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Abstract

Background: We address the problem of selecting and assessing classification and regression models using
cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable
for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which
improve reliability and increase confidence in selected models. A key operational component of the proposed
methods is cloud computing which enables routine use of previously infeasible approaches.

Methods: We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning
in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment.
As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation
and double cross-validation), and provide arguments for using the repeated grid-search in the general case.

Results: We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance,
which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into
account when selecting and assessing classification and regression models.

Conclusions: We demonstrate the importance of repeating cross-validation when selecting an optimal model, as
well as the importance of repeating nested cross-validation when assessing a prediction error.
Background
Allen [1], Stone [2] and Geisser [3], independently intro-
duced cross-validation as a way of estimating parameters
for predictive models in order to improve predictions.
Allen [1] proposed the PRESS (Prediction Sum of
Squares) criteria, equivalent to leave-one-out cross-
validation, for problems with selection of predictors and
suggested it for general use. Stone [2] suggested the use
of leave-one-out cross-validation for estimating model
parameters and for assessing their predictive error. It is
important to note that Stone [2] was the first to clearly
differentiate between the use of cross-validation to select
the model (“cross-validatory choice”) and to assess the
model (“cross-validatory assessment”). Geisser [3] intro-
duced the Predictive Sample Reuse Method, a method
equivalent to V-fold cross-validation, arguing that it
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improves predictive performance of the cross-validatory
choice, at a cost of introducing pseudo-randomness
in the process. Since then, cross-validation, with its dif-
ferent varieties, has been investigated extensively and,
due to its universality, gained popularity in statistical
modelling.
In an ideal situation we would have enough data to

train and validate our models (training samples) and
have separate data for assessing the quality of our model
(test samples). Both training and test samples would
need to be sufficiently large and diverse in order to be
represenatitive. However such data rich situations are
rare in life sciences, including QSAR. A major problem
with selection and assessment of models is that we usu-
ally only have information from the training samples,
and it is therefore not feasible to calculate a test error.
However, even though we cannot calculate the test error,
it is possible to estimate the expected test error using
training samples. It can be shown that the expected test
error is the sum of irreducible error, squared bias and
variance (Hastie et al. [4] Eq 7.9). Furthermore, Hastie
et al. [4] show the interplay between bias, variance and
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model complexity in detail. Usually, complex models
have small bias and large variance, while simple models
have large bias and small variance. We are looking for
practically useful trade-offs between bias and variance,
for example by minimizing the sum of squared bias and
variance.
The model selection process does not require exact

computation of various models’ complexity, which is often
impossible, but only their relative ranking, which is usually
feasible. Hastie et al. [4] define effective degrees of free-
dom and use it as the measure of model complexity. For
example, when selecting a model with the k-nearest neigh-
bourhood method, we don’t need to know that the effect-
ive degrees of freedom is N/k, where N is the number of
samples. However, for the ranking of models, it is required
to understand that the number of neighbours k is inversely
related to the model complexity.
Hastie et al. [4] devote a whole chapter in their book

to various methods of selecting and assessing statistical
models. In this paper we are particularly interested in
examining the use of cross-validation to select and as-
sess classification and regression models. Our aim is to
extend their findings and explain them in more detail.
Methodological advances in the last decade or so have

shown that certain common methods of selecting and
assessing classification and regression models are flawed.
We are aware of the following cross-validation pitfalls
when selecting and assessing classification and regres-
sion models:

� Selection of variables prior to, and not within, cross-
validation.

� Selection of model based on performance of a single
cross-validation.

� Reporting a cross-validation error as an estimate of
error.

� Reporting a single nested cross-validation error as
an estimate of error.

We demonstrate the effects of the above pitfalls either
by providing references or our own results. We then for-
mulate cross-validation algorithms for model selection
and model assessment in classification and regression
settings which avoid the pitfalls, and then show results
of applying these methods on QSAR datasets.
The contributions of this paper are as follows. First,

we demonstrate the variability of cross-validation results
and point out the need for repeated cross-validation.
Second, we define repeated cross-validation algorithms
for selecting and assessing classification and regression
models which deliver robust models and report the asso-
ciated performance assessments. Finally, we propose that
advances in cloud computing enable the routine use of
these methods in statistical learning.
Methods
Repeated cross-validation
In V-fold cross-validation we divide the dataset pseudo
randomly into V folds, and a statistical model is refit V
times with the cases of each fold withheld in turn from
the training set. We analysed the variation in the predic-
tion performance that results from choosing a different
split of the data. As far as we are aware, the value and
importance of repeated cross-validation has not been
extensively explored and discussed in the literature
partially, we believe, due to the associated computational
costs. To quantify the variation, we repeated cross-
validation 50 times and estimated the resulting distri-
bution of the performance statistics.

Stratified cross-validation
In stratified V-fold cross-validation the output variable is
first stratified and the dataset is pseudo randomly split
into V folds making sure that each fold contains approxi-
mately the same proportion of different strata. Breiman
and Spector [5] report no improvement from executing
stratified cross-validation in regression settings. Kohavi [6]
studied model selection and assessment for classification
problems, and he indicates that stratification is generally a
good strategy when creating cross-validation folds. Fur-
thermore, we need to be careful here, because stratifica-
tion de facto breaks the cross-validation heuristics.
With a large number of repeated cross-validations our

opinion is that the issue of stratification becomes redun-
dant when selecting a model, while for assessing the
model it is wise to use stratified cross-validation. We
would like to point out that there is no clear consensus
regarding the application of stratified cross-validation or
any other splitting strategy which takes into account
values of the output variable.
Our compromise is not to use stratification for model

selection, but to use it for model assessment.

Parameter tuning with repeated grid-search
We applied cross-validation for parameter tuning in
classification and regression problems. How do we
choose optimal parameters? In some cases the param-
eter of interest is a positive integer, such as k in k-
nearest neighbourhood or the number of components in
partial-least squares, and possible solutions are 1,2,3,..
etc. In other cases we need to find a real number within
some interval, such as the cost value C in linear Support
Vector Machine (SVM) or the penalty value λ in ridge
regression. Chang and Lin [7] suggest choosing an ini-
tial set of possible input parameters and performing grid
search cross-validation to find optimal (with respect to
the given grid and the given search criterion) parame-
ters for SVM, whereby cross-validation is used to select
optimal tuning parameters from a one-dimensional or
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multi-dimensional grid. The grid-search cross-validation
produces cross-validation estimates of performance statis-
tics (for example, error rate) for each point in the grid.
Dudoit and van der Laan [8] give the asymptotic proof
of selecting the tuning parameter with minimal cross-
validation error in V-fold cross-validation and, therefore,
provide a theoretical basis for this approach. However,
the reality is that we work in a non-asymptotic environ-
ment and, furthermore, different splits of data between
the folds may produce different optimal tuning parame-
ters. Consequently, we used repeated grid-search cross-
validation where we repeated cross-validation Nexp
times and for each grid point generated Nexp cross-
validation errors. The tuning parameter with minimal
mean cross-validation error was then chosen, and we
refer to it as the optimal cross-validatory choice for
tuning parameter. Algorithm 1 is the repeated grid-
search cross-validation algorithm for parameter tuning
in classification and regression used in this paper:

Algorithm 1: parameter tuning with repeated grid-search
cross-validation
We have a dataset D which consists of N realisations
(Y, X1, X2,…, XP) of one output variable Y and variables
X1, X2,…, XP. We have at our disposal a regression or
classification model building method F with a tuning
parameter vector α. We create a grid of K points α1,
α2,…, αK and wish to find the optimal value among
them. Model F predicts either categories for classifica-
tion or numbers for regression. We have a loss function
loss() as a measure of goodness of fit.

1. Repeat the following process Nexp times.

a. Divide the dataset D pseudo-randomly into V

folds
b. For I from 1 to V

i. Define set L as the dataset D without the I-th
fold

ii. Define set T as the I-th fold of the dataset D
iii. For k from 1 to K
1. Build a statistical model fk = f(L; αk)
2. Apply fk on T and store the predictions.
c. For each α value calculate the goodness of fit
(loss()) for all elements in D.

2. For each α value calculate the mean of the Nexp
calculations of losses.

3. Let α’ be the α value for which the average loss is
minimal. If there are multiple α values for which the
average loss is minimal, then α’ is the one with the
lowest model complexity.

4. Select α’ as the optimal cross-validatory choice for
tuning parameter and select statistical model f ’ = f
(D; α’) as the optimal cross-validatory chosen
model.
Nested cross-validation for model assessment
We analysed cross-validation methods for model assess-
ment. As Stone [2] pointed out, cross-validation can be
used for model selection and for model assessment, but
the two tasks require different cross-validation ap-
proaches. Even though the process of model selection
is different from the process of model assessment, there
has been a tendency to report the cross-validation error
found for the optimal model during the model selection as
the assessed model performance. Varma and Simon [9] re-
port a bias in error estimation when using cross-validation
for model selection, and they suggest using “nested
cross-validation” as an almost unbiased estimate of the
true error. Close examination shows that the “nested
cross-validation” defined by Varma and Simon [9] is the
same as “cross-validatory assessment of the cross-validatory
choice” defined by Stone [2]. Nevertheless, the importance
of the paper by Varma and Simon [9] is that they show
in practice by how much a cross-validation error of a cross-
validatory chosen model can be biased, i.e. too optimistic.
Therefore, we applied stratified nested cross-validation to
reduce bias of the resulting error rate estimate.
We refer to procedure of selecting optimal cross-

validatory chosen model with pre-defined grid, number of
folds and number of repeats as the cross-validation proto-
col. It is very similar to Stone’s [2] cross-validatory choice,
but more specific. Using Stone’s [2] terminology we can say
that the nested cross-validation is the cross-validation as-
sessment of large-sample performance of a model M
chosen by a specific cross-validation protocol P. To em-
phasize the fact that the nested cross-validation estimate
depends on the cross-validation protocol, we refer to it as
the P-estimate of large-sample performance of model M.
We would like to point out that the “wrapper algo-

rithm” as defined by Varma and Simon [9] is similar to
our cross-validation protocol, although our definition
is more specific. The “estimation plan” as defined by
Dudoit and van der Laan [8] is almost identical to our
cross-validation protocol, the only difference being
that we specify repetition.
We also demonstrate that single stratified nested cross-

validation errors can vary substantially between different
partitionings of the training dataset, and therefore used re-
peated stratified nested cross-validation. Algorithm 2 is
the general algorithm for repeated stratified nested cross-
validation.

Algorithm 2: repeated stratified nested cross-validation

1. Cross-validation protocol P is to use Nexp1 repeated
V1-fold cross-validation with a grid of K points α1,
α2,…, αK. Designate by M the model chosen by
application of the cross-validation protocol P.

2. Repeat the following process Nexp2 times.
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a. Stratify the output variable Y.
b. Divide the dataset D pseudo-randomly into V2

folds making sure that each fold contains the
same proportion of each of the Y strata.

c. For I from 1 to V2
i. Define set L as the dataset D without the I-th

fold
ii. Define set T as the I-th fold of the dataset D
iii. Apply the cross-validation protocol to select

model f ’, i.e. use Nexp1 repeated V1-fold cross-
validation with a grid of K points α1, α2,…, αK
to find an optimal cross-validatory chosen
model f ’ on dataset L.

iv. Apply f ’ on T
d. Calculate loss() for all elements of D. We refer to

it as the nested cross-validation error.
3. The interval between the minimum and maximum

of Nexp2 nested cross-validation errors is the
P-estimated interval of the large-sample error of
model M. The mean of Nexp2 nested cross-validation
errors is the P-estimate of the large-sample error of
the model M.

We are not aware of any research finding which suggests
that number of folds in the outer cross-validation loop
(V2) and number of folds in the inner cross-validation
loop (V1) need to be the same or different. Similarly, the
number of repeats of the nested cross-validation may or
may not be equal to the number of repeats of the cross-
validation. We used nested cross-validation with V1 =
V2 = 10 and Nexp1 = Nexp2 = 50.
In addition to mean nested cross-validation error we

reported the minimum and maximum nested cross-
validation errors because the variability is such that
reporting a single error value may be misleading.

Variable selection and parameter tuning
The relationship between variable selection and cross-
validation was first independently tackled by Allen [1]
and Stone [2]. Unfortunately the importance of selecting
variables within, and not prior to, cross-validation was
widely missed. Ambroise and McLachlan [10] showed
how results are biased when selection of variables is
done prior to cross-validation. Hastie et al. [4] in chapter
7.10.2 of their book defined the correct way to carry out
cross-validation as follows:

1. Divide the samples into K cross-validation folds
(groups) at random.

2. For each fold k = 1,2,..,K

a) Find a subset of “good” predictors that show fairly

strong (univariate) correlation with the class
labels, using all of the samples except those in
fold k.
b) Using just this subset of predictors, build a
multivariate classifier, using all of the samples
except those in fold k.

c) Use the classifier to predict the class labels for the
sample in fold k.

The error estimates from step 2(c) are then
accumulated over all K folds, to produce the cross-
validation estimate of the prediction error.
However, Hastie et al. [4] did not elaborate any fur-
ther. As far as we are aware, there are two different ways
to implement the above correctly, and we explain each
in detail below.
When selecting variables and parameter tuning, our goal

is to select the optimal number of variables and the optimal
parameter values. Here, again, we can view this as a hyper-
parameter optimisation problem and apply grid search.
Cross-validation would be used for selecting the number of
variables (n) and for tuning parameters (α) from a multi-
dimensional grid (n, α), where n ∈ (1, 2,…, P) and α ∈ (α1,
α2,…, αK). This requires only one cross-validation loop be-
cause it treats each point in the multi-dimensional grid
independently. We use the same notation as before with
an additional variable selection method S, which for the
sake of simplicity only takes two input parameters (num-
ber of variables to select and the dataset) and returns a
new dataset with only the selected variables.

Algorithm 3: repeated grid-search cross-validation for
variable selection and parameter tuning

1. Repeat the following process Nexp times.

a. Divide the dataset D pseudo-randomly into V folds
b. For I from 1 to V

i. Define set L as the dataset D without the I-th fold
ii. Define set T as the I-th fold of the dataset D
iii. For p from 1 to P
1. L’ = S(L; p); Define set L’ as set L with only
p selected variables.

2. Define T’ as set T with only p selected
variables as in L’.

3. For k from 1 to K
a. Build a statistical model f ’ = f(L’; αk)
b. Apply f ’ on T’ and store predictions.
c. For each point in the grid (n, α) calculate loss()
for all elements of D.

2. For each point in the grid (n, α) calculate average loss.
3. Define the pair (p’, α’) with minimal average loss as

the optimal pair of number of selected variables and
parameter values.

4. D’ = S(D; p’); define set D’ as D with only p’ selected
predictor variables.

5. Select statistical model f ’ = f(D’; α’) as the optimal
model.
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Double cross-validation
Stone [2] suggested an algorithm under the name
“double cross-validation” which involves an additional
(internal) cross-validation for parameter tuning for
each set of selected variables. As it contains an external
and internal cross-validation similar to nested cross-
validation, we have found that terms “double cross-
validation” and “nested cross-validation” have been
used in the literature with different meanings. We use
the term “nested cross-validation” as did Varma and
Simon [9], meaning the model assessment procedure, and
“double cross-validation”, as did Stone [2], meaning the
model selection procedure where variables are selected in
addition to parameter tuning. Even though we are not using
double cross-validation, we consider it to be important to
describe it in our context.

Algorithm 4: double cross-validation
The double cross-validatio algorithm consists of two steps.
Step 1. Select number of variables

1. Divide the dataset D pseudo-randomly into V1
folds

2. For I from 1 to V1

a. Define set L as the dataset D without the I-th

fold
b. Define set T as the I-th fold of the dataset D
c. For p from 1 to P

i. L’ = S(L; p); Define set L’ as set L with only
p selected predictor variables.

ii. Define T’ as set T with only p selected
predictors as in L’.

iii. Divide the dataset L’ pseudo-randomly into V2
folds

iv. For J from 1 to V2

1. Define set LL’ as the dataset L’ without J-th

fold
2. Define set TL’ as the J-th fold of the

dataset L’
3. For k from 1 to K

a. Build a statistical model f ’ = f(LL’; αk)
b. Apply f ’ on TL’ and store predictions.

v. For each α value calculate the loss() for all
elements in L’.

vi. Define α’ as α value for which the loss function
is minimal.

vii.Build a statistical model f ’ = f(L’; α’)
viii.Apply f ’ on T and store predictions
3. For each number of selected variables calculate loss
() for all elements of D.

4. Define p’ as the number of selected variables for
which the loss() is minimal.

5. Select p’ as the optimal cross-validatory choice of
number of selected variables.
Step 2. Select tuning parameter

1. D’ = S(D; p’); define set D’ as set D with only p’
selected predictor variables.

2. Divide the dataset D’ pseudo-randomly into V folds
3. For I from 1 to V
a. Define set L’ as the dataset D’ without I-th fold
b. Define set T’ as the I-th fold of the dataset D’
c. For k from 1 to K

i. Build a statistical model f ’ = f(L’; αk)
ii. Apply f ’ on T’ and store predictions.

4. For each α value calculate the loss() for all elements
in D’

5. Let α’ be α value for which the loss is minimal.
6. Select α’ as the optimal cross-validatory choice of

tuning parameter and select statistical model f ’ = f
(D’; α’) as the optimal cross-validatory chosen
model.

We are not aware of any research that suggests using
grid-search in favour of double cross-validation or vice
versa. However, in our opinion, double cross-validation
as defined above should not be used when parameters
used for tuning affect model complexity. For example, if
we use a variable selection method and k-nearest neigh-
bourhood, then both the number of selected variables
and number of neighbours, k, directly affect model com-
plexity. Therefore, in step 1 in the external loop we
might choose different k for different L’ and for a fixed
number of variables end up averaging over models with
different model complexities. This cannot happen with
grid-search cross-validation, because each point in the
grid has a fixed number of selected variables and a fixed
number of neighbours, k. Furthermore, each point in the
grid is treated independently of all others. We used grid-
search cross-validation in all experiments.

Pre-processing
As we mentioned earlier, it is a mistake to select variables
prior to cross-validation. However, it is worth noting that
unsupervised screening procedures, like removing vari-
ables with near zero variance, in our opinion may be exe-
cuted prior to the cross-validation loop. In our examples
we removed variables if the ratio of the most common
value to the second most common value is higher than
95/5 = 19 or if the percentage of distinct values out of the
number of total samples is less than 10. Furthermore, we
removed variables that are linear combination of other
variables. In a ‘complete’ dataset with all possible entries
the removed variables may well have more variability or
may not be linear combinations of other variables, but in
our limited samples they either don’t have additional in-
formation (for linear combinations) or cannot be used in
cross-validation (variables with near zero variation).
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The issue of removing variables prior to model build-
ing is, however, not without contention. Zhu et al. [11]
focus on the bias that arises when a full data set is not
available compared to the prediction rule that is formed
by working with top-ranked variables from the full set.

Data sets
In this section, we report results of applying Algorithms
1–3 on seven QSAR datasets. Table 1 shows the summary
of the datasets. Note that in this Section we sometimes
use the term “descriptor” instead of “input variable” as is
common in QSAR. We have used the following publicly
available datasets from the QSARdata R package [12]:

� AquaticTox contains negative log of toxic activity for
322 compounds. It was described and compiled by
He and Jurs [13]. The package contains several sets
of descriptors for this problem. We chose to use two
dimensional MOE descriptors as an example,
because when compared to other descriptor sets it
generated better models (results not shown). There
are 220 MOE 2D descriptors for each compound.
However, during pre-processing we removed 30 de-
scriptors with near zero variation and 6 descriptors
that were linear combinations of others, leaving 184
descriptors for model building.

� bbb2 contains blood–brain barrier categories
(“crossing” or “not crossing”) for 80 compounds
from Burns andWeaver [14]. There are 45
compounds categorised as “crossing” and 35
compounds as “not crossing”. The package contains
several sets of descriptors for this problem. We
chose to use LCALC descriptors as an example,
because when compared to other descriptor sets it
generated better models (results not shown). We
had to remove chloramphenicol from the dataset
because LCALC descriptors were not provided for it.
There are 23 LCALC descriptors for each compound.
During pre-processing we removed descriptor
LCALC_NDA as it was a linear combinations of
others, leaving 22 descriptors for model building.
Table 1 Seven QSAR datasets

Dataset Output Number of com

AquaticTox Numeric 322

bbb2 2 Categories 79

Caco-PipelinePilotFP 3 Categories 3796

Caco-QuickProp 3 Categories 3796

MeltingPoint Numeric 4126

Mutagen 2 Categories 4335

PLD 2 Categories 324

Summary of 7 QSAR datasets.
� caco contains permeability categories
(“low”,“medium”,“high”) for 3796 compounds from
Pham-The et al. [15]. There are 377 compounds
categorised as “low”, 2029 compounds as “medium”
and 1390 compounds as “high”. The package contains
several sets of descriptors for this problem. As this is
the only multi category dataset, we chose to use two
sets of descriptors (PipelinePilotFP and QuickProp),
because when compared to other descriptor sets
they generated better models (results not shown).
There are 5401 PipelinePilotFP descriptors for each
compound. During pre-processing we removed
4503 descriptors with near zero variation and 519
descriptors that were linear combinations of others,
leaving 379 PipelinePilotFP descriptors for model
building. There are 51 QuickProp descriptors for
each compound. During pre-processing we removed 4
descriptors with near zero variation, leaving 47
QuickProp descriptors for model building.

� MeltingPoint containts melting points for 4126
compounds used for model building in Karthikeyan
et al. [16]. In the QSARdata package there is one set
of 202 descriptors. During pre-processing we removed
11 descriptors with near zero variation and 22
descriptors that were linear combinations of others,
leaving 169 descriptors for model building.

� Mutagen contains mutagenicity categories
(“mutagen” or “nonmutagen”) for 4335 compounds
from Kazius et al. [17]. There are 2400 compounds
categorised as “mutagen” and 1935 compounds as
“nonmutagen”. In the package there is one set of
1579 descriptors. During pre-processing we removed
281 descriptors with near zero variation and 15
descriptors that were linear combinations of others,
leaving 1283 descriptors for model building.

� PLD contains phospholipidosis categories (“inducer”
or “noninducer”) for 324 compounds from Goracci
et al. [18].There are 124 compounds categorised as
“inducer” and 200 compounds as “noninducer”. The
package comes with several sets of descriptors for
this problem. We chose to use PipelinePilotFP,
pounds Number of descriptors after preprocessing

184

22

379

47

169

1283

308
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because when compared to other descriptor sets it
generated better models (results not shown). There
are 2862 PipelinePilotFP descriptors for each
compound. During pre-processing we removed 2183
descriptors with near zero variation and 371 descrip-
tors that were linear combinations of others, leaving
308 descriptors for model building.

Methods for prediction
In our examples we apply ridge regression and partial-
least squares (PLS) on regression problems, while for
classification problems we use ridge logistic regression
and linear SVM coupled with Pearson’s rank based vari-
able selection. We use sum of squared residuals and pro-
portion misclassified as the loss functions for regression
and classification, respectively.
The process of ranking and selecting P variables using

Pearson’s correlation is as follows. The Pearson’s correl-
ation coefficient is calculated between each input vari-
able Xi and the output variable Y. The absolute values of
the coefficients are sorted in descending order and the
first P variables are selected. The method is quick and in
our experience works well with the SVM classification
method.
SVM is a widely used technique in solving classification

problems. SVM performs classification by constructing an
N-dimensional hyper plane that optimally separates the
data into two categories. SVM is usually applied in con-
junction with a kernel function, which is used to trans-
form input data into a higher-dimensional space where
the construction of the hyperplane is easier. There are
four basic SVM kernels: linear, polynomial, Radial Basis
Function (RBF), and sigmoid. For the sake of simplicity
we use linear SVM, which requires a parameter C (cost)
to be supplied. We searched for the optimal model with
values for C of 0.5, 1, 2, 4, 8, and 16. We used the R
package e1071 [19] for building SVM models.
Hoerl and Kennard [20] proposed ridge regression, a

penalized least squares regression, to achieve better pre-
dictions in the presence of multicolinearity of predic-
tors. In ridge regression the extent of coefficient shrinkage
is determined by one parameter, usually referred to as
lambda (λ), and it is inversely related to the model com-
plexity. Applying ridge regression tends to improve predic-
tion performance but it results in all small, but non-zero,
regression coefficients. Friedman et al. [21] developed a
fast algorithm for fitting generalised linear models with
various penalties, and we used their glmnet R package [22]
to apply ridge regression and ridge logistic regression for
classification purposes. Typical usage is to let the glmnet
function compute its own array of lambda values based
on nlambda (number of lambda values – default is 100)
and lambda.min.ratio (ratio between the maximum
and minimum lambda value). We searched for the
optimal model with nlambda = 100 and lambda.min.ra-
tio = 10−6.
PLS was introduced by Wold [23]. The method itera-

tively creates components, which are linear combination
of input variables, with a goal of maximising variance
and correlation with the output variable. The idea is to
transform the input space of X1, X2,…, XP variables into
a new hyper plane, with low dimensions, such that coor-
dinates of the projections onto this hyper plane are good
predictors of the output variable Y. As it is an iterative
process, with each newly added component we increase
complexity of the model. The method is very popular
amongst QSAR modellers due to its simplicity and good
results in high-dimensional settings. We searched for
the optimal model with a grid of number of components
from 1 to 60. We used the R package pls [24] for build-
ing PLS models.
Results and experimental
Repeated cross-validation
We applied Algorithm1 with Nexp = 50 and V = 10 to the
following nine combinations of modelling method and
dataset:

1. PLS on AquaticTox
2. Ridge regression on AquaticTox
3. Ridge logistic regression on bbb2
4. Ridge logistic regression on caco-PipelinePilotFP
5. Ridge logistic regression on caco-QuickProp
6. PLS on MeltingPoint
7. Ridge regression on MeltingPoint
8. Ridge logistic regression on Mutagen
9. Ridge logistic regression on PLD

In order to show how the cross-validatory choice of
parameter may vary if based on single cross-validation,
for all nine cases we found 50 cross-validatory chosen
parameters corresponding to 50 single cross-validations.
Table 2 shows distributions of optimal cross-validatory
chosen parameters for each dataset. It is obvious that
the model selected by single cross-validation may have
high variance.
Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9 show for each dataset/

method combination the minimum, first quartile, median,
third quartile and maximum cross-validated loss () from
50 repeats as a function of the single hyperparameter.
Nested cross-validation
In order to assess the quality of our protocols, which
generated the cross-validatory chosen models reported
in Table 3, we applied repeated stratified nested cross-
validation (Algorithm 2) with Nexp1 = Nexp2 = 50 and
V1 = V2 = 10 on the nine dataset/method combinations.



Figure 1 PLS on AquaticTox (50 repeats 10 fold CV). Minimum,
first quartile, median, third quartile and maximum cross-validated
sum of squared residuals from 50 repeats of 10-fold cross-validation
of PLS on AquaticTox for number of components from 1 to 60.
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Our goal is to show examples of nested cross-validation
results and its benefits, and not to analyse why one method
or set of descriptors performed better than the other.
We applied two linear regressions (PLS and ridge) on

AquaticTox (Figure 10) and MeltingPoint (Figure 11).
Ridge models on average give slightly better error estimates
than PLS models. However, their interval of nested cross-
validation error estimates is almost identical. Our conclu-
sion would be to use ridge regression for cross-validation
on both datasets, but the expected difference between PLS
and ridge cross-validatory chosen models are minute.
It is interesting that for caco-PipelinePilotFP nested

cross-validation proportions misclassified are almost identi-
cal to those for cross-validation, while for caco-QuickProp
they are slightly higher (Figure 12). Our conclusion is that
if we would to use ridge logistic regression to predict caco
and we had to chose between PipelinePilotFP and Quick-
Prop descriptors, we would chose PipelinePilotFP.
In the cases of bbb2 (Figure 13), Mutagen (Figure 14)

and PLD (Figure 15), where we only performed ridge lo-
gistic regression, the interval of nested cross-validation
error estimates give us realistic expectations regarding
our usage of the cross-validation protocol.

Variable selection and parameter tuning
As an example of Algorithm 3, we applied linear SVM
coupled with Pearson’s rank based selection on the
Mutagen dataset. We searched for the optimal number
of descriptors from 1 to 480 with a step size of 30 {1, 30,
60, .. , 450, 480} using linearSVM with the following C
Table 2 Distribution of optimal parameters

PLS on aquaticTox
Number of components 10

Frequency 1

Ridge regression on AquaticTox
Lambda ≤0.027

Frequency 6

Ridge logistic regression on bbb2
Lambda ≤0.09

Frequency 7

Ridge logistic regression on
caco-PipelinePilotFP

Lambda <0.0046

Frequency 6

Ridge logistic regression on
caco-QuickProp

Lambda ≤0.018

Frequency 7

PLS on MeltingPoint
Number of components 34-35

Frequency 7

Ridge regression on MeltingPoint
Lambda ≤0.031

Frequency 5

Ridge logistic regression on Mutagen
Lambda <0.0016

Frequency 7

Ridge logistic regression on PLD
Lambda ≤0.34

Frequency 10

Distribution of optimal parameters (number of components or lambda values) base
parameters {0.5, 1, 2, 4, 8, 16}. Our grid search consisted
of 21 × 6 = 126 points, and we repeated the cross-
validation process 50 times. The minimum, mean and
maximum cross-validated proportion misclassified from
50 repeats were calculated for all 126 grid points. In
order to show results graphically, we selected the cost
parameter which generated the lowest mean cross-
11 12 13 14 15

9 9 23 6 2

0.035 0.040 0.046 0.053 0.061 0.070 0.081 ≥0.093

5 7 8 4 6 10 6 2

0.10 0.12 0.14 0.16 0.18 0.21 0.24 ≥0.28

3 4 5 10 6 5 2 8

0.0046 0.0053 0.0061 0.0070 0.0081 0.0093 0.0107 >0.0107

2 2 4 7 12 6 6 5

0.021 0.024 0.028 0.032 0.037 0.042 0.049 ≥0.056

2 8 7 7 7 4 4 4

36 37-40 41 42-46 47 48-51 57 60

7 6 8 7 8 5 1 1

0.036 0.042 0.048 0.055 0.063 0.073 0.084 ≥0.096

1 4 6 5 5 7 10 5

0.0016 0.0018 0.0021 0.0024 0.0031 0.0036 0.0042 >0.0042

2 1 6 5 8 4 6 7

0.34 0.39 0.44 0.67 0.77 0.89 1.02 ≥1.17

2 3 2 1 5 5 5 19

d on 50 single cross-validations for each pair of method/dataset.



Figure 2 Ridge regression on AquaticTox (50 repeats 10 fold
CV). Minimum, first quartile, median, third quartile and maximum
cross-validated sum of squared residuals from 50 repeats of 10-fold
cross-validation of ridge regression on AquaticTox for 100 λ values.

Figure 4 Ridge logistic regression on caco-PipelinePilotFP (50
repeats 10 fold CV). Minimum, first quartile, median, third quartile
and maximum cross-validated proportion misclassified from 50
repeats of 10-fold cross-validation of ridge logistic regression on
caco-PipelinePilotFP for 100 λ values.
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validation error for each number of selected descriptors.
Figure 16 shows the minimum, mean and maximum
cross-validated proportion misclassified for every num-
ber of selected descriptors. The lowest average cross-
validated misclassification error (0.196) is found for n =
450 and C = 8. In other words, this approach selected
450 descriptors, using Pearson’s rank based selection
procedure, and linear SVM model with C = 8 as the
classifier.
Figure 3 Ridge logistic regression on bbb2 (50 repeats 10 fold
CV). Minimum, first quartile, median, third quartile and maximum
cross-validated proportion misclassified from 50 repeats of 10-fold
cross-validation of ridge logistic regression on bbb2 for 100 λ values.
Discussion
We sought to analyse and improve upon the existing
cross-validation practices in selection and assessment of
regression and classification models. No single cross-
validation run provided for reliable selection of the best
model on those datasets. Robust model selection required
summarising the loss function across multiple repetitions
of cross-validation. The model selection behaviour of a
Figure 5 Ridge logistic regression on caco-QuickProp (50 repeats
10 fold CV). Minimum, first quartile, median, third quartile and
maximum cross-validated proportion misclassified from 50
repeats of 10-fold cross-validation of ridge logistic regression on
caco-QuickProp for 100 λ values.



Figure 6 PLS on MeltingPoint (50 repeats 10 fold CV). Minimum,
first quartile, median, third quartile and maximum cross-validated
sum of squared residuals from 50 repeats of 10-fold cross-validation
of PLS on MeltingPoint for number of components from 1 till 60.

Figure 8 Ridge logistic regression on Mutagen (50 repeats 10
fold CV). Minimum, first quartile, median, third quartile and maximum
cross-validated proportion misclassified from 50 repeats of 10-fold
cross-validation of ridge logistic regression on Mutagen for 100 λ values.
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particular dataset could only be discerned upon perform-
ing the repeated cross-validation. Our model selection was
based on average loss.
The nested cross-validation loss estimates differed sig-

nificantly compared with the cross-validation estimates
of the best model on at least caco-QuickProp, Melting
Point Mutagen and PLD datasets. This confirms previ-
ous reports in the literature (Varma and Simon [9]).
Model assessment using repeated nested cross-validation

(Figures 10, 11, 12, 13, 14 and 15) showed large variation of
Figure 7 Ridge regression on MeltingPoint (50 repeats 10 fold
CV). Minimum, first quartile, median, third quartile and maximum
cross-validated sum of squared residuals from 50 repeats of 10-fold
cross-validation of ridge regression on MeltingPoint for 100 λ values.
loss estimates across the nested cross-validation runs. For
example, the proportion misclassified estimate for bbb2
varied between approximately 0.13 and 0.23 (Figure 13). In
practical terms, this means that the best model selected on
this dataset may have large-sample performance of any-
where between 13% and 23%. Whether this is adequate for
a particular application is a domain-dependent question,
however we point out that the repeated nested cross-
validation provides the means to make an informed de-
cision regarding the acceptance of the best model.
Figure 9 Ridge logistic regression on PLD (50 repeats 10 fold
CV). Minimum, first quartile, median, third quartile and maximum
cross-validated proportion misclassified from 50 repeats of 10-fold
cross-validation of ridge logistic regression on PLD for 100 λ values.



Table 3 Selected optimal cross-validatory chosen models

Dataset Model Lowest average cross_validation loss Optimal parameter Min grid value Max grid value Grid size

AquaticTox PLS 0.5948 13 1 60 60

AquaticTox Ridge 0.5767 0.05325 0.00107 1069.93 100

bbb2 Ridge 0.1689 0.10494 0.00026 260 100

Caco-PipelinePilotFP Ridge 0.0916 0.008058 0.00025 246 100

Caco-QuickProp Ridge 0.1162 0.0279 0.00021 211 100

MeltingPoint PLS 45.5848 47 1 60 60

MeltingPoint Ridge 45.4370 0.0549 0.02734 27346.2 100

Mutagen Ridge 0.1889 0.003142 0.00017 168 100

PLD Ridge 0.1768 1.02431 0.00021 205.81 100

Summary of selected optimal cross-validatory chosen models from nine examples.
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In all our examples we used 10-fold cross-validation.
Kohavi [6] and Hastie et al. [4] empirically show that V-
fold cross-validation compared to leave-one-out cross-
validation has lower variance, and therefore tends to select
simpler models. For some examples we executed 5-fold
cross-validation and 5-fold nested cross-validation (results
not shown), but did not observe a substantial difference
from 10-fold.
Table 3 shows the summary of optimal cross-validatory

chosen models for all nine datasets. When reporting the
chosen parameter it is important to specify the details of
the protocol, i.e. number of folds in cross-validations, the
grid width and size, as well as the number of repeats.
We mentioned previously that Dudoit and van der

Laan [8] proved the asymptotics of the cross-validatory
choice for V-fold cross-validation. However, Breiman
et al. [25] have found in the case of selecting optimal
Figure 10 Cross-validation and nested cross-validation sum of
squared residuals for ridge regression and PLS on AquaticTox.
Boxplots of 50 cross-validation sum of squared residuals for ridge
regressiona and PLS on AquaticTox and 50 nested cross-validation sum
of squared residuals for ridge regressiona and PLS on AquaticTox.
tree size for classification tree models that the tree size
with minimal cross-validation error generates a model
which generally overfits. Therefore, in Section 3.4.3 of
their book Breiman et al. [25] define the one standard
error rule (1 SE rule) for choosing an optimal tree size,
and they implement it throughout the book. In order
to calculate the standard error for single V-fold cross-
validation, accuracy needs to be calculated for each fold,
and the standard error is calculated from V accuracies
from each fold. Hastie et al. [4] define the 1 SE rule as
selecting the most parsimonious model whose error is
no more than one standard error above the error of the
best model, and they suggest in several places using the
1 SE rule for general cross-validation use. The main
point of the 1 SE rule, with which we agree, is to choose
the simplest model whose accuracy is comparable with
the best model. However, when we repeat cross-
validations standard error becomes smaller and the 1
SE rule does not have any effect. We are proposing that
Figure 11 Cross-validation and nested cross-validation sum of
squared residuals for ridge regression and PLS on MeltingPoint.
Boxplots of 50 cross-validation sum of squared residuals for ridge
regressiona and PLS on MeltingPoint and 50 nested cross-validation sum
of squared residuals for ridge regressiona and PLS on MeltingPoint.



Figure 12 Cross-validation and nested cross-validation proportion
misclassified for ridge logistic regression on caco-PipelinePilotFP
and caco-QuickProp. Boxplots of 50 cross-validation and 50 nested
cross-validation proportion misclassified for ridge logistic regression on
caco-PipelinePilotFP and caco-QuickProp.

Figure 14 Cross-validation vs nested cross-validation for ridge
logistic regression on Mutagen. Histogram of 50 cross-validation
and 50 nested cross-validation proportion misclassified for ridge
logistic regression on Mutagen.
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the rule needs to be redefined in the repeated cross-
validation context.
There are situations where the practitioner just needs

to find an optimal model and the issue of its assessment
is not important. In those cases, it is not necessary to
perform nested cross-validation. However, in most prac-
tical applications with limited sample sizes, use of pre-
dictive models depends on reliable model assessment.
As far as we are aware, nested cross-validation is the
best non-parametric approach for model assessment
when cross-validation is used for model selection. As we
have mentioned before, nested cross-validation estimate
is not a property of the selected model, but rather
Figure 13 Cross-validation vs nested cross-validation for ridge
logistic regression on bbb2. Histogram of 50 cross-validation and
50 nested cross-validation proportion misclassified for ridge logistic
regression on bbb2.
comprises assessment of the selected model M and the
protocol P used to select it. To reflect this fact, we intro-
duced notation P-estimate to refer to nested cross-
validation estimate of the large-sample performance of
model M. As an example, consider cross-validation of
linear SVM with three cost values and five folds (proto-
col P1) vs. cross-validation with seventeen cost values
and five folds (protocol P2), and assume the minimum
error rate is achieved by the same model M (i.e., same
cost) in both experiments. The corresponding nested
cross-validations will, in general, yield two different P-
estimates (P1-estimate and P2-estimate, respectively) of
the model M performance. This is reflection of the fact
that the two cross-validations scanned different regions
Figure 15 Cross-validation vs nested cross-validation for ridge
logistic regression on PLD. Histogram of 50 cross-validation and
50 nested cross-validation proportion misclassified for ridge logistic
regression on PLD.



Figure 16 Pearson’s rank based selection with linear SVM on
Mutagen. Minimum, mean and maximum cross-validated proportion
misclassified from 50 repeats of 10-fold cross-validation of Pearson’s
rank based selection with linear SVM on Mutagen.
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of hyper-parameter space, and the two P-estimates re-
flect different information incorporated into the selected
best model. Thus, the P-estimates of the selected model
differ, since they describe performance of different
(model, protocol) pairs. We argue that this characteristic
of nested cross-validation does not detract from its’ util-
ity, however it is critically important to recognize it in
order to properly interpret the results.
In the past, the major concern with grid search was

that it was either computationally infeasible or very ex-
pensive. However, with the advent of cloud computing,
new concern is that its extensive use in cross-validation
will generate statistical models which will overfit in prac-
tice. Here we need to separate two issues:

1) How we define the optimisation problem for
minimising cross-validation error estimates?

2) How we solve the optimisation problem?

As Dudoit and van der Laan [8] have shown, the first
question is well defined with larger samples in V-fold
cross-validation. However, Breiman et al. [25] have
shown that cross-validatory chosen models are too com-
plex in their examples. In the literature this issue is
known as the cross-validation bias [26]. We are aware of
three systematic approaches to solving this problem in
the cross-validation context:

1. 1 SE rule as suggested by Breiman et al. [25] and
Hastie et al. [4]

2. Corrected V-fold cross-validation as suggested by
Burman [27]
3. Penalised V-fold cross-validation as suggested by
Arlot [28].

Once we define an optimisation target, i.e. find parame-
ters which minimise cross-validation error estimate, our
aim is to find the optimal solution. Grid search is not the
only systematic approach to hyper parameter optimisation.
Recently Bergstra and Bengio [29] gave the case for using
random search, while in the past we used Nelder and
Mead [30] method. Regardless of the search method we
use, the goal is to find the optimal parameter. We suggest
using grid search because it is simple to implement and its
parallelisation in the cloud is trivial. In our practice we
prefere dense grids and the answer to question how dense
is usually related to the costs.
In our findings, sparse grids do not necessarily lead to

simpler models nor reduced overfitting. In all our exam-
ples where we applied PLS with grid being number of
components from 1 till 60 with step 1. If we had chosen
a less dense grid with number of components from 5 till
60 with step 5, then on AquaticTox the cross-validatory
chosen number of components would be 15 (instead of
13 as with original dense grid), while on MeltingPoint
the cross-validatory chosen number of components
would be 50 (instead of 47 as with original dense grid).
As the consequence of using such a less dense grid, our
cross-validatory chosen model on both datasets would
be more complex than the original dense grid.
It is important to note that both Stone [2] and Varma

and Simon [9] use leave-one-out cross-validation, while we
use V-fold cross-validation. The beauty of the leave-one-out
cross-validation is that it generates the same results each
time it is executed, and there is no need to repeat it. So
it is possible to execute only single leave-one-out cross-
validation and single nested leave-one-out cross-validation.
However, as we have pointed out earlier, leave-one-out
tends to select models with higher variances, which lead
to overfitting, and for that reason we use V-fold cross-
validation.
The computational cost is usually mentioned as the

main drawback of nested cross-validation. In our exam-
ples, we repeat 50 times 10-fold nested cross-validation
which means that for nine examples we performed 500
times full model selection process, where each model selec-
tion consists of 50 times repeated 10-fold cross-validation.
Various authors proposed simplifications which obviate the
need for the extensive computations. Tibshirani and
Tibshirani [31] propose a bias correction for the mini-
mum error rate in cross-validation which does not re-
quire additional computation. Bernau et al. [32] suggest
another correction which would reduce the computa-
tional costs associated with nested cross-validation. We
propose that the computational cost of performing re-
peated cross-validation and nested cross-validation in
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the cloud have reached a level where the use of substi-
tutes to full nested cross-validation are no longer
justified.
In discovery research projects there are experimental

costs associated with the training samples. At a certain
point in the project, the following question is usually
asked: Will the additional data improve our predictive
models and, if so, by how much? If the samples are gen-
erated randomly from the same population, then add-
itional data will always improve the predictive model.
However, the question is whether the additional costs
of performing experiments will pay off in improve-
ments to the model. In our opinion, here we can see
the practical value of nested cross-validation. In case of
Mutagen dataset, or even caco-PipelinePilotFP, where
intervals of nested cross-validation errors are narrow
and similar to cross-validations’, we can conclude that if
we randomly remove 10% of samples, the quality of
models remains almost the same. So we can say that
additional increase of 10% of sample size will not sig-
nificantly improve our current models.
Our results show that repetition is an essential compo-

nent of reliable model assessment based on nested
cross-validation. Any single nested cross-validation run
cannot be used for assessing the error of an optimal
model, because of its variance. We demonstrated the use
of repeated nested cross-validation in order to get an
interval of the estimate.
Furthermore, we demonstrated that there are datasets

(for example, AquaticTox) where the interval of nested
cross-validation errors is wide, and in which cases the
user must assess the suitability of the model for the task
in hand. We think that these situations point to the in-
adequacy of the dataset itself, rather than inadequacy of
the nested cross-validation method. In such cases the
application of repeated nested cross-validation points to
the need to collect additional samples/compounds and/
or alternative descriptors.

Conclusions
Selection and assessment of predictive models require re-
peated cross-validation and nested cross-validation. The
advent of affordable cloud computing resources makes
these methods widely accessible. In our opinion, the ability
to economically use large amounts of computer power
over the cloud changes the perception of what is feasible
and what is necessary to perform when selecting and asses-
sing models.
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