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Bordonein-L, a new L-amino acid oxidase
from Crotalus durissus terrificus snake
venom: isolation, preliminary
characterization and enzyme stability
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Abstract

Background: Crotalus durissus terrificus venom (CdtV) is one of the most studied snake venoms in Brazil. Despite
presenting several well known proteins, its L-amino acid oxidase (LAAO) has not been studied previously. This study
aimed to isolate, characterize and evaluate the enzyme stability of bordonein-L, an LAAO from CdtV.

Methods: The enzyme was isolated through cation exchange, gel filtration and affinity chromatography, followed
by a reversed-phase fast protein liquid chromatography to confirm its purity. Subsequently, its N-terminal amino
acid sequence was determined by Edman degradation. The enzyme activity and stability were evaluated by a
microplate colorimetric assay and the molecular mass was estimated by SDS-PAGE using periodic acid-Schiff
staining and determined by mass spectrometry.

Results: The first 39 N-terminal amino acid residues exhibited high identity with other snake venom L-amino acid
oxidases. Bordonein-L is a homodimer glycoprotein of approximately 101 kDa evaluated by gel filtration. Its monomer
presents around 53 kDa estimated by SDS-PAGE and 58,702 Da determined by MALDI-TOF mass spectrometry. The
enzyme exhibited maximum activity at pH 7.0 and lost about 50 % of its activity after five days of storage at 4 °C.
Bordonein-L’s activity was higher than the control when stored in 2.8 % mannitol or 8.5 % sucrose.

Conclusions: This research is pioneering in its isolation, characterization and enzyme stability evaluation of an LAAO
from CdtV, denominated bordonein-L. These results are important because they increase the knowledge about
stabilization of LAAOs, aiming to increase their shelf life. Since the maintenance of enzymatic activity after long periods
of storage is essential to enable their biotechnological use as well as their functional studies.
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Background
L-amino acid oxidases (LAAOs) are enantioselective
flavoenzymes that catalyze the stereospecific oxidative
deamination of L-amino acids. An amino acid inter-
mediate is hydrolyzed, releasing α-keto acids and am-
monia. Concomitantly, the reduced non-covalently bond
cofactor – flavin mononucleotide (FMN) or flavin adenine

dinucleotide (FAD) – reoxidizes on molecular oxygen,
producing hydrogen peroxide [1].
LAAOs are found in such diverse life forms as bac-

teria, marine organisms, fish, cyanobacteria, fungi, green
algae, and snake venoms (SV) from the families Crotali-
dae, Elapidae and Viperidae [1–12].
SV-LAAOs are, in general, non-covalently bonded to

FAD and their FAD-binding site shares sequential simi-
larity with human monoamine oxidase, mouse interleu-
kin 4-induced, bacterial and fungal LAAOs [1, 13]. SV-
LAAOs usually constitute from 0.15 to 5 % of the snake
venom protein, with some exceptions, such as the
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LAAO of Bungarus caeruleus, which represents 25 % of
the total protein [14]. Several biological activities have been
attributed to SV-LAAOs, including cytotoxicity, mild myo-
necrosis, apoptosis induction, induction and/or inhibition
of platelet aggregation, as well as hemorrhagic, hemolytic,
edematogenic, antibacterial, antiproliferative, antiparasitic
and anti-HIV activities [14–25]. These activities are consid-
ered the result of the release of hydrogen peroxide, which
produces oxidative stress [26]. However, the role of LAAOs
in the venom has not been elucidated yet [26].
SV-LAAOs exhibit a wide range of isoelectric points

(pI) from about 4.4 to 8.1, although it is unknown
whether the different charges result in distinct pharma-
cological properties [13]. These enzymes prefer hydro-
phobic L-amino acids, because of substrate specificity
related to side-chain binding sites [27].
LAAO activity is inhibited in the presence of ethylenedi-

aminetetraacetic acid (EDTA), N-ethylmaleimide, phenyl-
methanesulfonyl fluoride (PMSF), glutathione and 1, 10-
phenanthroline, since its cofactor is reduced under these
conditions [14]. Furthermore, bivalent cations show differ-
ent effects on LAAO activity. Manganese and calcium
ions do not affect its specific activity. The LAAO from C.
adamanteus requires Mg2+, while those from Lachesis
muta and Bothrops brazili are inhibited by Zn2+ [14].
The cytotoxic effect of Bl-LAAO from B. leucurus venom

was inhibited by about 25 % in the presence of catalase, an
enzyme that cleaves hydrogen peroxide [17]. Additionally,
the LAAOs of Naja naja kaouthia and Calloselasma
rhodostoma venoms were inhibited by polyphenols from
Areca catechu and Quercus infectoria extracts evaluated by
in vitro tests [28]. Although the ethylacetate extract from
Azima tetracantha leaves exerts an in vitro inhibitory activ-
ity on toxic enzymes from B. caeruleus and Vipera russelli
venoms, LAAOs from neither venom was inhibited [29].
The LAAOs have shown maximum absorbance at 465

and 380 nm because of their bond with FAD [13]. Small
changes in the absorption spectra of SV-LAAOs were
observed after inactivation by freezing and thawing or
modification of the ionic composition and pH condi-
tions, indicating alterations in the microenvironment of
the FAD cofactor [30]. Most of the studies in this area
were published in the 1950s and 1960s [31–35]. One
example is the inactivation of an LAAO isolated from C.
adamanteus venom by high temperature and freezing.
The higher the temperature or the pH of storage buffer,
the higher the enzymatic inactivation, an inactivation
that may be lower in the presence of chloride ions. On
the other hand, at lower temperatures (freezing), the in-
activation and storage buffer pH are inversely related.
However, chloride ions were not able to prevent enzym-
atic inactivation in this case [31, 32]. Further studies
showed that the inactivation of LAAOs causes changes in
optical rotatory dispersion whereas the redox properties

of free flavin are similar to those of the inactive enzyme
[33, 35]. The change in redox properties suggests the loss
of most interactions between flavin and apoprotein. Raibe-
kas and Massey [36] extracted the cofactor of the LAAO
from C. adamanteus venom at pH 3.5, rebound it at
pH 8.5 and restored the enzymatic activity in the presence
of 50 % glycerol followed by dialysis at 4 °C against 0.1 M
Tris–HCl buffer, pH 7.5, containing 0.1 M KCl [36].
Due to their participation in metabolic pathways

involving nitrogen and their antimicrobial, antiviral
and antitumor effects, SV-LAAOs are considered a
promising biotechnological agent and a tool for in-
vestigating cellular processes [13, 14]. However, di-
verse conditional factors that can reduce the stability
of biocatalysts – including temperature, pH, oxida-
tive stress, the solvent, binding of metal ions or co-
factors, and the presence of surfactants – limit the
industrial use of enzymes [37, 38]. Working under oper-
ational conditions of enzyme stability, the process costs
are reduced [37], since the enzyme is active when in use
and keeps active over time [39].
Two reports have shown that the presence of univalent

ions or substrates for LAAOs and analogues of the pros-
thetic group (competitive inhibitors) prevents the inacti-
vation of some SV-LAAOs [32, 40]. However, no
additional studies have addressed the use of additives to
maintain LAAO activity, which is highly desirable for in-
dustrial applications.
The use of additives to maintain proteins in their ac-

tive forms is widespread throughout the pharmaceutical
industry. For example, cyclodextrins are employed as ex-
cipients in pharmaceutical formulations in order to
avoid protein aggregations to keep the protein in its ac-
tive form [41]. There is a huge diversity of additives that
act as cryoprotectants. Sugars and polyols, such as su-
crose and mannitol, respectively, are used as protein sta-
bilizers since they are able to interact with protein
through hydrogen bonds to replace the protein-water
molecular interactions [42, 43]. Amino acids are also used
as cryoprotectants [43]. Usually, adjuvants are employed
at a percentage that ranges from 0.5 to 2 %, although
higher concentrations have already been tested [44–46].
Therefore, this study isolated an LAAO from C. durissus

terrificus venom (CdtV), denominated bordonein-L, and
evaluated the effect of different additives (mannitol, sucrose,
L-Lys and L-Gly) as cryoprotectants for the enzyme.

Methods
Isolation of bordonein-L
Cdt yellow venom from the Ribeirão Preto region (21° 10′
36″ S, 47° 49′ 15″ W) was obtained from specimens kept
in the central snake house (University of São Paulo,
Ribeirão Preto, SP, Brazil), in accordance with the guidelines
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of the Brazilian Institute of Environment and Renewable
Natural Resources (IBAMA).
Desiccated CdtV (1 g) was purified through cation ex-

change chromatography, as described by Bordon et al.
[47]. The CM5 fraction obtained in the first chromato-
graphic step was fractionated on a HiPrep 16/60 Sepha-
cryl S-100 HR column (1.6 × 60 cm, GE Healthcare,
Sweden) equilibrated and eluted with 0.05 M sodium
acetate buffer containing 0.15 M NaCl, pH 5.5, at a
flow rate of 0.5 mL/min. The subfraction CM5S2
was applied on two 1-mL HiTrap Heparin HP col-
umns (GE Healthcare) connected in a series equili-
brated with 0.05 M sodium acetate buffer, pH 5.5.
Adsorbed proteins were eluted using a step concen-
tration gradient from 0 to 100 % of buffer B (1 M
NaCl in the same buffer) at a 1.0 mL/min flow rate.
To assess its purity degree, the peak H7 (LAAO
bordonein-L) was submitted to RP-FPLC, as de-
scribed by Bordon et al. [47].

Determination of proteins
Total proteins were determined by the 280/205 nm ab-
sorption method [48].

Determination of molecular mass
SDS-PAGE (10 %) was run according to the descrip-
tion of Laemmli [49]. The gel was stained with PlusOne
Coomassie PhastGel Blue R-350 (GE Healthcare, Sweden)
whereas periodic acid-Schiff (PAS) staining was employed
to detect glycoproteins [50]. The hyaluronidase CdtHya1,
a glycoprotein recently isolated from CdtV, was used as
the control [47].
The molecular mass of bordonein-L was estimated

by gel filtration chromatography on a Superdex 200
10/300GL column (GE Healthcare) calibrated with the
following protein molecular mass standards: 12.4, 29,
66, 150 and 200 kDa (Sigma-Aldrich Co., United
States). Blue dextran (2000 kDa, Sigma-Aldrich Co.)
was used to determine the void volume. The column
was equilibrated whereas the standards and the en-
zyme were eluted with the same buffer used on
HiPrep 16/60 Sephacryl S-100 HR column. Each
standard was filtered individually through the Super-
dex column and a calibration curve was constructed.
The molecular mass of bordonein-L was also analyzed

by a MALDI-TOF mass spectrometer (Ultraflex II, Bruker
Daltonics, Germany). MS spectrum was acquired in posi-
tive linear mode in the mass range 10,000-70,000 Da. TFA
0.1 % (10 μL) was added to the lyophilized enzyme. This
solution was mixed (1:1) with sinapinic acid (20 mg/mL in
50/50 0.2 % ACN/TFA, v/v); and 2 μL of this mixture was
spotted on a MALDI plate (384 positions) using the dried
droplet method.

Bordonein-L sequencing and in silico analysis
The N-terminal of bordonein-L was determined by
Edman degradation in an automated protein sequencer
model PPSQ-33A (Shimadzu Co., Japan) and compared
with sequences deposited in the Basic Local Alignment
Search Tool (BLAST) [51]. The alignment was created
by MultAlin Interface Page [52] and the figure was gen-
erated by ESPript [53] server.

LAAO activity
The LAAO activity of bordonein-L was performed through
a microplate colorimetric assay according to modifications
on the Kishimoto and Takahashi method [54]. Bordonein-L
was incubated at 37 °C for 60 min with 0.002 M o-
phenylenediamine (OPD) (Sigma-Aldrich Co.), 1 U/mL
horseradish peroxidase (Sigma-Aldrich), 0.005 M L-Leucine
(Sigma-Aldrich) and 0.05 M Tris–HCl buffer, pH 7.0. The
reaction was stopped with 2 M H2SO4 and the absorbance
was measured at 492/630 nm. LAAO activity was also eval-
uated at different pH levels (5.0-9.0).

LAAO stability
The evaluation of LAAO stability was performed for
40 days at different concentration levels (1.4 %, 2.8 %
and 8.5 %) of mannitol, sucrose, L-lysine and L-glycine,
stored at 4 °C. Bordonein-L activity was also evaluated
after being frozen (−20 °C) for a period of five days. The
evaluation of enzymatic activity after lyophilization was
performed as soon as this process was finished. The as-
says were carried out according to the LAAO activity
assay previously described. Control consisted of
bordonein-L in the absence of additives and storage at
4 °C. The enzyme was protected from light under all the
tested conditions.

Statistical analysis
LAAO activity data were expressed as mean ± standard
error of mean (SEM). The analysis of variance (ANOVA)
test was employed to evaluate data on LAAO activity in
the presence of additives and to compare lyophilized,
frozen and LAAO at 4 °C (five days), whereas the t test
was utilized to compare LAAO stability after freezing
versus already lyophilized. They were statistically signifi-
cant when p < 0.05.

Results
Isolation of bordonein-L
Bordonein-L was purified in three chromatographic
steps: cation exchange, molecular exclusion and affinity
chromatography.
LAAO activity was detected in the CM5 fraction (vertical

bars, Fig. 1a) eluted from CM-cellulose-52 column. This
fraction corresponds to 1.8 % of the total protein (Table 1).
The CM5 fraction was applied on a HiPrep 16/60 Sephacryl
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S-100 HR column and LAAO activity was detected in the
CM5S2 fraction (Fig. 1b), which was submitted to affinity
chromatography on a HiTrap Heparin HP column. Thus,
pure LAAO (peak H7), denominated bordonein-L, was ob-
tained (Fig. 1c). The pure enzyme represents 48.3 % of the
total activity and 0.5 % of the total protein of the venom
(Table 1). Bordonein-L was then applied on a C4 column

(Fig. 1d) and the main peak was submitted to Edman
degradation.

Determination of molecular mass
SDS-PAGE under non-reducing conditions indicated
that the peak H7 (bordonein-L) showed a high degree of
purity while its monomer presented around 53 kDa

a b

c d

Fig. 1 Isolation of Bordonein-L. Absorbance was monitored at 280 nm, at 25 °C, using a FPLC Äkta Purifier UPC-10 system. The dotted lines
represent the concentration gradient. The vertical bars indicate the LAAO activity. a CdtV (1 g) was dispersed in 50 mL of 0.05 M sodium acetate
buffer, pH 5.5 (buffer A) and the supernatant was fractionated on a CM-cellulose-52 column (1.0 × 40 cm) using a concentration gradient from 0
to 100 % of buffer B (1 M NaCl in buffer A). b The fraction CM5 was filtered on a HiPrep 16/60 Sephacryl S-100 HR column (1.6 × 60 cm) using
0.05 M sodium acetate buffer containing 0.15 M NaCl, pH 5.5. c Affinity chromatography of the CM5S2 fraction on HiTrap Heparin HP column
(two 1-mL columns connected in series) using a concentration gradient from 0 to 100 % of buffer B. d Reversed-phase FPLC of H7 (bordonein-L)
on a C4 column (0.46 × 25 cm, 5 μm particles) using a concentration gradient from 0 to 100 % of solution B (60 % acetonitrile in 0.1 % TFA)

Table 1 Specific activity and recovery of active fractions eluted during the purification procedure of bordonein-L

Fraction Total protein
(mg)a

Protein
recovery (%)

One unit of LAAO
activity (mg)b

Specific activity
(U/mg)c

Total LAAO
activity (U)

Yield (%) Relative activity

CdtV 556.0 100.0 14.29 0.07 38.9 100.0 1.0

CM5 10.3 1.8 0.29 3.47 35.7 91.8 49.6

CM5S2 4.3 0.8 0.14 6.96 29.9 76.9 99.4

H7 (bordonein-L) 2.7 0.5 0.14 6.96 18.8 48.3 99.4
aTotal protein quantified by absorbance method 280/205 nm (SCOPES, 1974)
bLAAO activity unit (U): amount of protein (mg) able to release 1.0 μmol of H2O2 per minute
cSpecific activity: amount of H2O2 (μmol) released per minute per mg of protein
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(Fig. 2a), versus 56 kDa under reducing conditions (data
not shown). Periodic acid-Schiff (PAS) staining evi-
denced that bordonein-L is a glycoprotein (Fig. 2b). The
molecular mass of 58,702 Da was determined by
MALDI-TOF (linear positive mode) mass spectrometry
(Fig. 2c). Gel filtration under non-reducing conditions
revealed a protein of approximately 101 kDa (Fig. 2d),
indicating that bordonein-L is a dimer protein.

In silico assays
The sequence of the first 39 N-terminal amino acid resi-
dues from bordonein-L was determined by Edman deg-
radation and appears in the UniProt Knowledgebase

under the accession number C0HJE7. This primary se-
quence exhibited high identity with other SV-LAAOs of
the genus Crotalus (Fig. 3).

LAAO activity and stability
Bordonein-L showed an optimum pH of 7.0 (Fig. 4) and
lost around 50 % of its activity in the first five days of
storage at 4 °C (Fig. 5a-e). The frozen bordonein-L did
not show enzymatic activity after lyophilization (Fig. 5a).
Low activity (5 %) was also seen after thawing (Fig. 5a).
Furthermore, LAAO activity was statistically significant
when freezing and lyophilization were compared
(Fig. 5a). L-lysine and L-glycine were not able to avoid

a c

d
b

Fig. 2 Determination of molecular mass. a SDS-PAGE (10 %) under non-reducing conditions stained with Coomassie Blue R-350. b SDS-PAGE
(10 %) under non-reducing conditions stained with periodic acid-Schiff (PAS) to detect glycoprotein. Hyal: hyaluronidase CdtHya1 (glycoprotein
control), H7: bordonein-L. c Mass spectrum of bordonein-L obtained by MALDI-TOF (positive linear mode). d Exclusion molecular of molecular
mass standards and bordonein-L (20 μg/100 μL) on a Superdex 200 10/300GL (1 × 30 cm) column equilibrated and eluted with 0.05 M sodium
acetate buffer containing 0.15 M NaCl, pH 5.5, at a flow rate of 0.5 mL/min. Insert: calibration curve of the Superdex 200 10/300GL column with
molecular mass standards (12,400-200,000 Da)

Bordon et al. Journal of Venomous Animals and Toxins including Tropical Diseases  (2015) 21:26 Page 5 of 9



the loss of activity at the tested concentrations (Fig. 5d
and e). Bordonein-L activity was decreased when stored
in 2.8 % mannitol, but during the course of the deter-
mined period of time (20 days), it was higher than the
control. The enzymatic activity was the same as the con-
trol in the presence of other mannitol concentrations
(1.4 % and 8.5 %) (Fig. 5b). On the other hand, 8.5 % su-
crose kept bordonein-L more active than control during
the first 20 days. Other tested sucrose concentrations
were unable to keep bordonein-L more active than the
control in the same time period (Fig. 5c).

Discussion
There are 78 and 51 known primary sequences of SV-
LAAOs deposited in the NCBI and UniProt databanks,
respectively. However, the LAAO from Crotalus durissus
terrificus venom (CdtV), one of the most studied snake
venoms in Brazil, had not been assessed previously.
This is the first report of an LAAO from CdtV,

denominated bordonein-L. The enzyme was isolated in
three chromatographic steps and represented 0.5 % of
the soluble venom protein. The specific activity for the

soluble venom was 0.07 against 6.96 for bordonein-L,
representing a 99.4-fold purification. The fractionation
of 1 g of CdtV yielded only 2.7 mg of bordonein-L, a
yield approximately four fold lower than the one ob-
tained from the purification of 1 g of C. adamanteus
venom [36]. However, its recovery is within the range
from 0.15 to 5 % of the total protein observed in other
snake venoms [14]. Significant differences in activity and
protein concentration are observed even in snake
venoms from the same species and region, as recently
reported for the Cdt venom from the Botucatu region
(SP, Brazil) [55].
Bordonein-L is a homodimeric glycoprotein. Molecu-

lar sieve chromatography under non-reducing conditions
revealed a protein of approximately 101 kDa, while its
mass was estimated at about 53 kDa by SDS-PAGE and
58,702 Da by mass spectrometry. SV-LAAOs are usually
homodimeric FAD-binding glycoproteins with a molecu-
lar mass of around 110–150 kDa when measured by gel
filtration under non-denaturing conditions and around
50–70 kDa when assayed by SDS-PAGE under reducing
and non-reducing conditions [13]. Our results indicate
that bordonein-L is a non-covalently associated homodi-
mer, as reported for most SV-LAAOs.
The sequence of the first 39 N-terminal amino acid

residues of bordonein-L exhibited identity with other
SV-LAAOs, since the amino-terminal region is highly
conserved. A high degree of similarity (>84 %) has been
described among the primary sequences of SV-LAAOs
even when comparing distinct genera [14].
Bordonein-L exhibited more than 80 % of relative ac-

tivity in the pH range from 5.5 to 8.0, showing max-
imum activity at pH 7.0. Other SV-LAAOs show an
active conformation at a pH ranging from 5.5 to 7.5, be-
ing inactivated at extremely basic pHs [34]. We observed
an approximately 50 % loss of LAAO activity in the first
five days of storage at 4 °C, almost complete inactivation
after freezing and thawing, and total inactivation after
lyophilization. The activity of the LAAO isolated from
C. adamanteus, which shares high sequence identity
with bordonein-L, is also greatly decreased by freezing

Fig. 3 Multiple sequential alignment of snake venom L-amino acid oxidases from the genus Crotalus. Initial N-terminal of bordonein-L [Swiss-Prot:
C0HJE7, bottom] and LAAOs from crotalic venoms: C. adamanteus [Swiss-Prot: F8S0Z5, O93364], C. atrox [Swiss-Prot: P56742], C. horridus [Swiss-Prot:
T1DJZ4], C. d. cumanensis [Swiss-Prot: K9N7B7 – fragment] and C. d. cascavella [Swiss-Prot: P0C2D2 – fragment]. The highly conserved residues in
bordonein-L are highlighted in black. The amino acid residues in red indicate low consensus. Cys residues are shaded in blue. The alignment and figure
were generated by the servers MultAlin [52] and ESPript [53], respectively

Fig. 4 pH profile of LAAO activity. Crotalus durissus terrificus
crude soluble venom, horseradish peroxidase, OPD and L-leucine were
incubated in different 0.05 M buffers, at different pHs (5.0 to 9.0), for
60 min at 37 °C
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[31, 32]. Other SV-LAAOs presented similar results [13].
Therefore, we suggest that bordonein-L be kept at 4 °C
and near neutral pH to avoid its inactivation.
In relation to the stability of bordonein-L, L-glycine

and L-lysine did not prevent the loss of enzymatic activ-
ity during the 40 days of storage at 4 °C, probably be-
cause they are not able to effectively interact with the
active site in contrast to the hydrophobic L-amino acids

and competitive inhibitors. L-glycine is the smallest
amino acid and this small size may hinder its interaction
with the catalytic site of bordonein-L. On the other
hand, the amino acid L-lysine presents high polarity and
the presence of polar groups might disrupt hydrophobic
interactions. Hydrophobic L-amino acids, e.g. L-leucine,
were not tested in this study as cryoprotectants because
they are usually the preferred substrates of LAAOs

a

b c

d e

Fig. 5 Bordonein-L stability. a Evaluation of stability after five days at −20 °C and 4 °C and as soon as the lyophilization was finished. The stability was
also evaluated for 40 days in the presence of (b) mannitol, (c) sucrose, (d) L-lysine and (e) L-glycine. All samples were kept protected from light. Each
point represents the mean ± S.E.M. (n = 3) at each additive concentration (**p < 0.0001 compared to the respective control using one-way ANOVA test).
Each bar represents the mean ± S.E.M. (n = 3) at 4 °C, freezing and lyophilization conditions (****p < 0.0001 when 4 °C, freezing and lyophilization was
compared to control and when freezing and lyophilization compared to 4 °C using one-way ANOVA test; ♦♦ p < 0.05 when freezing and lyophilization
were compared to each other using the t test)
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whereas changes in the amino acid concentration would
occur due to their concomitant oxidation during the ac-
tivity assay, which would prevent the correct quantifica-
tion of the LAAO activity [32].
Bordonein-L’s activity was higher than the control dur-

ing the first 20 days when stored in 2.8 % mannitol or
8.5 % sucrose. At those concentrations, mannitol and su-
crose interacted with bordonein-L through hydrogen
bonds, which probably stabilized the enzyme by re-
placing the water molecular interactions, as reported for
other proteins [42, 43]. However, after 40 days of stor-
age, bordonein-L lost almost all of its activity even in
the presence of additives. The rapid loss of activity
(around 50 %) in the first five days and activity loss even
in the presence of additives lead us to speculate that an
alteration in the cofactor, such as oxidation or reduction,
and/or changes in the catalytic site are responsible for
the loss of LAAO activity since they may hinder the
interaction among flavin, protein and substrate. The re-
duction of enzymatic activity as a result of FAD loss or
conformational alterations was reported in other LAAOs
[30, 33, 35]. Some conformational changes at the cata-
lytic site were also suggested for gyroxin, another en-
zyme isolated from CdtV, whose catalytic efficiency was
decreased in the presence of Mn2+ and Cu2+ [56].
The incorporation of additives to improve the stabilization

of enzymes is the oldest and one of the most reliable en-
zyme stabilization methods, being employed in the most
marketed enzyme formulations [57]. Since LAAOs are con-
sidered a promising biotechnological agent and a tool to in-
vestigate cellular processes, the retention of its enzymatic
activity over time is essential [13, 14].

Conclusions
An LAAO, denominated bordonein-L, was isolated from
CdtV and presented higher enzymatic activity than the
control when stored in 2.8 % mannitol or 8.5 % sucrose.
These results may help the search for new additives to
be used in stabilizing the LAAO, with the objective of
increasing the shelf life of the enzyme.
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