
Ahmed Mathematical Sciences 2013, 7:10
http://www.iaumath.com/content/7/1/10
ORIGINAL RESEARCH Open Access
An experimental study of a hybrid genetic
algorithm for the maximum traveling salesman
problem
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Abstract

Purpose: In this paper, we consider the maximum traveling salesman problem, a variation of the usual traveling
salesman problem, in which the objective is to maximize the cost of a tour of the salesman. The main purpose of this
paper is to develop a hybrid genetic algorithm (GA) for obtaining a heuristically optimal solution to the problem.

Methods: First, a simple GA and then a hybrid GA have been proposed to solve the problem. As crossover operator
plays a vital role in GAs, we modify the sequential constructive crossover operator for our simple GA to solve the
problem. To improve the quality of the solution obtained by the crossover operator, restricted 2-opt search is applied.
Then a hybrid GA is developed by incorporating a new local search algorithm to the simple GA in order to obtain a
heuristic solution to the problem.

Results: We compare the efficiency of our hybrid GA against an existing heuristic algorithm for symmetric traveling
salesman problem library (TSPLIB) instances. Finally, we present solutions to the problem for asymmetric TSPLIB
instances. Since, to the best of our knowledge, no literature presents solution for asymmetric instances, hence, we
could not carry out any comparative study to show the efficiency of our hybrid GA for the asymmetric instances.

Conclusions: The comparative study shows the effectiveness of our hybrid GA.

Keywords: Maximum traveling salesman problem, Hybrid genetic algorithm, Sequential constructive crossover
2-Opt search, Local search
Introduction
The traveling salesman problem (TSP) is a well-known
problem in computer science and operations research. It
has been studied for many years, and accordingly, many
good algorithms have been developed to solve the
problem. The maximum traveling salesman problem
(Max-TSP) is a variation of the TSP in which the objec-
tive is to maximize the cost of a tour of the salesman.
The problem can be defined as follows:
A network with n nodes, being ‘node 1’ as the starting

node, and a cost (or distance, or time, etc.) matrix
C = [cij] of order n associated with ordered pair of nodes
(i, j) is given. The problem is to find a maximum cost
Hamiltonian cycle. That is, the problem is to obtain
a tour (1 = α0, α1, α2, . . ., αn − 1, αn = 1) ≈ {1→ α1→ α2→
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. . .→ αn − 1→ 1} for which the total cost

C 1 ¼ α0; α1; α2; . . . ; αn�1; αn ¼ 1ð Þ≈
Xn�1

i¼0

c αi; αiþ1ð Þ is

maximum.
It is well known that both the TSP and the Max-TSP

are nondeterministic polynomial time (NP)-hard pro-
blems [1]. Of course, the Max-TSP can be reduced to
the TSP (and vice versa); however, the special structure
that leads to a well-solvable case for the TSP does not
necessarily yield a well-solvable case for the Max-TSP.
On the basis of the cost matrix structure, the Max-TSP
is classified as symmetric (Max-STSP) or asymmetric
(Max-ATSP). The problem is symmetric if cij = cji, ∀ i, j,
and asymmetric otherwise. Also, the problem that satis-
fies the triangular inequality is called the metric prob-
lem. The Max-STSP is a special case of the Max-ATSP,
and hence, the latter is found to be harder than the
former. The Max-STSP is shown to be NP-hard [2], and
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the Max-ATSP is APX-hard [3]. Therefore, a polynomial
time approximation is not desirable for the Max-TSP un-
less P = NP. A detailed study on the Max-TSP is carried
out by Barvinok et al. [4]. The Max-TSP finds application
in maximum latency delivery problems [5] and in the
computation of the shortest common superstrings [6].
In this paper, we consider the general Max-TSP of

both symmetric and asymmetric cases. Due to the com-
plexity of Max-TSP, it is necessary to apply heuristics to
solve instances of different sizes. Genetic algorithms
(GAs) are one of the best heuristics that have been suc-
cessfully applied to the TSP and its variations. This
paper develops a hybrid GA using sequential construct-
ive crossover [7], restricted 2-opt search, and a new local
search algorithm to obtain a heuristic solution to the
problem. We compare the efficiency of our hybrid algo-
rithm against the heuristic algorithm of Fekete et al.
[8] for symmetric traveling salesman problem library
(TSPLIB) instances. The comparative study shows the
effectiveness of our hybrid algorithm. Finally, we pre-
sent solutions to the problem for asymmetric TSPLIB
instances. Since, to the best of our knowledge, our
results on Max-ATSP are the first in the literature, we
could not carry out any comparative study for this case.
This paper is organized as follows: the next section

provides a literature review, a hybrid genetic algorithm
for the Max-TSP is presented in the ‘Methods’ section,
presentation of computational experience for the hybrid
algorithm is in the ‘Results and discussion’ section, and
finally, comments and concluding remarks are presented
in the ‘Conclusions’ section.

Literature review
A number of different methods have been proposed for
obtaining approximate solutions to the different cases of
Max-TSP. For the Max-ATSP, Fisher et al. [9] developed a
1/2-approximation algorithm with polynomial time. The
algorithm is then improved by Kosaraju et al. [10] who
developed a polynomial approximation algorithm with a
performance ratio of 38/63. Lewenstein and Sviridenko
[11] developed a better approximation algorithm with a
performance ratio of 5/8. An O(n3)-time polynomial ap-
proximation algorithm that achieves an approximation
ratio of 8/13 has been developed [3]. Kaplan et al. [12]
proposed an approximation algorithm that achieves an
approximation guarantee of 2/3. An approximation algo-
rithm with a performance ratio of 31/40 has been deve-
loped for the metric Max-ATSP [13]. Currently, Kowalik
and Mucha [14] developed an approximation algorithm
with the best approximation ratio 35/44 for metric Max-
ATSP. Paluch et al. [15] proposed a simple approximation
algorithm for the Max-ATSP which guarantees an ap-
proximation of 2/3; however, it matches the approxima-
tion guaranteed by Kaplan et al. [12].
For the Max-STSP, approximation algorithms with
various performance ratios have been developed [16,17].
Kowalik and Mucha [18] developed an approximation
algorithm with a performance ratio of 7/8 for metric
Max-TSP.
Several researchers investigated the Max-TSP on spe-

cial matrices. Deineko and Woeginger [19] investigated
the Max-TSP on symmetric Demidenko matrices and
found that in strong contrast to the usual TSP, the
Max-TSP is NP-hard to solve. They identify several spe-
cial cases that are solvable in polynomial time. Blokh
and Levner [20] investigated the properties of the
Max-TSP on nonnegative quasi-banded matrices, and
they proved that it is strongly NP-hard and derived a
linear-time approximation algorithm with a guaranteed
performance. Steiner and Xue [21] investigated the
Max-TSP on van der Veen matrices and established that
the problem stays NP-hard even on the class of distance
matrices which satisfy both the van der Veen and
Demidenko conditions.
However, all of the above studies do not provide any

computational experience for the problems. Also, most
of the literatures discussed above deal with only a par-
ticular case of Max-TSP, whereas our proposed algo-
rithms are capable of dealing with all cases of Max-TSP
without any modification of the algorithms. Fekete et al.
[8] developed a heuristic algorithm for solving the Max-
STSP and reported computational experience for sym-
metric TSPLIB instances only. We are going to compare
our results with the results of Fekete et al. [8] for sym-
metric TSPLIB instances only.

Methods
GAs have been used widely to deal with the usual TSP.
They are based on mimicking the survival of the fittest
among species generated by random changes in the gene
structure of the chromosomes in evolutionary biology
[22]. They start with a set of chromosomes called initial
population and then go through (possibly) three opera-
tions, namely reproduction/selection, crossover, and mu-
tation, to obtain a heuristically optimal solution.

Initial population
There are various ways to represent a solution by a
chromosome in GAs for the TSP and its variations. We
consider the path/order representation for a chromosome
that simply lists the nodes for a Max-TSP instance. We
also consider a randomly generated feasible set of chromo-
somes of fixed size as the initial population for our GA.

Fitness function and reproduction
The fitness function is the cost of a tour represented by
a chromosome. In reproduction, no new chromosome is
created; some chromosomes are copied to the next
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generation probabilistically based on their fitness values.
In our GA, the stochastic remainder selection method
[23] is used for reproduction.
Sequential constructive crossover operator
The crossover operation selects a pair of parent chromo-
somes and exchanges their information. Since crossover
is the most important operator in GAs, various cross-
over operators have been proposed for the usual TSP
[22]. The sequential constructive crossover (SCX) [7] is
found to be one of the best crossover operators. It pro-
duces only one offspring from a pair of parents. It has
been applied to the bottleneck traveling salesman prob-
lem and found good results [24]. Here also, we consider
this SCX for our GA. However, we slightly modify the
operator to fit to our problem as follows:

� Step 1: Start from ‘node 1’ (i.e., current node p = 1).
� Step 2: Sequentially search both of the parent

chromosomes and consider the first ‘legitimate
node’ (the node that does not appear in the present
incomplete offspring chromosome) that appeared
after ‘node p’ in each parent. If no legitimate node
after ‘node p’ is present in any of the parents, search
sequentially from the starting of the parent and
consider the first legitimate node and go to step 3.

� Step 3: Suppose the ‘node α’ and the ‘node β’ are
found in the 1st and the 2nd parent, respectively,
then for selecting the next node, go to step 4.

� Step 4: If cpα > cpβ, then select node α, otherwise
node β, as the next node and concatenate it to the
partially constructed offspring chromosome. If the
offspring is a complete chromosome, then stop;
otherwise, rename the present node as node p and
go to step 2.

Let a pair of selected chromosomes be P1: (1, 5, 7, 3, 6,
4, 2) and P2: (1, 4, 5, 2, 6, 3, 7) with values 312 and 335,
respectively, with respect to the cost matrix given in
Table 1. By applying the above SCX, we obtain the off-
spring (1, 5, 7, 4, 2, 3, 6) with the value 376, which is lar-
ger and better than both parents.
Table 1 The cost matrix

Node 1 2 3 4 5 6 7

1 −999 75 99 9 35 63 8

2 51 −999 86 46 88 29 20

3 100 5 −999 16 28 35 28

4 20 45 11 −999 59 53 49

5 86 63 33 65 −999 76 72

6 36 53 89 31 21 −999 52

7 58 31 43 67 52 60 −999
For this crossover operation, a pair of parents is
selected sequentially from the mating pool, and only one
offspring is produced. In order to avoid performing the
crossover operation of same parent chromosomes, we
check whether the chromosomes are the same. If they
are found to be the same, some of the genes (nodes) of
the second parent chromosome are exchanged tempor-
arily only for the crossover, and then we go for the
crossover operation. The present second original parent
will then be the first parent for the next crossover oper-
ation when pairing with the next chromosome in order
and so on. To improve the quality of the solution by
SCX, we follow the following method. If the offspring is
better than the parent, the 2-opt search is applied to the
offspring to improve further, and then the first parent is
replaced by the improved offspring.

Mutation operation
The mutation operation is the occasional random alter-
ation of the genes in a chromosome. By performing oc-
casional random changes in the chromosomes, GAs
ensure that new parts of the search space are reached,
which reproduction and crossover cannot fully guaran-
tee. In doing so, mutation ensures that no important
features are prematurely lost, thus maintaining the mat-
ing pool diversity. For this investigation, we have consi-
dered the reciprocal exchange mutation, which selects
two genes randomly and swaps them.
Our simple GA works by randomly generating an initial

population of strings, which is referred to as gene pool,
and then applying the above reproduction, crossover, and
mutation operators to create new, and hopefully, better
populations as successive ‘generations.’ Simple GAs focus
on the global aspects of an optimization task, whereas
local search methods focus on the local aspects of the
optimization task. The hybridization of both genetic algo-
rithm and local search methods has shown to be an effec-
tive route to follow for finding high-quality solutions for
combinatorial optimization problems [25]. Most of the hy-
brid GAs in the literatures are developed by incorporating
2-opt, Or-opt, 3-opt, and LK local search heuristics to the
simple GAs [25]. For our hybrid GA for the Max-TSP, the
following local search algorithm is developed and incorpo-
rated to the simple GA.

Local search algorithm
The proposed local search algorithm is basically a com-
bined mutation operator that combines three mutation
operators - insertion, inversion, and reciprocal exchange,
with cent per cent of probabilities, which has been pro-
posed for the bottleneck TSP and applied to the best
tour obtained by a sequential constructive sampling al-
gorithm [26]. We modify the operator for our problem
and apply to the present best tour found so far. The
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algorithm is as follows: Suppose the present best tour is
(1 = β0, β1, β2,. . ., βn−1), then the local search algorithm
can be developed as follows:

� Step 1: For i = 1 to n − 2, do the following steps.
� Step 2: For j = i + 1 to n − 1, do the following steps.
� Step 3: If inserting node βi after node βj improves

the present tour value, then insert node βi after
node βj. In any case, go to step 4.

� Step 4: If inverting substring between nodes βi and
βj improves the present tour value, then invert the
substring. In any case, go to step 5.

� Step 5: If swapping nodes βi and βj improves the
present tour value, then swap them.

Our hybrid genetic algorithm (HGA) may be summa-
rized as in Figure 1.

Results and discussion
Our HGA has been encoded in Visual C++ on a
Pentium IV personal computer, with a speed of 3 GHz
and a 448 MB RAM under MS Windows XP operating
system and is tested with TSPLIB [27] instances. The
following parameters are selected for our algorithm:
population size is 100, crossover probability is 1.0, ma-
ximum of 20,000 generations as termination condition,
and 20 independent runs for each setting. For setting mu-
tation probability, five mutation probabilities: 0, 0.01, 0.02,
0.03, and 0.04, have been applied on five instances.
Table 2 reports the mean and standard deviation

(SD) of the best solution values over 20 trials for five
mutation probabilities on instances eil101, bier127,
ch150, gil262, and a280. The HGA using mutation
probabilities from 0.01 to 0.03 can lead to significant
improvements over HGA without a mutation operator
on these five test instances. The table clearly indicates
that the mutation also plays an important role in
obtaining good solution to these instances. The sig-
nificance of this improvement is further proved by
the statistical one-tailed t test with a confidence level
of 0.05. Table 2 also shows the p values of the t test
with a confidence level of 0.05 on the best solution
value between HGA without a mutation operator and
with a mutation operator using different mutation
probabilities for the instances. The italics denotes the
significant improvements. It is seen that as the mutation
probability increases, the quality of the solutions
decreases, and for two instances, HGA with a probability
of 0.04 obtains worse solutions than the HGA without a
mutation operator. However, the HGA with a mutation
probability of 0.01 is found to obtain the best solutions,
which would be considered for later study.
Table 3 summarizes the results for some moderate-

sized symmetric TSPLIB instances of sizes up to 417
only. For these instances, we compare the efficiency of
our HGA against the heuristic algorithm (CROSS +
Lin-Kernighan, therein) of Fekete et al. [8] in terms of
solution quality. We also report the optimal solutions by
Fekete et al. [8] using CONCORDE code [28]. We report
the best and worst solution values in 20 runs. Also, we
report the percentage of error of the average solution
values as Error (%) = (Opt − Average) / Opt × 100%,
where Opt is the optimal solution value calculated using
CONCORDE reported in [8]. The table also reports the
percentage of error of the best solutions obtained by
Fekete et al. [8].
From Table 3, it is very clear that our HGA is bet-

ter than algorithm by Fekete et al. [8] for the sym-
metric instances, in terms of solution quality. Also,
on average, the solutions are at most 0.017% away
from the optimal solutions, which is very good.
Treating this study as a base for the effectiveness of
our HGA, we can now present solutions for the
asymmetric TSPLIB instances. It is to be noted that
our HGA does not require any modification for
solving different types and cases of TSPLIB instan-
ces, whereas algorithm by Fekete et al. [8] and
CONCORDE code [28] require modifications.
Table 4 summarizes the results for 28 asymmetric

TSPLIB instances of sizes up to 443. Also, the average of
complete computational times and the times when the
final solutions are seen for the first time are reported
(in seconds) in 20 runs. For half of the instances, the
solution quality is found to be insensitive to the number
of runs. These instances are of sizes less than 130, and
most of them are ‘ftv’ instances. For instances ry48p of
size 48, ft53 of size 53, ft70 of size 70, and kro124p of
size 100, the solution quality is found to be sensitive to
the number of runs. We can say that these instances as
well as the instances of sizes more than 130 are hard.
Since no literature presents optimal solutions for the
asymmetric instances, so to measure the quality of the
solutions, we report the average percentage of errors
from the best solution values among 20 runs. For these
instances, the average percentage of error ranges from
0.0000% to 0.1257%, which is not bad. On the basis of
computational time, on average, the algorithm finds a
final solution for the first time within only 13% of
complete computational times. That is, on average, for
these instances, the algorithm finds optimal solutions in
the beginning of the generations. Moreover, for the four
‘rbg’ instances, the algorithm finds the optimal solutions
in the very beginning of the iteration, within 1% of
complete computational times.

Conclusions
We presented a simple GA using the sequential con-
structive crossover operator to obtain a heuristic



Figure 1 Flow chart of our hybrid genetic algorithm.
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solution to the Max-TSP. The restricted 2-opt search
and a new local search algorithm that combines three
mutation operators with cent per cent of mutation prob-
ability have been incorporated for hybridizing the simple
GA for obtaining better solutions for the problem. We
Table 2 Results over five different instances using different m

Instance Pm = 0 Pm = 0.0

eil101 Mean 4,978.20 4,980.00

SD 0.92 0.00

P value - 8.00E−05

bier127 Mean 840,804.20 840,815.0

SD 9.82 0.00

P value - 3.48E−03

ch150 Mean 78,565.60 78,571.00

SD (0.84) (0.00)

P value - 4.07E−09

gil262 Mean 39,211.20 39,223.00

SD 1.03 0.82

P value - 2.06E−10

a280 Mean 50,680.40 50,694.70

SD 0.84 0.48

P value - 9.28E−14
then compared the efficiency of our hybrid algorithm
against the heuristic algorithm of Fekete et al. [8] for the
symmetric TSPLIB instances and then presented solu-
tions to the problem for 28 asymmetric TSPLIB
instances of sizes up to 443. The computational
utation probabilities

1 Pm = 0.02 Pm = 0.03 Pm = 0.04

4,980.00 4,980.00 4,980.00

0.00 0.00 0.00

8.00E−05 8.00E−05 8.00E−05

0 840,814.70 840,813.30 840,803.20

0.67 2.75 6.14

3.60E−03 7.06E−03 3.82E−01

78,569.80 78,566.60 78,566.00

(0.42) (0.52) (1.33)

2.06E−08 1.14E−02 1.72E−01

39,218.40 39,215.20 39,210.00

0.84 1.03 1.63

2.76E−08 4.39E−05 7.02E−02

50,691.50 50,689.60 50,680.80

1.35 3.10 2.78

3.98E−09 5.85E−06 3.26E−01



Table 3 Results for symmetric TSPLIB instances

Instance n Optimal
solution

Fekete et al. [8] Solution by HGA

Solution Error (%) Best Worst Average Error (%)

eil101 101 4,980 4,966 0.2811 4,980 4,980 4,980.00 0.0000

bier127 127 840,815 840,810 0.0006 840,815 840,815 840,815.00 0.0000

ch150 150 78,571 78,552 0.0242 78,571 78,571 78,571.00 0.0000

gil262 262 39,229 39,170 0.1504 39,224 39,222 39,223.00 0.0170

a280 280 50,702 50,638 0.1262 50,695 50,694 50,694.70 0.0130

lin318 318 860,512 860,464 0.0056 860,503 860,496 860,499.90 0.0000

rd400 400 311,732 311,648 0.0269 311,720 311,719 311,719.50 0.0000

fl417 417 779,331 779,236 0.0122 779,316 779,315 779,315.25 0.0000
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experience shows that our algorithm is better than the
algorithm of Fekete et al. [8] for symmetric instances.
Since, to the best of our knowledge, no literature pre-
sents solutions for asymmetric instances, hence, we
could not carry out any comparative study to show the
Table 4 Results for asymmetric TSPLIB instances

Instance n Solution

Best Worst A

br17 17 445 445

ftv33 34 6,006 6,006 6

ftv35 36 6,693 6,693 6

ftv38 39 7,136 7,136 7

p43 43 29,077 29,077 2

ftv44 45 8,668 8,668 8

ftv47 48 9,502 9,502 9

ry48p 48 78,122 78,001 7

ft53 53 34,966 34,921 3

ftv55 56 10,273 10,273 1

ftv64 65 12,216 12,216 1

ft70 70 91,562 91,366 9

ftv70 71 13,613 13,613 1

ftv80 81 12,721 12,721 1

ftv90 91 15,023 15,023 1

kro124p 100 286,311 285,999 28

ftv100 101 18,266 18,266 1

ftv110 111 21,277 21,277 2

ftv120 121 24,277 24,277 2

ftv130 131 27,745 27,722 2

ftv140 141 30,481 30,443 3

ftv150 151 33,753 33,720 3

ftv160 161 36,098 36,085 3

ftv170 171 38,439 38,420 3

rbg323 323 8,253 8,251 8

rbg358 358 9,315 9,301 9

rbg403 403 10,223 10,207 1

rbg443 443 10,955 10,932 1
efficiency of the algorithm for the asymmetric instances.
Since for the symmetric instances our algorithm finds
very good solutions, we hope that the reported solutions
for the asymmetric instances are very close to the exact
optimal solutions, if not exact.
Average time

verage Error(%) First seen Complete

445.00 0.0000 0.00 8.83

,006.00 0.0000 5.81 19.33

,693.00 0.0000 6.82 25.17

,136.00 0.0000 6.03 30.57

9,077.00 0.0000 7.31 29.89

,668.00 0.0000 15.25 37.43

,502.00 0.0000 22.12 45.12

8,047.45 0.0954 35.10 47.64

4,936.10 0.0855 42.86 54.25

0,273.00 0.0000 22.33 53.13

2,216.00 0.0000 28.69 66.90

1,499.26 0.0685 53.83 81.65

3,613.00 0.0000 39.97 77.70

2,721.00 0.0000 4.57 95.53

5,023.00 0.0000 1.26 118.22

6,075.90 0.0821 105.22 141.10

8,266.00 0.0000 2.05 148.50

1,277.00 0.0000 2.45 177.06

4,277.00 0.0000 15.36 188.16

7,731.10 0.0501 75.66 210.15

0,460.70 0.0666 118.13 251.33

3,738.70 0.0424 193.91 298.97

6,092.20 0.0161 92.97 319.71

8,427.82 0.0291 106.71 342.06

,251.90 0.0133 12.15 1,165.71

,313.20 0.0193 15.20 1,316.08

0,210.15 0.1257 16.05 1,480.70

0,944.16 0.099 21.13 1,715.93
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