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Abstract

Background: Polysomnography (PSG) is treated as the gold standard for diagnosing obstructive sleep apnea (OSA).
However, it is labor-intensive, time-consuming, and expensive. This study evaluates validity of overnight pulse oximetry
as a diagnostic tool for moderate to severe OSA patients.

Methods: A total of 699 patients with possible OSA were recruited for overnight oximetry and PSG examination
at the Sleep Center of a University Hospital from Jan. 2004 to Dec. 2005. By excluding 23 patients with poor
oximetry recording, poor EEG signals, or respiratory artifacts resulting in a total recording time less than 3 hours;
12 patients with total sleeping time (TST) less than 1 hour, possibly because of insomnia; and 48 patients whose
ages less than 20 or more than 85 years old, data of 616 patients were used for further study. By further
considering 76 patients with TST < 4 h, a group of 540 patients with TST ≥ 4 h was used to study the effect of
insufficient sleeping time. Alice 4 PSG recorder (Respironics Inc., USA) was used to monitor patients with
suspected OSA and to record their PSG data. After statistical analysis and feature selection, models built based on
support vector machine (SVM) were then used to diagnose moderate and moderate to severe OSA patients with
a threshold of AHI = 30 and AHI = 15, respectively.

Results: The SVM models designed based on the oxyhemoglobin desaturation index (ODI) derived from
oximetry measurements provided an accuracy of 90.42-90.55%, a sensitivity of 89.36-89.87%, a specificity of
91.08-93.05%, and an area under ROC curve (AUC) of 0.953-0.957 for the diagnosis of severe OSA patients; as well
as achieved an accuracy of 87.33-87.77%, a sensitivity of 87.71-88.53%, a specificity of 86.38-86.56%, and an AUC
of 0.921-0.924 for the diagnosis of moderate to severe OSA patients. The predictive outcome of ODI to diagnose
severe OSA patients is better than to diagnose moderate to severe OSA patients.

Conclusions: Overnight pulse oximetry provides satisfactory diagnostic performance in detecting severe OSA
patients. Home-styled oximetry may be a tool for severe OSA diagnosis.
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Background
Breathing-related sleep disorder is a spectrum of dis-
eases including snoring, upper airway resistance syn-
drome and sleep apnea [1]. Several studies have
explored that sleep apnea is associated with obesity, day-
time fatigue, high blood pressure, and increased risk of
cardiovascular morbidity [2,3]. Obstructive sleep apnea
(OSA) is prevalent in 4% of men and 2% of women [4];
among them, up to 93% of women and 82% of men have
not been diagnosed [5], resulting in an increased risk of
2–7 folds in causing motor vehicle crashes [6] and caus-
ing several chronic diseases, such as metabolic syndrome
[7]; neurocognitive deficits [8], vigilance alteration and
attentional decline [9]; and erectile dysfunction [10].
Although polysomnography (PSG) is regarded as the

gold standard, it is time-consuming, labor-intensive, and
expensive [11]. According to a recent report, waiting
time for accessing to diagnose and treat patients with
suspected OSA is lengthy even in the developed counties
around Europe, Australia, the United States, and Canada
[12]; for example, it was estimated that the waiting time
for non-urgent referrals for a sleep study ranges from 0
to 48 months in UK, 2 weeks to 2 months in Belgium, 4
to 68 weeks in Australia, a few weeks to more than a
year in the US, and 8 to 30 months in Canada [12]. The
waiting time ranges from 3 to 7 days in our hospital.
Hence, other devices which are cheap, safe, and accur-
ate; readily and easily accessed; and have no risk or side
effects to the patients are needed for decreasing waiting
time and cost for OSA diagnosis [11]. In addition to
labor-intensive, time-consuming, and high examination
cost, PSG also has other limitations, such as technical
expertise is required and timely access is restricted [12].
Thus, home pulse oximetry has been proposed as a valu-
able screening tool, although its effectiveness in screen-
ing patients with OSA has been debated for several years
[13]. A number of studies have assessed its usefulness,
but sometimes with conflicting results [14-16]. For ex-
ample, home overnight oximetry was found to be not
very correlated with PSG for testing children [17] and to
be considerable night-to-night variability for aged pa-
tients with chronic obstructive pulmonary disease
(COPD) [18]. However, Brouillette and colleagues re-
ported that oximetry could be used to diagnose OSA for
children with a positive predictive value of 97% [19].
It was reported that total sleeping time (TST) and

sleep efficiency were significantly smaller for the first
night in-home PSG compared to the 2nd and 3rd nights
[20]. Night-to-night variability of AHI greater than 5
among 21% of the study patients had also been observed
[21]. Furthermore, Newell et al [22] showed that TST,
sleep efficiency, and AHI were significantly different be-
tween 2 consecutive nights of PSG recording for 4 indi-
vidual groups of subjects, including sleep-related
breathing disorders, insomnia, movement and behavioral
disorders, and healthy control, indicating that AHI
might be affected by the TST.
Patients who do not have enough sleep time during

the examination might have great influence on the diag-
nosis of OSA severity. Although Lam and colleagues ex-
cluded subjects with TST less than 4 hours [7], the
reason why these data were removed was not reported.
In this study, we compared two groups of subjects, one
with TST less than 4 hours and another with TST more
than 4 hours.
The support vector machine applied to oximetry for

the diagnosis of OSA has been little explored. Recently,
SVM was used to design classifiers for the diagnosis of
OSA patients based on the data acquired from only 149
and 100 recruited subjects, respectively, by Al-Angari
et al. [23] and Marcos et al. [24]. Marcos et al. [24] de-
signed an SVM classifier using Gaussian kernel to clas-
sify spectral features of SaO2 signals. The subjects
divided into 60 normal and 89 OSA patients without
considering the severity were recruited in their study.
Al-Angari et al. [23] adopted linear kernel and second-
order polynomial kernel to design the SVM classifiers
for discriminating 1-mimute epochs of OSA segments
from the normal segments, and to discriminate patients
from the normal subjects. The subjects were divided into
50 normal and 50 OSA patients. Only accuracy, sensitiv-
ity, and specificity were evaluated in both studies, while
areas under ROC curve (AUC) were not calculated. In
the present study, the PSG data of 616 patients with
possible OSA were used to design SVM classifiers for
the diagnoses of severe and moderate to severe OSA
patients.
The objectives of this study are to (1) validate noctur-

nal oximetry for the screening of high-risk OSA patients
using oxyhemoglobin desaturation index (ODI) to detect
severe and moderate-to-severe patients; (2) consider the
effect of patients with TST less than 4 hours compared
with those having longer TST during PSG examination;
and (3) determine the best kernel and features used for
constructing the SVM classifiers to discriminate the
OSA patients from the normal subjects.

Methods
Study subjects
A total of 699 patients with possible OSA were recruited
and tested using PSG device for overnight recording at
the Sleep Center of China Medical University Hospital
after written informed consents from Jan. 2004 to Dec.
2005. By excluding 23 patients with total recording time
less than 3 hours, 12 with poor oximetry recordings,
poor EEG signals, or respiratory artifacts, and 48 sub-
jects whose ages less than 20 or more than 85 years old
(7), data of 616 patients were used for analysis. By
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further considering 76 patients with TST less than
4 hours [7], a group of 540 patients whose TST more
than 4 hours was used to study the effect of insufficient
sleeping time. The study has been approved by Institu-
tional Review Board of China Medical University (Study
No. DMR 96-IRB-17).

PSG examination
Alice 4 PSG recorder (Respironics Inc., USA) was used
to monitor and record patients with suspected OSA,
during which a number of physiologic variables were
measured and recorded during sleep. Physiologic sensors
were used to record (1) EEG for detecting brain elec-
trical activity and sleep staging on the basis of 30-sec
epochs, (2) EOG and submental EMG for detecting eye
and jaw muscle movement, (3) tibia EMG for monitor-
ing leg muscle movement, (4) airflow (by using nasal
cannula to measure oronasal pressur) for detecting
breath interruption (1287 nasal flow, PTAF 2; Pro-Tech;
Pittsburgh, PA), (5) inductance plethysmorgraphy for es-
timating respiratory effort (chest and abdominal excur-
sion), (6) ECG for measuring heart rate, and (7) arterial
oxygen saturation by using a finger probe oximeter (935
Oximeter Sensor; Respironics; Murrysville, PA).
PSG recordings were performed overnight (from

9:00 PM to 06:00 AM in general) in the sleep center for
a minimum of 3 hours of light-on to light-off recording
time when patients received OSA diagnoses. During the
examination, the attending technicians on duty closely
inspected the acquired signals of individual channels dis-
played on the monitor to check their signal quality. If
the signal quality was poor or contained obvious arti-
facts, the technicians would check the instrument setup,
cable connection, and electrode-skin contact on-site to
ensure proper recording. The quality of PSG raw data
was verified by an experienced physician of sleep medi-
cine and scored by a technician certificated by the
Taiwan Society of Sleep Medicine. During off-line ana-
lysis, the periods with artifacts or poor signal quality not
meeting the diagnostic requirements, such as poor sig-
nals or artifacts in acquired oximetry, EEG, or respira-
tory data that did not allow the reading of the SpO2,
sleep stages, or the respiratory events, were deleted from
the recorded signals. For patients whose net total re-
cording time less than 3 hours or TST less than 1 hour
were arranged to receive another free examinations.
Sleeping efficiency was calculated as TST divided by
total recording time.
The oximeter was used to measure the SpO2 with a

sampling rate of 1 Hz. Only the SpO2 signal acquired
from pulse oximeter was used for ODI calculation with-
out the knowledge of other PSG information. For pulse
rates less than 112 beat/min, the SpO2 calculation is
based on a four-beat exponential averaging. The
averaging time is doubled to 8 beats for pulse rate
greater than 112 beat/min, and is redoubled again for
pulse rate more than 225 beat/min. Artifacts with
changes of oxygen saturation between consecutive sam-
pling intervals greater than 4%/s, and any oxygen satur-
ation less than 50% were detected and eliminated by an
automated algorithm [25].
An apnea was defined as a minimum of 10 seconds of

airflow cessation, and a hypopnea was determined by a
30% reduction in airflow preceding a period of normal
breathing for a minimum of 10 seconds and oxyhemo-
globin desaturation (decrease in SpO2 ≧ 4%) [26].
Apnea-hypopnea index (AHI) was calculated as the total
number of apneas (central, mixed, or obstructive) and
hypopneas per hour of sleep. An arousal event was
defined as an episode lasting 3 seconds or more with a
return of α activity associated with a detectable increase
in EMG activity [27]. Arousal index (AI) was the total
number of arousals per hour of sleep. OSA patients were
diagnosed as mild, moderate, and severe with an AHI
greater than 5/h, 15/h, and 30/h, respectively.
The questionnaires including demographic informa-

tion (age, gender, education, profession type, as well as
smoking and drinking status), Epworth scaling score
(ESS), as well as symptoms (snoring, drooling and teeth-
grinding during sleep; feeling headache, tired, and dry
mouth after wake-up; daytime drowsiness, memory
problem, and traffic accidence caused by drowsiness
when driving) and comorbidities (hypertension, diabetes,
high blood lipid, high uric acid, stroke, heart attack, angina
pectoris, asthma, thyroid disorder, and allergic rhinitis) re-
lated to OSA diagnosis were filled by the patients before
PSG recording. Anthropometric parameters (weight,
height, as well as waist, neck and hip circumferences) were
measured and BMI calculated by the technicians.

Oxyhemoglobin desaturation index derived from pulse
oximetry measurement
Oxyhemoglobin desaturation index (ODI), represented
as ODInb, includes three components, i.e., threshold (n),
baseline (b), and lasting time (fixed to t = 3 sec in this
study) parameters. For threshold n, the amount of oxy-
hemoglobin desaturation n% decrease from the baseline
was calculated. In this study, two different baselines, in-
cluding the mean of all-night oxygen (A) [28] and the
mean of the top 20% of oxyhemoglobin saturation values
over the 1 min preceding the scanned oxyhemoglobin
value (T) [16] were adopted. The lasting time parameter
t = 3 was defined as that an oxyhemoglobin desaturation
event with a minimum of 3 sec were continued. Finally,
the ODI was calculated by dividing the total oxyhemo-
globin desaturation counts with the total recording time
(hours). For example, ODI4A calculated the amount of
oxyhemoglobin desaturation events with a 4% decrease
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from the mean of all-night oxygen lasting for more than
3 seconds per hour. Because the oximetry is one of the
PSG channels, we aim to investigate the accuracy, sensi-
tivity, specificity, and area under ROC curve (AUC) of
overnight oximetry for the diagnosis of moderate and
moderate to severe OSA patients by ODI parameters, in-
cluding ODI2 (ODI2T), ODI3 (ODI3T), ODI4T, and
ODI4A, derived from oximetry measurements.

Consideration of TST during PSG examination
Subjects who do not have enough sleep time during the
examination might have great influence on the diagnosis
of OSA severity. Although Lam and colleagues excluded
subjects with TST less than 4 hours [7], the reason why
these data were removed was not reported. In this study,
we compared two groups of subjects, one with TST less
than 4 hours and another one with TST more than
4 hours.

Analytical techniques
Demographic, anthropometric, questionnaire, and PSG
data of patients were analyzed using descriptive statis-
tical analysis for calculating means and standard devia-
tions of individual variables. Inferential statistical
analyses including Pearson chi-square test and analysis
of variance (ANOVA) were applied to detect significant
variables for discriminating among normal subjects and
mild, moderate, and severe OSA patients. Moreover, linear
regression analysis and Bland-Altman plot were per-
formed to compare correlations and agreements between
ODI variables (ODI2, ODI3, ODI4T, and ODI4A) and
AHI. Analysis of ROC curves were performed to set the
cutoff values of different ODI parameters that best dis-
criminate moderate and moderate/severe OSA patients
from normal and mild subjects. Furthermore, we tested
and compared various combinations of neck circumfer-
ence (NC), body mass index (BMI), ESS, and ODI vari-
ables in the diagnosis of severe and moderate to severe
patients based on 2 thresholds, AHI = 30 and AHI = 15,
respectively. Finally, support vector machine (SVM), an
artificial technique, was used to design computer-assisted
diagnostic systems based on parameters derived from the
oximetry measurements only by excluding signals ac-
quired from other PSG channels. Comparisons of the
diagnostic performance of traditional oximetry parameters
with those from the SVM models were also conducted.

Support vector machine
The SVM technique is a useful technique for data classi-
fication and regression, which has become an important
tool for machine learning and data mining. In general,
SVM has better performance when competed with exist-
ing methods, such as neural networks and decision trees
[29-31]. Recently, application of SVM in medicine has
grown rapidly. For examples, it has been applied in pre-
diction of disulfide bonding patterns in proteins [32],
discrimination of malignant and benign cervical lymph
nodes [33], disease diagnosis using tongue images [34],
diagnoses of cardiovascular disease [35] and breast cancer
[36], and predictions of successful ventilation weaning
[37]. A special property of SVM is that it can simultan-
eously minimize the empirical classification error and
maximize the geometric margin. Its goal is to separate
multiple clusters with a set of unique hyperplanes having
greatest margin to the edge of each cluster to reduce
misclassification induced by noise, where each hyper-
plane separating two clusters is not unique for ordinary
linear classifiers. Recently, SVM was also used to design
classifiers for the diagnosis of OSA patients [23,24].

Results
Demographic and clinical characteristics of participants
The tested subjects were divided into 4 groups based on
the AHI for statistical analysis. Table 1 shows the demo-
graphic and clinical characteristics of participants and
compares the statistic results among 4 patient groups.
Regarding the influence of gender in OSA severity, the
proportion of male patients increases significantly fol-
lowing the OSA severity (Chi-square test, p < 0.001).
Demographic and anthropometric variables (age, BMI,
and NC), ESS obtained from the questionnaire, and vari-
ables derived from oximetry (ODI and heart rate), reach-
ing a level of significance (ANOVA, p < 0.01) among two
or three stages, were selected as potential variables for
designing the SVM classifiers to detect severe (30≦AHI)
and moderate to severe (15≦AHI) patients. It was found
that only ODI could be used to differentiate all 4 differ-
ent groups. Variables, including TST, sleep latency,
arousal count, and arousal index, derived from EEG
and/or EMG, were also calculated and compared among
4 groups of participants. It can be observed that the TST
is lower while the arousal count and arousal index are
higher for more severe patients.

Discrimination of normal, mild, moderate, and severe
participants
Table 2 shows the confusion matrices of multiclass clas-
sifiers in the discrimination of 4 groups of participants
using ODI parameters derived from the oximetry mea-
surements for two datasets including 616 (dataset 1) and
540 (dataset 2) subject data, respectively. ODI parame-
ters can provide a total predictive accuracy of 71.27%
and 73.52% for dataset 1 and dataset 2, respectively. The
sensitivities of SVM models in diagnosing severe pa-
tients are 88.07% and 87.76% in dataset 1 and dataset 2,
respectively, while the sensitivities are less than 75% for
other 3 categories. The predictive accuracy is obtained
by tenfold cross validation.



Table 1 Statistic tests of demographic, questionnaire, and PSG data obtained from patients across four stages of
severity based on AHI value

Severitya All (1) Normal (2) Mild (3) Moderate (4) Severe Statistic testb

Patient No. (%) 616 (100%) 72 (11.7%) 127 (20.6%) 132 (21.4%) 285 (46.3%)

Gender (%)‡

Female 141 (22.9%) 32 (44.4%) 49 (38.6%) 31 (23.5%) 29 (10.2%) χ2 = 62.801, p < 0.001

Male 475 (77.1%) 40 (55.6%) 78 (61.4%) 101 (76.5%) 256 (89.8%)

Age*** 45.2 ± 12.7 36.2 ± 10.2 42.1 ± 11.5 45.9 ± 12.8 48.4 ± 12.5 (1) < (2),(3),(4); (2) < (4)

BMI*** 26.74 ± 4.24 23.88 ± 3.15 25.60 ± 3.75 26.18 ± 3.68 28.22 ± 4.33 (1),(2),(3) < (4)

NC*** 39.08 ± 3.65 36.24 ± 3.25 37.53 ± 3.52 38.69 ± 3.19 40.79 ± 3.10 (1) < (3); (1),(2),(3) < (4)

ESS** 9.21 ± 5.24 7.67 ± 5.16 8.54 ± 4.77 9.19 ± 5.25 9.93 ± 5.34 (1) < (4)

ODI parameter

ODI2*** 37.58 ± 23.50 10.25 ± 7.18 19.81 ± 10.57 29.60 ± 12.31 56.11 ± 18.94 (1) < (2) < (3) < (4)

ODI3*** 26.16 ± 23.93 3.10 ± 2.78 8.18 ± 6.02 15.54 ± 8.87 44.92 ± 22.37 (1) < (2) < (3) < (4)

ODI4T*** 20.44 ± 23.06 1.28 ± 1.43 4.18 ± 3.80 9.52 ± 7.01 37.58 ± 23.66 (1) < (2) < (3) < (4)

ODI4A*** 24.65 ± 26.00 1.14 ± 1.41 5.20 ± 3.94 12.01 ± 7.62 45.10 ± 24.97 (1) < (2) < (3) < (4)

Heart Rate 73.32 ± 11.02 70. 31 ± 8.45 71.05 ± 10.61 72.64 ± 9.50 75.41 ± 11.97 (1),(2) < (4)

TST (min)*** 309.0 ± 63.4 317.8 ± 56.3 331.3 ± 48.9 307.6 ± 58.5 297.5 ± 69.8 (3),(4) < (2)

Latency (min)*** 19.6 ± 21. 1 27. 6 ± 33.0 16.2 ± 13.6 22.4 ± 23.2 17.9 ± 18.2 (2),(4) < (1)

Arousal count*** 153.9 ± 99.1 95.3 ± 55.6 103.0 ± 52.3 121.1 ± 52.3 206.5 ± 112.4 (1),(2),(3) < (4)

Arousal Index*** 33.6 ± 20.7 19.3 ± 10.8 20.6 ± 10.1 26.6 ± 11.2 46.3 ± 21.9 (1),(2),(3) < (4); (1) < (3)
aNormal: AHI < 5; Mild: 5≦AHI < 15; Moderate: 15≦AHI < 30; Severe: AHI≧30.
bANOVA test with *p < 0.05, **p < 0.01, and ***p < 0.001; Pearson Chi-square test with ‡p < 0.001.
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Diagnosis of severe and moderate/severe OSA patients
Table 3 displays various combinations of NC, BMI, ESS,
and ODI for designing predictive models in the diagnosis
of severe OSA patients, and the prediction rates and AUC
achieve 89.81-90.58% and 0.946-0.958, respectively. Diag-
nostic models designed using ODI parameters derived
from pulse oximetry alone achieved prediction perform-
ance similar to other multiclass predictors designed using
Table 2 Confusion matrices for the classification of 4 groups
616 and 540 samples, respectively

N Normal Mild

Dataset 1

Normal 72 53 10

Mild 127 25 80

Moderate 132 3 48

Severe 285 1 11

Total Validation 616 Overall accuracy: 71.27%

Dataset 2

Normal 68 51 17

Mild 121 21 85

Moderate 114 3 39

Severe 237 0 10

Total Validation 540 Overall accuracy: 73.52%
more variables. Models designed with ODI parameters
provided a sensitivity of 87.36-89.87%, a specificity of
91.08-93.05%, an accuracy of 90.42-90.55%, and an AUC
of 0.953-0.957 for the diagnosis of severe OSA patients in
both datasets.
Table 4 compares the diagnostic performance of various

diagnostic models designed with different combination of
variables for the diagnosis of moderate to severe patients.
with ODI used as predictor for two datasets containing

Moderate Severe Sensitivity (%)

1 0 73.61

20 2 62.99

55 26 41.67

22 251 88.07

0 0 75.00

14 1 70.25

53 19 46.49

19 208 87.76



Table 3 Diagnosis of severe patients with AHI = 30 as the threshold using different combination of salient features

Data Multiple variables Single variable

Predictive index (%) NC, BMI, ESS, ODI ODI, ESS ODI, BMI ODI ODI2 ODI3 ODI4T ODI4A

Dataset 1 (N = 616) Accuracy 90.42 90.58 90.58 90.42 87.2 89.5 87.8 89.8

Sensitivity 88.07 87.01 86.31 87.36 91.6 86.0 85.7 90.6

Specificity 92.44 93.65 94.25 93.05 83.3 92.4 89.7 89.1

AUC 0.958 0.956 0.954 0.957 0.938 0.942 0.912 0.913

Cutoff - - - - 27.2 18.4 11.2 13.7

Dataset 2 (N = 540) Accuracy 90.18 90.37 89.81 90.55 87.6 90.0 88.5 89.3

Sensitivity 86.07 88.18 88.60 89.87 91.6 86.6 88.7 89.5

Specificity 93.39 92.07 90.75 91.08 84.4 92.7 88.4 89.1

AUC 0.952 0.946 0.950 0.953 0.945 0.946 0.913 0.913

Cutoff - - - - 27.2 18.4 10.4 13.7

Note: ODI is the combination of ODI2 and ODI4A.
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The sensitivity, specificity, accuracy, and AUC achieve
87.71-89.97%, 83.08-86.56%, 86.85-88.14%, and 0.921-0.941,
respectively. Again, ODI alone provides a similar predictive
accuracy of 87.33-87.77%, a sensitivity of 87.71-88.53%, a
specificity of 86.38-86.56%, and an AUC of 0.921-0.924, re-
spectively, for the diagnosis of moderate to severe OSA
patients.
Figure 1 illustrates and compares the ROC curves of

models designed using traditional ODI variables (ODI2,
ODI3, ODI4T, and ODI4A) and their combinations
(ODI2 and ODI4A). In addition to higher accuracy
(Table 3), the AUCs of the SVM models designed using
2 ODI variables are greater than other single-variable
models, as shown in Figure 1(a) and 1(b), indicating its
capability in diagnosing severe OSA patients outper-
forms other traditional models. Regarding the diagnosis
of moderate to severe patients, as shown in Table 4, the
multiple-variable SVM models and traditional single-
variable models exhibit similar diagnostic performance.
Table 4 Diagnosis of moderate to severe patients with AHI =
features

Data Multiple variable

Predictive index (%) NC, BMI, ESS, ODI OD

Dataset 1 (N = 616) Accuracy 86.85 87.

Sensitivity 88.67 89.

Specificity 83.08 83.

AUC 0.938 0.9

Cutoff - -

Dataset 2 (N = 540) Accuracy 87.96 88.

Sensitivity 89.39 89.

Specificity 85.34 84.

AUC 0.941 0.9

Cutoff - -

Note: ODI is the combination of ODI2 and ODI4A.
Cutoff values for diagnosis of OSA patients using ODI
variables
The cutoff values of single-variable models for the diag-
nosis of severe and moderate to severe OSA patients are
shown in Tables 3 and 4, respectively. The optimal cutoff
values for severe patient diagnosis are 27.2, 18.4, 11.2,
and 13.7, respectively, in dataset 1, as well as 27.2, 18.4,
10.4, and 13.7, respectively, in dataset 2 for ODI2, ODI3,
ODI4T, and ODI4A. The cutoff values were decreased
to 21.2, 9.5, 7.3, and 8.5 for dataset 1 as well as 21.2, 9.5,
7.3, and 7.3 for dataset 2 when making diagnosis of
moderate to severe patients using ODI2, ODI3, ODI4T,
and ODI4A, respectively.

Effect of less TST
Table 5 shows that the number and percentage of sub-
jects with different OSA severity, exhibiting significant
difference between patients with TST less than 4 hours
and those with TST more than 4 hours (p < 0.01). As
15 as the threshold using different combination of salient

Single variable

I, ESS ODI, BMI ODI ODI2 ODI3 ODI4T ODI4A

82 87.01 87.33 87.2 89.5 87.8 89.8

87 87.95 87.71 91.6 86.1 85.7 90.6

58 85.07 86.56 83.3 92.4 89.7 89.1

35 0.927 0.921 0.918 0.920 0.870 0.869

- - 21.2 9.5 7.3 8.5

14 87.59 87.77 87.6 90.0 88.5 89.3

97 88.82 88.53 91.6 86.6 88.7 89.5

81 85.34 86.38 84.4 92.7 88.4 89.1

39 0.940 0.924 0.925 0.927 0.872 0.875

- - 21.2 9.5 7.3 7.3



Figure 1 ROC curves of ODI parameters for the diagnosis of
severe and moderate/severe OSA patients with thresholds (a)
AHI=30 and (b) AHI=15, respectively.
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indicated in the table, the percentage of severe patients
in the group of TST < 4 h group (63.2%) is higher than
the TST ≥ 4 h group (43.9%), while it is opposite by con-
sidering the cumulated normal and mild subjects (13.2%
vs 35.0%). On the other hand, the percentages of moder-
ate patients are very close between two groups (23.9% vs
21.1%). No significant difference (p > 0.05) was observed
between two groups regarding anthropometric variables
(BMI and NC), questionnaire (ESS), and HR, while sig-
nificant difference was found for age (p < 0.001), ODI4A
(p < 0.05), and AHI (p < 0.01). Interestingly, except
ODI4A, other ODI parameters, i.e., ODI2, ODI3, and
ODI4T, exhibited no significant difference (p > 0.05) be-
tween two different TST groups. It mimics ODI4A is more
sensitive than ODI2, ODI3, and ODI4T in discriminating
patients with less TST from those with more TST. Fur-
thermore, as shown in Table 5, patients with less TST
demonstrate significantly greater latency (p < 0.001)
and arousal index (p < 0.05); however, the arousal
counts is significantly smaller (p < 0.001). We suspected
that data recorded from subjects who do not have
enough sleeping time might not be reliable for analysis
and should be excluded. An additional PSG examination
should be conducted to draw more solid diagnostic
conclusion.

Discussion and conclusion
Prediction of OSA using questionnaires, demographics,
clinical features, and physiological examination has been
extensively studied in the last decade [11,38]. Goncalves
and colleagues used Epworth sleeping scale (ESS), the
sleeping disorders questionnaire, the Beck depression in-
ventory, the medical outcome study 36-item short form
health survey (SF-36), and a questionnaire on driving
difficulties and accidents to evaluate subjects who were
suspected to have breathing-related sleep disorders.
Among them, ESS was found to be correlated to arousal
index and apnea-hyponea index (AHI) [38], while con-
tradicted by other investigators [11,39]. Khoo et al [40]
used questionnaires, containing questions regarding
snoring, choking, suffocating, and abrupt awaking during
sleep, to study Asian populations, including Chinese,
Malaysian, and Indian. It was found that the risk factors
are similar to white populations in strong association of
snoring and sleep apnea with male gender, older age,
obesity, family history, and smoking [40]. In addition,
demographic, clinical, and biochemical factors including
age, sex, observed sleep apnea, fasting insulin, glycosylated
hemoglobin A1C, and central obesity and lager NC were
found to significantly increase the risk of higher AHI for
the severely obese patients [39]. Strong correlation be-
tween patient self-perception and clinical examination, in-
cluding Friedman tongue position grade and Friedman
clinical staging, of OSA severity and AHI was also found
[11]. In this study, ESS questionnaire was considered to be
included for designing SVM classifiers for OSA diagnosis.
As indicated in Table 1, it is only effective in discriminat-
ing the normal from the severe OSA patients. In contrast,
all ODI parameters are able to discriminate the normal
and different stages of OSA patients. As presented in Ta-
bles 3 and 4, diagnostic performance is not improved
when ODI parameters are combined with ESS, nor is
combined with BMI and/or NC. ODI parameters provided
by overnight oximetry measurements may become good



Table 5 Comparison of statistic results of demographic, anthropometric, questionnaire, and PSG variables between
patients whose TST < 4 h and those with TST ≥ 4 h

Severitya All TST < 4 h TST ≥ 4 h Statistic test (p)b

AHI** 34.07 ± 28.11 43.52 ± 26.81 32.74 ± 28.06 0.002

Severity† 616 (100%) 76 (12.34%) 540 (87.66%)

Normal 72 (11.7%) 4 (5.3%) 68 (12.6%) χ2 = 15.4

Mild 127 (20.6%) 6 (7.9%) 121 (22.4%) p < 0.01

Moderate 132 (21.4%) 18 (23.9%) 114 (21.1%)

Severe 285 (46.3%) 48 (63.2%) 237 (43.9%)

Age** 45.2 ± 12.7 52.20 ± 14.67 44.17 ± 12.16 0.001

BMI 26.74 ± 4.24 27.14 ± 4.37 26.68 ± 4.22 0.370

NC 39.08 ± 3.65 39.65 ± 3.56 39.06 ± 3.42 0.161

ESS 9.21 ± 5.24 9.43 ± 5.48 9.19 ± 5.22 0.599

ODI parameter

ODI2 37.58 ± 23.50 41.48 ± 19.42 37.03 ± 23.98 0.073

ODI3 26.16 ± 23.93 27.53 ± 19.18 25.96 ± 24.53 0.521

ODI4T 20.44 ± 23.06 19.84 ± 17.99 20.53 ± 23.70 0.767

ODI4A* 24.65 ± 26.00 31.16 ± 24.23 23.73 ± 26.13 0.015

Heart Rate 73.32 ± 11.02 73.85 ± 12.49 73.24 ± 10.79 0.703

TST (min)** 309.0 ± 63.4 180.2 ± 53.3 327.1 ± 39.1 0.002

Latency (min)*** 19.6 ± 21. 1 41.5 ± 40.2 16.6 ± 14.4 <0.001

Arousal count*** 153.9 ± 99.09 103.2 ± 65.3 161.0 ± 101.0 <0.001

Arousal Index* 33.6 ± 20.7 39.3 ± 22.4 32.8 ± 20.3 0.011
aNormal: AHI < 5; Mild: 5≦AHI < 15; Moderate: 15≦AHI < 30; Severe: AHI≧30.
bANOVA test with *p < 0.05, **p < 0.01, and ***p < 0.001; Pearson Chi-square test with †p < 0.001.
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predictors in the diagnosis of OSA, while demographic
and questionnaire variables are not very helpful to elevate
the prediction rate [41].

Selection of ODI parameters for designing SVM models
The selection of variables for designing predictive
models for OSA diagnosis is based on ANOVA analysis,
linear regression analysis, and Bland-Altman plot. Al-
though all variables shown in Table 1 reached a level of
significance in discriminating 4 groups of participants
when tested with ANOVA, only NC, BMI, and ODI pa-
rameters were considered as potential predictors after
post-hoc analysis in discriminating severe patients from
the other groups. In contrast, all the ODI parameters are
able to discriminate any 2 groups of participants. The
variables derived from PSG channels other than oxim-
etry, including TST, sleep latency, arousal count, and
arousal index, were not included, because they cannot
be derived from the home oximetry.
Several ODI parameters, including ODI2, ODI3, ODI4T,

and ODI4A, which were highly correlated with AHI were
considered to be included for designing the SVM models.
In addition to correlation, their agreements with AHI were
also evaluated by Bland-Altman plots. After linear regres-
sion analysis, the obtained linear predictor functions were
used to perform Bland-Altman plots to check their agree-
ments with the gold standard AHI. As illustrated in
Figure 2, Bland-Altman plots were compared among single
and combined ODI parameters after linear regressions.
The correlation coefficients (R2) of AHI versus ODI2,
ODI3, ODI4T, and ODI4A were 0.770, 0.835, 0.813, and
0.878, respectively. The agreements of AHI with individual
ODI parameters were evaluated by observing their means
and differences. As exhibited in Figure 2 (a)-(d), the 95%
limits of agreements (±1.96 SD) are ±26.4, ±22.4, ±23.8,
and ±19.2, respectively, for ODI2, ODI3, ODI4T, and
ODI4A with a mean of 0. ODI4A presented best agree-
ment with AHI and was defined as the potential variable
for combining with other variables to achieve better diag-
nostic performance. Figure 2 (e) and (f ) demonstrate
the Bland-Altman plots for ODI4A combined with
ODI2 and ODI3, respectively. It can be found that the
former combination (R 2) = 0.881, ±1.96 SD = ±19.0)
exhibits slightly better correlation and agreement with
AHI than the latter (R2 = 0.880, ±1.96 SD = ±19.1) and
ODI4A alone (R2 = 0.878, ±1.96 SD = ±19.2). The cor-
relations and agreements were not improved by in-
cluding more ODI parameters; for example, as shown
in Figure 3, the correlation and agreements were
slightly degraded for the combined ODI4A, ODI2, and
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ODI3 (R2 = 0.881 and ±1.96 SD = ±20.0) as well as
for the combined ODI4A, ODI4T, ODI2, and ODI3
(R2 = 0.880 and ±1.96 SD = ±38.9) with significantly
deviated means of 3.5 and −15.4, respectively. The
analysis of ROC curves further validated that the
combination of ODI4A and ODI2 achieved better
diagnostic performance, especially for the diagnosis
of severe OSA patients, than the predictors based on
single ODI parameters.
Comparison of multi-variable SVM classifiers and single-
variable predictors
As shown in the confusion matrices (Table 2) resulted
from multiclass SVM classifiers for the detection of nor-
mal, mild, moderate, and severe patients, the sensitivity of
ODI variables (ODI 2 and ODI4A) achieves more than
87% in detecting severe OSA patients, while it is only 41-
74% for the other three groups. The misclassification rates
of severe and moderate patients classified as normal are
0.35% (1/285) and 2.27% (3/132), respectively, for dataset
1, as well as 0% and 2.63% (3/114), respectively, for dataset
2. The misclassified rates are only 1.38% and 0%, respect-
ively, for normal subjects to be classified as moderate or
severe when tested with dataset 1 and dataset 2. The
results mimic that a system designed based on ODI
parameters for diagnosing moderate or moderate/severe
patients is expected to have great diagnostic performance.
The sensitivity in detecting severe patients is 87.36%,

which indicates that 12.64% of the severe patients will be
treated as normal, mild, or moderate (Table 3). Further
PSG test will be expected to confirm the diagnoses of
those mild and moderate patients. On the other hand,
the percentage of normal, mild and moderate patients
who were diagnosed as severe is 6.95% (1-specificity).
According to the results of our dataset indicated in
Table 2, none of the normal subject was diagnosed as
severe, mimicking that the subjects being diagnosed as
severe were mild or moderate OSA patients. It is accept-
able for this misclassification (false-positive) since it was
suggested that mild and moderate patients also need
treatments using continuous positive airway pressure
(CPAP) [42]. The oximetry can be effective to be used
for diagnosing severe OSA patients. The predictive
model is suitable to predict severe patients using
cheaper and convenient oximetry, while the non-severe
patients, including normal, mild, and moderate patients,
need to be confirmed by more expensive PSG examina-
tions. Cost-effectiveness analysis needs to be conducted
to evaluate the strategy of home oximetry test followed
by PSG examination for the diagnosis of OSA patients
to reduce healthcare cost and medical facility usage.
Marcos et al. designed an SVM classifier using Gaussian

kernel to classify spectral features of SaO2 signals [24]. The
149 subjects were divided into 60 normal and 89 OSA
patients. The severity of OSA patients was not considered
in their study. Since Gaussian kernel is deemed as an
example of RBF kernel, the results were compared with
our results obtained from RBF SVM classifier. The
obtained accuracy, sensitivity, and specificity were 88.00%,
84.44%, and 93.33%, respectively, with an AUC of 0.921.
In comparison, as presented in Tables 3, our results
showed better performance with accuracy (≥90.42%), sensi-
tivity (≥87.36%), specificity (≥91.08%), and AUC (≥0.953) in
diagnosing severe OSA patients; and, as indicated in Table 4,
similar performance with accuracy (≥87.33%), sensitivity
(≥87.71%), specificity (≥86.38%), and AUC (≥0.921) in diag-
nosing moderate to severe patients.
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Al-Angari et al. adopted linear kernel and second-
order polynomial kernel to design the SVM classifiers
for discriminating 1-mimute epochs of OSA segments
from the normal segments, and to discriminate patients
from the normal subjects [23]. Only 100 subjects (50
normal subjects and 50 OSA patients) were recruited in
this study, lacking the representativeness of the study
samples. The best accuracies achieved for the SVM clas-
sifiers designed based on the oxygen saturation features
are 80.10% (Sensitivity: 60.9%; Specificity: 94.1%) and
95% (Sensitivity: 100%; Specificity: 90.2%) for epoch clas-
sification and subject classification, respectively. No
AUC value was provided for both classifications.
Schlotthauer et al. [43] adopted a novel method based

on the empirical mode decomposition to detect oxy-
hemoglobin desaturation events from the recorded pulse
oximetry signals. ODI was then calculated from the oxy-
hemoglobin desaturation events to detect moderate
OSA syndrome with a cutoff ODI value of 18.521,
achieving a sensitivity, specificity, and AUC of 0.851,
0.853, and 0.923, respectively. Its diagnostic performance
is slightly worse than the predictor ODI3 and the SVM
model designed using combined ODI parameters, i.e.,
ODI2 and ODI4A, but is similar to the single-variable
predictors, ODI2, ODI4T, and ODI4A (Table 4).
As shown in Table 6, diagnostic performance of SVM

models embedding different kernels used for the diagno-
sis of severe OSA patients is compared. SVM models
embedding RBF kernels present slightly better diagnostic
performance than models designed with linear or poly-
nomial kernels.

Effect of less TST
By considering the TST, as depicted in Table 5, age,
ODI, and AHI exhibit significant difference between pa-
tients with TST less than 4 hours and those with TST
more than 4 hours. It indicates that older subjects and
more severe OSA patients with higher ODI and AHI
tend to have less sleeping time. There are two possible
explanations of this finding: (1) some severe patients
tend to sleep less because of frequent apnea or hypopnea
Table 6 Comparison of diagnostic performance for SVM
models with different kernels in the diagnosis of
moderate and severe patients with AHI = 30 as the
threshold using ODI features

Data Predictive index (%) Linear Polynomial RBF

Dataset 1 (N = 616) Accuracy 90.25 90.09 90.42

Sensitivity 87.36 90.17 87.36

Specificity 92.74 90.03 93.05

Dataset 2 (N = 540) Accuracy 89.62 89.25 90.55

Sensitivity 89.45 89.45 89.87

Specificity 89.76 89.10 91.08
occurrences and (2) data recorded from subjects who do
not have enough sleeping time might not be reliable for
further analysis. Regarding the first possibility, the fre-
quent occurrences of apnea or hypopnea after having
fallen asleep induces insomnia for severe patients. The
environmental change might also be the reason for caus-
ing insomnia [44]. By observing the latency time in Table 5,
significant difference (p < 0.001) can be found between
two groups. Subjects with less sleeping time demonstrate
greater latency. Although arousal count for TST less than
4 hours group is significantly smaller than those with TST
more than 4 hours group (p < 0.001); however, the arousal
index is significantly greater (p < 0.01). We suggest that
subjects who were diagnosed as normal but didn’t take
enough sleeping time in the sleeping center might be
caused by environmental change and should have another
PSG examination to confirm OSA diagnosis. By using ox-
imeter to test OSA at home may eliminate such variation.
With regard to the second possibility, the data col-

lected from the 76 (12.34%) subjects who had TST less
than 4 hours were removed, resulting in a total of 540
subjects. To compare the accuracy in the discrimination
of 4 different groups of subjects (Table 2), a greater in-
crease in detecting mild (62.99% vs 70.25%) patients can
be observed, while it is only small difference in accuracy
regarding detection of normal (73.61% vs 75.00%), mod-
erate (41.67% vs 46.49%), and severe (88.07% vs 87.76%)
groups. Moreover, as shown in Tables 3 and 4, there is
no significant difference in diagnostic performance when
diagnosing severe patients or moderate and severe pa-
tients. The effect of less sleeping time needs to be further
investigated.

Study limitations
Unlike PSG and single-lead ECG, the limitation of oxim-
etry measurement is that it is unable to score sleep quality
[45]. Standard PSG scores sleep quality based on EEG sig-
nal analysis by grading the sleep quality into 4 stages of
continuum of depth during non-REM sleep. Thomas and
colleagues reported that sleep could be identified as wake/
REM, cyclic alternating pattern (CAP), and non-CAP
based on the Fourier analysis of R-R interval series and its
associated ECG-derived respiration (EDR) signal [45]. The
main advantage of using a combination of oximetry pa-
rameters as the predictor is its great sensitivity (>90%) in
the diagnosis of severe OSA patients with cheaper price
compared to PSG.
It was reported that study subjects selected based on

whether they has been referred for the index test instead
of clinical symptoms tended to have lower accuracy,
whereas studies with nonconsecutive inclusion of sub-
jects, retrospective selection of data, and discrimination
between healthy subjects and severe patients had signifi-
cantly higher accuracy [46]. Although our data were
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collected consecutively from Jan. 2004 to Dec. 2015 and
the moderate and severe OSA patients were discrimi-
nated with a clear threshold of AHI = 15 and AHI = 30,
respectively, expecting not to overestimate the diagnostic
accuracy, several limitations must be considered when
interpreting the findings. First, this is a tertiary referral
hospital and the subjects were recruited from the outpa-
tients with suspicious OSA. Among the 616 subjects
studied, only 72 were verified as normal accounting to
only 11.69% of the total subjects recruited, which was
much less than the moderate (21.43%) and severe
(46.27%) patients. Moreover, the study subjects selected
based on the referred PSG examinations instead of clin-
ical symptoms tended to underestimate the diagnostic
accuracy [46]. Second, all events found in PSG were
verified by the technicians working in the sleep center.
The variation occurred among different technicians can-
not be avoided and neglected since each one has his/her
subjective judgment. Therefore, designing an objective
computer-assisted system to eliminate the loads and
subjective opinions of individual technicians is war-
ranted. Third, the oximetry is part of the gold standard
PSG examination, which reduces the quality of the study
and can artificially increase the diagnostic accuracy using
the parameters derived from the measurement of home-
style oximetry for its liability to induce errors and to
couple noise artifacts [47]. Finally, due to the design of this
study limiting the applicability of the results at home, valid
conclusions cannot be drawn about the accuracy of the
oximetry to detect or exclude OSA patients outside the
sleep laboratory.

Conclusion
Overnight pulse oximetry provides satisfactory diagnostic
performance in detecting severe OSA patients. Home-
styled oximetry may provide a tool for the diagnosis of
severe OSA patients. In addition to ODI parameters
(ODI2 and ODI4A), other variables derived from the
oximetry, such as heart rate variability (HRV) may also
be considered to be used for designing computer-
assisted diagnostic system to improve the diagnostic
performance.
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