 0.648 0.646 0.648

PKBgroup 63 0.663 0.676 0.661 0.655 0.640 0.630 0.637 0.637

PKCalpha 81 0.663 0.653 0.656 0.643 0.646 0.649 0.656 0.653

PKCbeta 10 0.294 0.376 0.350 0.364 0.415 0.475 0.481 0.427

PKCdelta 17 0.418 0.472 0.449 0.490 0.489 0.463 0.479 0.493

PKCgroup 145 0.733 0.744 0.754 0.757 0.756 0.724 0.724 0.725

PKCzeta 11 0.643 0.626 0.668 0.701 0.736 0.746 0.743 0.733

PKGgroup 10 0.492 0.505 0.553 0.551 0.594 0.606 0.587 0.548

PLK1 18 0.678 0.628 0.670 0.718 0.731 0.721 0.688 0.704

ROCKgroup 12 0.828 0.852 0.862 0.856 0.866 0.872 0.880 0.889

RSKgroup 18 0.592 0.592 0.618 0.658 0.645 0.626 0.620 0.640

SGKgroup 11 0.738 0.749 0.699 0.695 0.699 0.699 0.699 0.683

SRC 92 0.731 0.732 0.740 0.742 0.742 0.738 0.746 0.745

SYK 21 0.741 0.729 0.752 0.766 0.775 0.764 0.744 0.750

P38alpha 24 0.726 0.720 0.723 0.737 0.741 0.728 0.705 0.717

Average 0.678 0.678 0.681 0.689 0.689 0.687 0.683 0.681

Table 2: IAP values obtained by LOO CV for the training set (Continued)
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The set of predicted 2656 kinase-substrate interactions
was used for the enrichment of network analysis of signal
transduction cascades in skin cells, whose activation is
triggered by the cytokine TNF-alpha. Based on microar-
ray data [26], we have previously analyzed 74 upregulated
genes (FC > 2.0) in the cell line HUVEC upon stimulation
by TNF-alpha. We have also identified the transcription
factor binding sites in the promoters of these up-regu-
lated genes [27]. We have identified the most significantly
overrepresented binding sites for several transcription
factor's families like (NF-kappa B, STAT, AP-1, IRF,
MEF2, OCT and FOX) by comparison with the promot-
ers of the genes, whose expression has not been changed.

In order to reconstruct the TNF-alpha-triggered phos-
phorylation cascades leading to the activation of these
transcription factors, we applied ExPlain™ to TRANS-
PATH®, before and after the enrichment by 2656 pre-
dicted kinase-substrate interactions.

For any set, we run twice the algorithm in downstream
direction, each time starting with TNF ligand. The algo-
rithm was stopped at reaching TF entries in the network
less than 6 steps downstream off TNF. We compared two
resulting networks and found that the newly predicted
kinase-substrate interactions helped us to reconstruct
potential signal cascades that activate several transcrip-
tion factors in response to TNF, which could not be iden-
tified otherwise (Figure 3). Among such factors, we paid
special attention to MEF-2A and STAT6 factors, which
are known to be activated by p38alpha [28] and Jak2 [29],
respectively. PAAS predicted that these two kinases can
potentially be activated by PDK-1 (Figure 3, dashed
arrows). Notably, with the newly predicted kinase-sub-
strate interactions ExPlain™ reconstructed the signal cas-
cade from TNF ligands to MEF-2A and STAT6
transcription factors identified by promoter analysis.
This was not possible using the interactions documented
in TRANSPATH®. Remarkably, there are evidences in lit-
erature on immunoprecipitation experiments showing
that PDK-1 may associate with Jak2 and modulate the
activity of Stat pathways [30]. The patent data have also
shown that the immunoprecipitation experiments dem-
onstrate the interaction between p38 and PDK-1 [31].
Further direct experimental studies for evaluation and
validation of these predictions are necessary.

The potential importance of MEF-2A and STAT6 tran-
scription factors in activation of genes upon TNF treat-
ment is demonstrated in Figure 4. We identified closely
situated binding sites for these two factors in the promot-
ers of genes characterizing extremely high fold change:
VCAM1 (vascular cell adhesion molecule 1) (FC = 43.11),
CCL20 (chemokine (C-C motif ) ligand 20) (FC = 11.83)
and TNFAIP3 (tumor necrosis factor, alpha-induced pro-
tein 3) (FC = 11.11). It is tempting to speculate that up-
regulation of these genes upon TNF stimulation is trig-

gered through the proposed here signal mechanism
involving the phosphorylation of p38-alpha, Jak2 and
other specific novel substrates by PDK-1 kinase.

Discussion
The protein partner prediction is very important for the
reconstruction of the cell cycle regulation network. This
task is usually solved by the combination of functional
characteristics and the search of specific sequence fea-
tures. Significant sequence homology of the known
kinase substrates and annotated protein should provide
the most predictive ability. However, the large variety of
proteins affected by the same kinases does not reveal the
global sequence similarity.

We retrieved the kinase substrate sequences from Pho-
sho.ELM database, as it is the most comprehensive infor-
mational resource that provides easy mining of
experimentally established data. Though Phospho.ELM
database contains detailed information on phosphory-
lated regions in the substrate sequences, we have used
only the sequences classified by the kinases phosphory-
lating these proteins. The local similarity approach makes
possible the recognition of similar regions of local
sequences. We have considered that PAAS method
reveals relatively short functional determinants by multi-
ple projections of the sequences from the training set into
the annotated sequence. The test with multiple divisions
of the training set showed satisfactory results. When we
used only human proteins removing the orthologous pro-
teins, the results remained reasonable. So, the elimination
of very similar proteins had slightly changed the kinase
substrate recognitions.

The majority of existing methods for prediction of the
kinase substrates is based on the recognition of the phos-
phorylation motifs. Corresponding sequence regions are
experimentally determined. Collections of phosphory-
lated peptide sequences are used to construct Hidden
Markov Models, Position Specific Scoring Matrices and
other motif representations. Generally, the recognition
properties of phosphorylation motifs are typically insuffi-
cient for the reproduction of substrate specificity [8]. The
location of the kinase-docking motifs within the sub-
strates and regulatory subunits (e.g. cyclines), substrate
capturing non-catalytic interaction domain and other
context information may significantly improve the pre-
diction. The popular resource NetworKIN combines the
consensus sequence motifs and protein-association net-
works. It increases the prediction accuracy up to 60-80%
[32].

Our approach enables one to make predictions based
only on the sequences of proteins, without any context
data. It does not require the preliminary processing of the
input data when the functional motifs should be
extracted from the whole sequence. So, we showed that
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Table 3: IAP values obtained by 20-fold multiple splitting

Kinase type All species Human

No LOO CV M SD No LOO CV M SD

ABL1 32 0.661 0.685 0.072 24 0.600 0.600 0.106

ATM 30 0.779 0.751 0.086 29 0.771 0.762 0.075

AURORA_A 12 0.792 0.777 0.130 -

AURORA_B 14 0.858 0.857 0.114 11 0.808 0.815 0.115

CAM_II_group 40 0.707 0.657 0.084 19 0.651 0.681 0.090

CAM_KII_alpha 21 0.531 0.515 0.120 16 0.475 0.494 0.111

CDK1 69 0.648 0.641 0.049 62 0.679 0.653 0.064

CDK2 28 0.761 0.740 0.066 21 0.659 0.666 0.092

CDKgroup 47 0.682 0.653 0.065 30 0.546 0.534 0.080

CK1alpha 11 0.609 0.595 0.134 10 0.548 0.535 0.097

CK1group 18 0.637 0.622 0.158 10 0.487 0.508 0.182

CK2group 122 0.746 0.734 0.041 87 0.680 0.670 0.046

DNA_PK 11 0.508 0.466 0.121 -

EGFR 27 0.861 0.808 0.090 21 0.723 0.728 0.092

ERK1 71 0.697 0.624 0.048 54 0.621 0.637 0.054

ERK2 61 0.632 0.673 0.038 52 0.662 0.656 0.048

FYN 25 0.696 0.726 0.083 19 0.625 0.664 0.096

GSK3beta 26 0.688 0.671 0.087 20 0.606 0.588 0.125

GSKgroup 20 0.616 0.599 0.113 13 0.648 0.620 0.183

INS_R 13 0.685 0.583 0.133 -

JNK1 20 0.766 0.763 0.093 15 0.786 0.759 0.121

JNK2 10 0.653 0.634 0.125 -

LCK 29 0.824 0.795 0.058 24 0.787 0.792 0.072
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LKB1 16 0.994 0.993 0.003 15 0.995 0.995 0.005

LYN 26 0.722 0.745 0.090 20 0.699 0.691 0.118

MAPKAPK2 17 0.641 0.652 0.082 15 0.590 0.596 0.081

MAPKgroup 36 0.676 0.661 0.063 31 0.625 0.614 0.089

PAK1 21 0.573 0.574 0.098 16 0.527 0.514 0.092

PDK-1 24 0.957 0.956 0.038 19 0.942 0.933 0.079

PKAalpha 22 0.409 0.466 0.108 -

PKAgroup 206 0.668 0.655 0.028 138 0.595 0.593 0.037

PKBgroup 63 0.655 0.650 0.051 55 0.625 0.624 0.038

PKCalpha 81 0.643 0.627 0.054 68 0.648 0.630 0.053

PKCbeta 10 0.364 0.383 0.155 -

PKCdelta 17 0.49 0.507 0.111 16 0.382 0.439 0.115

PKCgroup 145 0.757 0.755 0.036 84 0.691 0.656 0.046

PKCzeta 11 0.701 0.670 0.207 10 0.646 0.584 0.170

PKGgroup 10 0.551 0.642 0.187 -

PLK1 18 0.718 0.661 0.163 17 0.699 0.669 0.119

ROCKgroup 12 0.856 0.839 0.155 -

RSKgroup 18 0.658 0.644 0.095 14 0.471 0.511 0.146

SGKgroup 11 0.695 0.685 0.182 10 0.600 0.543 0.159

SRC 92 0.742 0.717 0.043 65 0.656 0.627 0.052

SYK 21 0.766 0.709 0.158 17 0.689 0.615 0.179

p38alpha 24 0.737 0.700 0.083 23 0.767 0.786 0.065

Average 0.689 0.677 0.096 0.654 0.648 0.094

The calculation was performed for the whole training set (1021 substrate proteins) and subset, including only human proteins (709). The 
numbers of the substrates in each class (No) are presented. IAP values were calculated by LOO CV procedure. The IAP values, averaged on 20 
rounds of multiple splitting (M) and their standard deviations (SD), are presented. The kinase substrate classes containing less than 10 proteins 
(for human) are excluded.

Table 3: IAP values obtained by 20-fold multiple splitting (Continued)
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Table 4: The confirmation of TRANSPATH® interaction data with the PAAS prediction

Substrate Accession No in UniProt Substrate Name in TRANSPATH® database Kinase type P1-P0 IAP*

O15169 Axin CK1group - 0.637

O15169 Axin GSK3beta 0.844 0.688

O15169 Axin Cdk* 0.031 0.682

P24941 Cdk2 Lyn 0.525 0.722

P17302 Connexin-43 Src 0.754 0.742

P17302 Connexin-43 PKCgroup* 0.863 0.757

P17302 Connexin-43 PKCalpha 0.342 0.643

Q13158 FADD PKCgroup* 0.446 0.757

Q13158 FADD CK1alpha - 0.609

P05230 FGF-1 CK2group - 0.746

P43694 GATA-4 ERK2 0.915 0.697

P43694 GATA-4 GSK3beta 0.688 0.688

Q16665 HIF-1alpha ERK1 0.038 0.632

Q16665 HIF-1alpha ERK2 - 0.697

Q01344 IL-5Ralpha Lyn 0.153 0.722

P17535 JunD ERK2 0.749 0.697

P17535 JunD JNK2 0.686 0.653

P17535 JunD JNK1 0.642 0.766

Q13233 MEKK1 ABL1l 0.044 0.661

Q13233 MEKK1 PKCgroup - 0.757

Q13233 MEKK1 GSKgroup* 0.371 0.616

O15151 Mdm4 CK1alpha 0.183 0.609

O15151 Mdm4 ATM 0.818 0.779
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P27361 ERK1 Lck - 0.824

P27361 ERK1 MAPKgroup 0.627 0.824

Q16539 p38alpha p38aplha 0.482 0.737

Q13469 NF-AT1 JNK1 0.301 0.766

Q13469 NF-AT1 CK1group 0.664 0.637

Q13469 NF-AT1 PKCzeta 0.193 0.701

P16234 PDGFRalpha ABL1 0.305 0.661

P09619 PDGFRbeta ABL1 0.468 0.661

P53350 Plk1 Cdk1 - 0.648

P53350 Plk1 PKAgroup - 0.668

P28749 p107 CDKgroup* 0.636 0.682

Q13309 Skp2 Cdk2 0.249 0.761

Q9Y6H5 Synphilin-1 GSK3Beta 0.709 0.688

Q9Y6H5 Synphilin-1 CK2group 0.429 0.746

Q93038 DR3 ERK2 0.617 0.697

P10276 RAR-alpha MAPKgroup* 0.845 0.676

P10276 RAR-alpha PKCgroup - 0.757

P23771 GATA-3 MAPKgroup* 0.536 0.676

P29353 Shc-1 Src 0.881 0.742

P29353 Shc-1 ABL1 0.456 0.661

P29353 Shc-1 JNK1 0.126 0.766

P29353 Shc-1 MAPKgroup 0.028 0.676

P29353 Shc-1 Lyn 0.013 0.722

P29353 Shc-1 RSKgroup - 0.658

P35228 NOS2 ERK1 - 0.632

Table 4: The confirmation of TRANSPATH® interaction data with the PAAS prediction (Continued)
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PAAS method can recognize protein classes consolidated
by the same partners. This situation can be considered as
common. Classes like LKB1, PDK-1 and EGFR substrates
were recognized with very high accuracy. It can be
explained by close homology of sequences in the classes.
However, the classes characterized by higher variability
(such as the CK2 or PKC group), were classified with the
appropriate accuracy. Several kinase-specificity classes
were not predicted with the appropriate accuracy (IAP <
0.6) due to the kinase substrates variability.

Prediction performed for the set retrieved from
TRANSPATH® database showed the possibility of our

method to detect the unknown partners of certain pro-
teins, representing a part of the known network of cell
signal transduction. The results of prediction were con-
firmed by several TRANSPATH® annotations.

Reconstruction of signal pathways may be based on the
prediction of interacting protein pairs. Shen et al., using
SVM-based algorithm, have accurately predicted more
than 80% of interacting pairs in the three networks
including 16, 189 and 93 interacting pairs. These results
can be used for composition of pathways [33]. In this
work, the prediction of protein-protein interactions (PPI)
is based on the comparison of query pair with the train-

Q07812 Bax PKBgroup* 0.850 0.655

Q07812 Bax JNK1 0.619 0.766

Q07812 Bax MAPKgroup 0.124 0.676

Q13009 Tiam-1 PKCgroup 0.315 0.757

P05771 PKCgroup PDK-1 0.521 0.957

P05129 PKCgamma PDK-1 0.456 0.957

P28482 ERK2 PDK-1 0.690 0.957

*IAP values were calculated for the kinase type (specificity class) at training procedure.

Table 4: The confirmation of TRANSPATH® interaction data with the PAAS prediction (Continued)

Figure 3 Signal transduction cascade from TNF ligands to transcription factors reconstructed by ExPlain™ system. TNF ligand is depicted as 
orange triangle. Transcription factors (TFs, diamonds) are identified by promoter analysis of up-regulated genes upon TNF-alpha stimulation of HUVEC 
cell line. Dashed arrows represent the novel predicted kinase-substrate interactions helping to connect TNF ligands with TFs through cascades of 
phosphorylation events. All other arrows represent signal transduction interactions known in TRANSPATH®. The up-regulated molecules are red. The 
down-regulated molecules are green. Two underlined TFs can be reached from TNF ligands in less than 6 steps with the help of the novel kinase-
substrate interactions only.
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ing set, presenting the known interacting pairs. Such
approach is used in the majority of PPI methods [9]
which showed the reasonable accuracy for the large train-
ing sets [10,11]. Other authors predict the interacting
proteins on the basis of interrelations of positions in the
aligned sequence sets [8]. We applied the alternative
approach when the proteins affected by the same kinase
type are the class of kinase specificity. Thus, the predic-
tion of kinase substrates is interpreted as classification
task. It was done because significantly diverged proteins
are affected by the same type of kinases presented with
the small number of sequences.

In order to estimate the efficiency of our approach with
regard to signaling pathways, we enhanced ExPlain™ by
enriching TRANSPATH-derived data with additional
PAAS-predicted interactions. The enriched interaction
set was used for reconstruction of the potential signal
cascades activating several transcription factors in

response to TNF signaling. This approach helped us in
finding the novel paths between TNF and its target genes
in the cell that could not be identified otherwise. Cer-
tainly, these predictions require the experimental valida-
tion, but our study has clearly demonstrated the
complementarities of approaches used by ExPlain™ and
PAAS.

Conclusions
PAAS method designed for the sequence-based recogni-
tion of functional protein classes may be used for the
experimental data on the proteins participating in signal
transduction. The on-line version of PAAS for prediction
of protein kinase substrates is freely available at http://
www.ibmc.msk.ru/PAAS/. Nevertheless the predicting
results appeared to be very useful for the network enrich-
ment and reconstruction of the signal pathways with pro-
tein-kinase substrate interactions by ExPlain™. We

Figure 4 Binding sites for MEF-2A and STAT6 transcription factors. These binding sites are closely situated in promoters of three highly up-reg-
ulated genes upon TNF-alpha treatment. TF sites are found with ExPlain™ and position weight matrices (PWMs) from TRANSFAC® database. Sites are 
shown as arrows above the sequences of promoters. The names of PWMs are shown together with the obtained site score (shown in the brackets).

http://www.ibmc.msk.ru/PAAS/
http://www.ibmc.msk.ru/PAAS/
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suggest that application of the proposed approach for the
large-scale studies relative to other types of cell signal
transduction should significantly help in the reconstruc-
tion of cell signaling pathways.

Additional material
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Additional file 1 Predicted kinase substrate interactions. File contains 
pairs of substrate-kinase, predicted by the PAAS. Putative substrates 
extracted from the TRANSPATH® database are designated by UniProt Pri-
mary Accession Numbers. The kinase types are designated according to the 
Phospho.Elm database. The values of difference P1 - P0 are presented for 
prognosis estimations. So 38 kinase types recognized with IAP > 0.6 and 
186 putative substrates formed the 2656 pairs predicted with threshold of 
P1 - P0 = 0.
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