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Abstract

Background: Gene regulation is a key mechanism in higher eukaryotic cellular processes. One of
the major challenges in gene regulation studies is to identify regulators affecting the expression of
their target genes in specific biological processes. Despite their importance, regulators involved in
diverse biological processes still remain largely unrevealed. In the present study, we propose a
kernel-based approach to efficiently identify core regulatory elements involved in specific biological
processes using gene expression profiles.

Results: We developed a framework that can detect correlations between gene expression
profiles and the upstream sequences on the basis of the kernel canonical correlation analysis
(kernel CCA). Using a yeast cell cycle dataset, we demonstrated that upstream sequence patterns
were closely related to gene expression profiles based on the canonical correlation scores obtained
by measuring the correlation between them. Our results showed that the cell cycle-specific
regulatory motifs could be found successfully based on the motif weights derived through kernel
CCA. Furthermore, we identified co-regulatory motif pairs using the same framework.

Conclusion: Given expression profiles, our method was able to identify regulatory motifs
involved in specific biological processes. The method could be applied to the elucidation of the
unknown regulatory mechanisms associated with complex gene regulatory processes.
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Background
One of the major challenges in current biology is to
elucidate the mechanism governing the gene expression.
Gene expression programs depend mainly on transcrip-
tion factors which bind to upstream sequences by
recognizing short DNA motifs called transcription factor
binding sites (TFBSs) to regulate their target gene
expression [1]. Although many regulatory motifs have
been identified, large amount of functional elements still
remain unknown [2].

Many genome-wide approaches have been developed in
attempt to discover regulatory motifs from upstream
sequences. The early computational approach for identify-
ing regulatory motifs is based on statistical analyses using
only upstream sequences of genes. Statistical methods such
as maximum-likelihood estimation or Gibbs sampling, are
effective for searching directly significant sequence motifs
from multiple upstream sequences [3,4]. Several computa-
tional approaches based on machine learning methods
have also been implemented. A SOM(self-organizingmap)-
based clustering method can find regulatory sequence
motifs by grouping relevant sequence patterns [5] and a
graph-theoretic approach has tried to identify regulatory
motifs by searching the maximum density subgraph [6].

More advanced approaches have been developed that can
identify regulatory motifs by linking gene expression
profiles and motif patterns. The main advantage of these
approaches is that they can identify motifs correlated to
specific biological processes. Most early trials used a
unidirectional search, such as approaches that search for
shared patterns with upstream sequences in a set of co-
expressed genes that were found by clustering algorithms
[7,8] or those that determine whether genes with common
regulatory elements are co-expressed [9,10]. In addition, it
is also possible to link motifs to gene expression patterns
using linear regression models or regression trees [11,12].
Recently, several techniques for a bidirectional search to
detect the relationship between the regulatory motifs and
the gene expression profiles have been emerged [13,14].
They search regulatory motifs more efficiently than
unidirectional approaches since they search similar expres-
sion patterns and regulatory motifs correlated to them
simultaneously.

In this study, we propose a novel bidirectional approach
using a kernel-based method, kernel CCA (kernel canonical
correlation analysis), to analyze the relationship between
regulatory sequences and gene expression profiles [15-17].
The expression and sequence features are mapped from the
original input space to a higher dimension space using a
kernel trick, and the relationship between the two projected
objects is interpreted to identify highly correlated motifs
(Figure 1). Our method has advantages that it can detect

core motifs relevant to a specific cellular process without
the additional efforts of clustering and intensive motif
sampling process in upstream sequences.

We applied the kernel CCA to a paired set of upstream
sequence motifs of genes and their expression profiles in
yeast (Saccharomyces cerevisiae) cell cycle, and explored
significant relationships between motifs and expression
profiles. We also searched for regulatory motifs correlated
with specific expression patterns. Our method retrieved
regulatory motifs that play an important role in cell cycle
regulation including several well-known cell cycle regula-
tory motifs: MCB, SCB and SFF’. Furthermore, we identified
motif pairs associated with the gene expression to construct
a map of combinatorial regulation of regulators.

Results and discussion
We applied a computational method, kernel CCA, to the
identification of novel transcriptional regulatory elements.
Themain purpose of our experiments was to find regulatory
motifs that were associated with gene regulation in specific
biological processes. Using the kernel CCA, we first found
highly correlated features between expression profiles and
the sequence motifs. The key motifs in gene regulation were
then identified from the weight scheme by the kernel CCA
(see Methods section). Furthermore we demonstrate that it
is possible for ourmethod to be applied for identification of
motif pairs using raw upstream sequences.

Identification of the relationship between
gene expression and known motifs
We first explored the relationship between gene expres-
sion profiles and known motifs using a yeast gene

Figure 1
Basic scheme of the kernel CCA. The sequence and
expression data are transformed to Hilbert space by �
function. By taking inner products, uexp and useq were
derived, which maximize the correlation between the
upstream sequences and the expression profiles.
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expression dataset related to the cell cycle [18] and a set
of known motifs (Table 1) extracted by AlignACE [9].
A total of 551 ORFs (open reading frames) in the
expression dataset contained at least one known motif.

In the parameter setting, the degree of polynomial kernel
was set to 3, the parameter s in Gaussian RBF kernel was
0.5, and the regularization parameter was 0.1. These
parameters were chosen based on the parameter setting
that produced a high correlation from multiple runs.

The results from the kernel CCA were visualized using
the CC1 (first canonical correlation) score (Figure 2). In
Figure 2, each point corresponds to a gene, and a cloud
of the diagonal points illustrated the correlation between
the expression and the motifs. The shape of diagonal
points and the high correlation coefficient (0.996)
indicated that the kernel CCA was able to find the
close relationship between the expression profiles and
the sequence motifs. We then performed the linear
canonical correlation analysis using the same datasets.
The correlation coefficient (0.612) obtained from the
linear CCA was much lower. As shown in Additional file 1,
the linear CCA could not identify the significant

Figure 2
Relationship between gene expression profiles and regulatory sequence motifs. (a) The plot shows the correlation
between gene expression profiles and the regulatory sequence motifs. Each dot represents one gene in the dataset,
and x-axis means the value of uexp, y-axis is useq. (b) The plot is a close-up view of the boxed area in (a).

Table 1: Known regulatory motifs in yeast (Saccharomyces
cerevisiae)

Motif

RAP1 RPN4 GCN4 MCB
HAP234 MIG1 AFT1 STRE’
CCA CSRE PHO4 STE12
HSE ABF1 ATRepeat GAL
Leu3 LYS14 MET31-32 OAF1
PAC PDR PHO REB1
STRE ECB ndt80 (MSE) Yap1
SCB Gcr1 zap1 MCM1’
MCM1 SFF SFF’ BAS1
Ume6 (URS1) SWI5 ALPHA1’ ALPHA1
ALPHA2’ ALPHA2
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correlation between expression profiles and motifs. This
further supports that kernel CCA improve significantly
in finding the correlation between the two datasets.

The motifs were searched by the weight function of
Equation 6 (see Methods section) with the model
obtained by the kernel CCA and the top ranked motifs
are shown in Table 2. SWI5 motif, a binding site of SWI5
protein, has the highest weight value. SWI5 has been
known to act in G1 phase and in the M/G1 boundary in
the cell cycle [19,20]. SFF’motif is a binding site of FKH1
transcription factor that affects the expression of genes
controlling the cell cycle during the G2-S phase change
[21]. The MCB motif is one of the well-known motifs in
the yeast cell cycle as a binding site in the MBF protein
complex. MBF protein is composed of MBP1 and SWI6,
and MBP1 is a DNA binding component while SWI6 has
regulatory roles. It is well known that the MBF protein
complex regulates the transcription of many genes in the
late G1 phase [19,22]. ALPHA2 protein also plays a role
in the cell cycle. It operates synergistically with MCM1
protein to repress the expression of its target genes
[23,24]. MCM1 protein is a key regulator involved in the
transcription of several M/G1 genes during the cell cycle
[10,22,25]. A high weight value of ALPHA2 is supported
by the evidence that ALPHA2 protein binds to the MCM1
protein and influences the regulation of other cell cycle-
related genes [26,27]. Using the set of known motifs, our
results are consistent with previous reports, validating
the analysis method employed.

To further validate the result of top-ranked motifs
extracted by kernel CCA, we compared the weights
obtained from cell cycle-related ORF set with those
obtained from randomly selected set. We performed the
same procedure using random ORFs that are not known
to be related to the cell cycle. Figure 3 shows the highly
weighted motifs obtained from our method in cell cycle-
related gene set and non cell cycle set, and the relative
positions of those motifs are presented in the weight
distribution of all motifs. The weight values obtained
from random set were significantly lower than those
obtained from cell cycle-related ORF set. We could infer
that the significantly correlated motifs were not extracted
from these random datasets. In summary, our method
could identify the regulatory motifs that have high

weights indicating high correlation between the
upstream sequences and the gene expression profiles.

Identification of cell cycle-related motifs
We then applied the linear kernel to the motif sequence
data containing a total of 1,024 features (window size l = 5)
extracted from the raw upstream sequences of genes and
Gaussian RBF kernels with parameter s values of 0.3 to
the expression data. The regularization parameter was
set to 0.1. These parameters are also empirically chosen
based on the fact that they produced a high correlation.
Figure 4 shows the CC1 score which represents the
correlation between the expression profiles and the
sequence patterns. When the linear kernel was applied to
the sequence dataset, the expression data is closely
related to the motif data using the raw sequences of
5-mers.

The 5-mer motif patterns with high weights are listed in
Table 3. The 5-mer with the highest weight is 5’-GCGTG-
3’, which is similar to the MCB motif (5’-ACGCGT-3’).
As described previously, MCB is an important motif
involved in the cell cycle. The second-ranked sequence
(5’-CGTGT-3’) matched to the first five bases of the
ALPHA2 motif sequence. From the second component,
we also found several significant sequences, including a
consensus sequence (5’-CGCGT-3’) that is identical to
the MCB motif (5’-ACGCGT-3’). This further confirmed
that the MCB motif affects gene expression in the cell
cycle. Another interesting motif is 5’-CCACG-3’, which is
a sequence block with one base shift from the known
SCB motif (5’-CACGAAA-3’). The SCB motif is a binding
site of the SBF protein, which is a complex of SWI4 (a
DNA-binding component) and SWI6 (a regulatory
component) [22], and SBF is a major regulator in the
G1/S transition. In each component, the list of 100
motif patterns with high weights is provided in Addi-
tional file 2.

Combinational effects of regulatory motifs
We searched the motif pairs that have synergistic or co-
regulatory combination effects in the yeast cell cycle. The
regulatory mechanisms of eukaryotes are highly complex
since most genes are normally synergistically regulated
by different transcription factors. Therefore, identifying

Table 2: The list of top ranked motifs based on the weight scheme by the kernel CCA

Motif Weight Function Reference

SWI5 0.89026 Transcription activation in G1 phase [19,20]
SFF' 0.45399 FKH1 binding site that regulate the cell cycle [21]
MCB 0.29633 MBF binding site that activates in late G1 phase [19,22]
LYS14 0.21796 Lysine biosysthesis pathway
ALPHA2 0.16532 Encoding a homeobox-domain [23,24]
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the synergistic motif combinations can contribute to
systematically understanding the regulatory circuit.

In the present study, using the kernel CCA we calculated
the weight value for each motif pair of 42 known
motifs. The heat map of weight values of all motif pairs
is provided in Additional file 3. Table 4 presents the top
ten motif pairs with the highest weight values and with
occurrence of more than ten in all the investigated
upstream sequences. It also shows ECRScores which
represent gene expression coherence. All these scores
are relatively high compared to the previously identi-
fied synergistic motif pairs (ECRScores > 0.075) [9]. As
shown in Table 4, the pair with the highest weight value
is MCB-MCM1. According to a previous study, MCB
and MCM1 were characterized as a significantly
cooperative motif pair in the regulation of the cell
cycle [28]. Other highly ranked pairs, such as ECB-
ALPHA2 and MCM1-ALPHA2, are already known that
they are required for transcriptional regulation of early
cell cycle genes. MCM1 activates transcription of ECB

(early cell cycle box)-dependent genes during M/G1
phase [29], and the MCM1 protein can interact with the
ALPHA2 factor regulating the expression of mating-
type-specific genes [26,27]. These evidences support
that two ALPHA2-related motif pairs act synergistically
in the expressional regulation of the yeast cell cycle
process. The REB1 motif, a binding site of REB1 protein,
is frequently found among the pairs of motifs with the
highest weights. The REB1 protein is an RNA polymer-
ase I enhancer-binding protein and binds to genes
transcribed by both RNA polymerase I and RNA
polymerase II [30]. It is a general regulator rather
than a condition specific one. Therefore, it is reasonable
that this protein shows a high frequency in our results.
REB1-SWI5, REB1-MCM1’ and REB1-ALPHA1 motif
pairs are already identified as acting synergistically in
the yeast cell cycle regulation [31-33]. Most of our
results are consistent with the previous reports. In
addition, it’s worth noting that several previously
uncharacterized motif pairs were identified by our
kernel CCA methods.

Figure 3
Weight distributions for MCB, SFF' and SWI5 motifs derived from cell cycle and non cell cycle-related
datasets. The dotted line indicates the weight distribution from the non-cell cycle datasets and the solid line from cell cycle
datasets.

BMC Genomics 2009, 10(Suppl 3):S29 http://www.biomedcentral.com/1471-2164/10/S3/S29

Page 5 of 10
(page number not for citation purposes)



Conclusion
We presented a novel method that can identify the
candidate conditional specific regulatory motifs by
employing kernel-based methods. The application of
the kernel CCA enables us to detect correlations
between heterogeneous datasets, consisting of
upstream sequences and expression profiles. From a

data-mining perspective, our work is regarded as a new
approach for detecting important features from regula-
tory sequences and gene expression profiles. We
demonstrated that major motifs in a specific biological
process can be extracted by a CC score via modelling a
close relationship between two datasets related to gene
regulation.

Figure 4
Correlation between expression profiles and motifs derived by using the raw upstream sequence data. The plot
on (b) is an enlargement of the boxed area in (a).

Table 3: High-scored motifs in the first and the second components using 5-mer raw upstream sequences

Sequence Motif Description Weight Component Rank

GCGTG MCB (ACGCGT) 0.079567 1 1
CGTGT MATalpha2 (CRTGTWWWW) 0.075340 1 2
CATGT MATalpha2 (CRTGTWWWW) 0.046299 1 12
CCACG SCB (CACGAAA) 0.018992 2 4
CGCGT MCB (ACGCGT) 0.017870 2 5
GTGTT MATalpha2 (CRTGTWWWW) 0.016595 2 9
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As genome-wide datasets of various types become
available, it’s important to analyze these datasets in an
integrated manner [34]. It is possible to come up with
novel biological hypotheses by integrating diverse
biological resources generated for specific research
purposes. In these aspects, the kernel CCA is regarded
as a useful method that can extract the biological factors
with significant roles by integrating different types of
biological data. Many studies for identifying motifs have
been based on sequence conservation or sequence
characteristics, regardless of the biological processes.
Therefore our method can be regarded as complemen-
tary approach in the analysis of gene regulation.

Our method found important motifs related to the cell
cycle by using raw upstream sequences as well as known
motif sets. In the present study we used the raw
sequences of window size, l = 5. If we enlarged the
window size, the dimension for sequence features
increased exponentially, whereas the frequency of motifs
decreased. Although the window size used in our
experiments was shorter than the length of several
known transcription factor binding sequences, it was
long enough to obtain worthwhile results.

In the future research, we will apply the proposed
method to diverse gene expression datasets, especially
cancer-related datasets. The cancer-related regulatory
program can be elucidated by analyzing regulatory
motifs from a set of enriched genes in the cancer
transcriptome [35]. Using the kernel CCA, a correlation
analysis between regulatory sequences and the cancer
transcriptome may directly catch regulatory motifs
related to the abnormal gene regulatory program.

Methods
Investigation of the relationship between regulatory
sequence motifs and expression profiles
Kernel CCA (Canonical correlation analysis) is a version
of the nonlinear CCA, where the kernel trick is utilized to
find nonlinearly correlated features from two datasets
[15-17]. CCA is a classical multivariate statistical method

for finding linearly correlated features from a pair of
datasets [36]. Suppose there is a pair of multivariates
x and y, CCA finds a pair of linear transformations such
that the correlation coefficient between extracted features
is maximized. However, if there is a nonlinear relation-
ship between the variates, CCA does not always extract
useful features.

Kernel CCA offers a solution for overcoming the linearity
by first projecting the data into a higher dimensional
feature space. While CCA is limited to linear features,
kernel CCA can capture nonlinear relationships. Kernel
CCA has been used for several applications including
text retrieval and biological data analysis [15,37].

Figure 1 illustrates the basic scheme of the kernel CCA
for our integrated analysis of DNA sequence motif and
gene expression data. Using kernel CCA, we tried to find
maximally correlated features between the gene expres-
sion and the sequence motifs. Here, a gene set X is
represented by two separate profiles in terms of its
transcriptional behaviour and upstream sequences, xexp
and xseq. These are composed of the expression profile,
xexp = (e1, e2, ..., eN) and the sequence profile, xseq = (m1,
m2, ..., mM) of each gene. Here ei (1 ≤ i ≤ N) is the
expression value of the gene in the i-th sample or
experimental condition from the microarray dataset, and
mj (1 ≤ j ≤ M) denotes the occurrence frequency of the
j-th sequence motif in the upstream region of the gene.
For the detection of correlated features between the two
datasets, xexp and xseq are first mapped to Hilbert space,
H, by function �. That is, each x is projected into two
directions, fexp and fseq, in Hilbert space according to its
representation:

u fexp exp exp exp= , ( )ϕ x (1)

u fseq seq seq seq= , ( ) ,ϕ x (2)

where 〈•,•〉 denotes the dot product. Kernel CCA looks
for maximally correlated features between xexp and xseq:

Table 4: The top 10 ranked motif pairs and their ECRScores

Weight Motif Pair ECRScore # of ORFs Reference

2.5368 MCB MCM1 0.390 15 [28]
2.5018 MCB ECB 0.439 12
2.0177 PHO MCM1' 0.088 17
1.848 ECB ALPHA2 0.088 14
1.7535 MCM1 ALPHA2 0.074 17 [26,27]
1.7263 ATRepeat MCM1 0.076 12
1.6995 PHO ECB 0.127 11
1.6823 REB1 SWI5 0.099 14 [31]
1.6476 REB1 MCM1' 0.115 13 [32,33]
1.4256 REB1 ALPHA1 0.067 15 [33]
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where I denotes the identity matrix, Kexp is the kernel
matrix for expression profiles, and Kseq is the kernel
matrix for sequence motifs. When given aexp and aseq as
the solution of the above generalized eigenvalue
problem with the largest eigenvalue, canonical correla-
tion scores (CC scores) for xseq and xexp are estimated by
useq = Kseqaseq and uexp = Kexpaexp, respectively. The CC
scores are based on the low dimensional-mapping of
genes in terms of two separated representations and can
be used to show the salient correlation between the two.
Once we obtain the a vector, the weights of the motif
and expression profile, Wseq and Wexp, are obtained as
following:

W xexp exp
T

exp= α (5)

W xseq seq
T

seq= α . (6)

A high weight value of the specific sequence motif means
that the motif is strongly correlated with the expression
patterns of genes whose upstream region includes the
motif and whose CC scores are high. If a weight of a
specific motif has a high absolute value, the motif is
more likely to play a regulatory role in the specific
biological process. The kernel CCA was implemented
using Matlab.

Preparation of the gene expression datasets
Expression profiles of all ORFs (open reading frames)
during the yeast cell cycle that consists of 18 time points
in the alpha factor synchronization case [18] were used
as the expression dataset. To map from the expression
profiles to high dimensional space, we converted them
to the kernel matrix. We applied a gaussian RBF kernel to
the expression profile matrix by:

k
d exp exp

exp exp( , ) exp
( , )

,x x
x x

′ = −
′⎡

⎣
⎢

⎤

⎦
⎥

2 2σ
(7)

where s is a parameter and function d(•,•) is a Euclidean
distance. The x and x’ mean the two different instances.

Preparation of the gene sequence datasets
The sequence data was used in two ways. In the first case,
we used the sequences of a total of 42 known motifs
(Table 1) extracted by Pilpel [9]. We then scanned the
upstream regions of ORFs for the presence of these
motifs using the AlignACE program [3]. The sequence
profile was represented by the occurrence of these motifs
in the promoters of each gene in the genome.

In the second case, we analyzed the relationship between
the expression profiles and the raw upstream sequences.
We extracted ~1 kb upstream sequences of each gene.
From these sequences, we calculated the frequency of all
possible l-mers in each gene. For l = 5, each gene had
1,024 (= 45) different base combinations. The sequence
profile was encoded in the frequency of l-mers.

We applied the kernel as k seq seq seq
T

seq
d( , ) ( )x x x x′ = ′ to the

sequence data. When d = 1, it is the linear kernel, and
when d > 1, it is the polynomial kernel.

Measurement of the effect of motif pairs
To measure the effect of the motif pairs, we defined the
ECRScore (Expression Coherence coRrelation Score)
calculated by a Pearson correlation coefficient of expres-
sion profiles for all possible pairs of genes whose
upstream regions had the two motifs, mi and mj:

ECRScore m m
N mi m j
N mi m j

i j( , )
( )

( )
,=

∩
∩

τ
(8)

where N(mi ∩ mj) is the number of all pairs of genes
whose upstream regions have the two motifs, and
Nτ(mi ∩ mj) is the number of gene pairs whose
correlation coefficient is larger than the threshold τ.
The threshold was chosen based on the fifth percentile of
the distribution for correlation coefficients of randomly
sampled gene pairs.
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