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Abstract

We consider the static deflection of an infinite beam resting on a nonlinear and non-
uniform elastic foundation. The governing equation is a fourth-order nonlinear
ordinary differential equation. Using the Green’s function for the well-analyzed linear
version of the equation, we formulate a new integral equation which is equivalent to
the original nonlinear equation. We find a function space on which the
corresponding nonlinear integral operator is a contraction, and prove the existence
and the uniqueness of the deflection in this function space by using Banach fixed
point theorem.
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1 Introduction
The topic of the problem of finite or infinite beams which rest on an elastic foundation

has received increased attention in a wide range of fields of engineering, because of its

practical design applications, say, to highways and railways. The analysis of the pro-

blem is thus of interest to many mechanical, civil engineers and, so on: a number of

researchers have made their contributions to the problem. For example, from a very

early time, the problem of a linear elastic beam resting on a linear elastic foundation

and subjected to lateral forces, was investigated by many techniques [1-8].

In contrast to the problem of beams on linear foundation, Beaufait and Hoadley [9]

analyzed elastic beams on “nonlinear” foundations. They organized the midpoint differ-

ence method for solving the basic differential equation for the elastic deformation of a

beam supported on an elastic, nonlinear foundation. Kuo et al. [10] obtained an

asymptotic solution depending on a small parameter by applying the perturbation tech-

nique to elastic beams on nonlinear foundations.

Recently, Galewski [11] used a variational approach to investigate the nonlinear elas-

tic simply supported beam equation, and Grossinho et al. [12] studied the solvability of

an elastic beam equation in presence of a sign-type Nagumo control. With regard to

the beam equation, Alves et al. [13] discussed about iterative solutions for a nonlinear

fourth-order ordinary differential equation. Jang et al. [14] proposed a new method for

the nonlinear deflection analysis of an infinite beam resting on a nonlinear elastic
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foundation under localized external loads. Although their method appears powerful as

a mathematical procedure for beam deflections on nonlinear elastic foundation, in

practice, it has a limited applicability: it cannot be applied to a “non-uniform” elastic

foundation. Also, their analysis is limited to compact intervals.

Motivated by these limitations, we herein extend the previous study [14] to propose an

original method for determining the infinite beam deflection on nonlinear elastic foun-

dation which is no longer uniform in space. In fact, although there are a large number of

studies of beams on nonlinear elastic foundation [10,15], most of them are concerned

with the uniform foundation; that is, little is known about the non-uniform foundation

analysis. This is because the solution procedure for a nonlinear fourth-order ordinary

differential equation has not been fully developed. The method proposed in this article

does not depend on a small parameter and therefore can overcome the disadvantages

and limitations of perturbation expansions with respect to the small parameter. In this

article, we derive a new, nonlinear integral equation for the deflection, which is equiva-

lent to the original nonlinear and non-uniform differential equation, and suggest an

iterative procedure for its solution: a similar iterative technique was previously proposed

to obtain the nonlinear Stokes waves [14,16-19]. Our basic tool is Banach fixed point

theorem [20], which has many applications in diverse areas. One difficulty here is that

the integral operator concerning the iterative procedure is not a contraction in general

for the case of infinite beam. We overcome this by finding out a suitable subspace inside

the whole function space, wherein our integral operator becomes a contraction. Inside

this subspace, we then prove the existence and the uniqueness of the deflection of an

infinite beam resting on a both non-uniform and nonlinear elastic foundation by means

of Banach fixed point theorem. In fact, this restriction on the candidate space for solu-

tions is justified by physical considerations.

The rest of the article is organized as follows: in Section 2, we describe our problem

in detail, and formulate an integral equation equivalent to the nonlinear and non-uni-

form beam equation. The properties of the nonlinear, non-uniform elastic foundation

are analyzed in Section 3, and a close investigation on the basic integral operator K ,

which has an important role in both linear and nonlinear beam equations, is per-

formed in Section 4. In Section 5, we define the subspace on which our integral opera-

tor Ψ becomes a contraction, and show the existence and the uniqueness of the

solution in this space. Finally, Section 6 recapitulates the overall procedure of the arti-

cle, and explains some of the intuitions behind our formulation for the reader.

2 Definition of the problem
We deal with the question of existence and uniqueness of solutions of nonlinear

deflections for an infinitely long beam resting on a nonlinear elastic foundation which

is non-uniform in x. Figure 1 shows that the vertical deflection of the beam u(x) results

from the net load distribution p(x):

p(x) = w(x) − f (u, x) (1)

In (1), the two variable function f(u, x) is the nonlinear spring force upward, which

depends not only on the beam deflection u but also on the position x, and w(x)

denotes the applied loading downward. For simplicity, the weight of the beam is

neglected. In fact, the weight of the beam could be incorporated in our static beam
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deflection problem by adding m(x)g to the loading w(x), where m(x) is the lengthwise

mass density of the beam in x-coordinate, and g is the gravitational acceleration. The

term m(x)g also plays an important role in the dynamic beam problem, since the sec-

ond-order time derivative term of deflection must be included as d/dt(m(x)du/dt) in

the motion equation. Denoting by EI the flexural rigidity of the beam (E and I are

Young’s modulus and the mass moment of inertia, respectively), the vertical deflection

u(x), according to the classical Euler beam theory, is governed by a fourth-order ordin-

ary differential equation

EI
d4u
dx4

= p(x),

which, in turn, becomes the following nonlinear differential equation for the deflec-

tion u by (1):

EI
d4u
dx4

+ f (u, x) = w(x). (2)

The boundary condition that we consider is

lim
x→±∞ u(x) = lim

x→±∞ u′(x) = 0. (3)

Note that (2) and (3) together form a well-defined boundary value problem.

We shall attempt to seek a nonlinear integral equation, which is equivalent to the

nonlinear differential equation (2). We start with a simple modification made on (2) by

introducing an artificial linear spring constant k: (2) is rewritten as

EI
d4u
dx4

+ ku +N(u, x) = w(x), (4)

where

f (u, x) = ku +N(u, x),

or

EI
d4u
dx4

+ ku = w(x) − N(u, x) ≡ �(u, x). (5)

Figure 1 Infinite beam on nonlinear and non-uniform elastic foundation.
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The exact determination of k out of the function f(u, x) will be given in Section 3.

The modified differential equation (5) is a starting point to the formulation of a non-

linear integral equation equivalent to the original equation (2). For this, we first recall

that the linear solution of (2), which corresponds to the case N(u, x) ≡ 0 in (4), was

derived by Timoshenko [21], Kenney [8], Saito et al. [22], Fryba [23]. They used the

Fourier and Laplace transforms to obtain a closed-form solution:

u(x) =

∞∫
−∞

G(x, ξ)w(ξ)dξ , (6)

expressed in terms of the following Green’s function G:

G(x, ξ) =
α

2k
exp

(
−α|ξ − x|√

2

)
sin

(
α|ξ − x|√

2
+

π

4

)
, (7)

where α = 4
√
k/EI . A localized loading condition was assumed in the derivation of (6):

u, u’, u”, and u’” all tend toward zero as |x| ® ∞. Green’s functions such as (7) play a

crucial role in the solution of linear differential equations, and are a key component to

the development of integral equation methods. We utilize the Green’s function (7) and

the solution (6) as a framework for setting up the following nonlinear relations for the

case of N(u, x) ≠ 0:

u(x) =

∞∫
−∞

G(x, ξ)�(u(ξ), ξ) dξ . (8)

With the substitution of (5), (8) immediately reveals the following nonlinear

Fredholm integral equation for u:

u(x) =

∞∫
−∞

G(x, ξ)w(x) dξ −
∞∫

−∞
G(x, ξ)N(u(ξ), ξ) dξ . (9)

Physically, the term
∫ ∞
−∞ G(x, ξ)w(x) dξ in (9) amounts to the linear deflection of an

infinite beam on a linear elastic foundation having the artificial linear spring constant

k, which is uniform in x. The term − ∫ ∞
−∞ G(x, ξ)N(u(ξ), ξ) dξ in (9) corresponds to

the difference between the exact nonlinear solution u and the linear deflection∫ ∞
−∞ G(x, ξ)w(x) dξ . We define the nonlinear operator Ψ by

�[u](x) :=

∞∫
−∞

G(x, ξ)w(x) dξ −
∞∫

−∞
G(x, ξ)N(u(ξ), ξ) dξ (10)

for functions u : ℝ ® ℝ. Then the integral equation (9) becomes just Ψ[u] = u,

which is the equation for fixed points of the operator Ψ. We will show in exact sense

the equivalence between (2) and (9) in Lemma 7 in Section 5.

3 Assumptions on f and the operator N
Denote ∥u∥∞ = supxÎℝ |u(x)| for u : ℝ ® ℝ, and let L∞(ℝ) be the space of all functions

u : ℝ ® ℝ such that ∥u∥∞ < ∞. Let C0(ℝ) be the space of all continuous functions
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vanishing at infinity. It is well known [24] that C0(ℝ) and L∞(ℝ) are Banach spaces with

the norm ∥·∥∞, and C0(ℝ) ⊂ L∞(ℝ). For q = 0, 1, 2, ..., let Cq(ℝ) be the space of q times

differentiable functions from ℝ to ℝ. Here, C0(ℝ) is just the space of continuous func-

tions C(ℝ).

We have a few assumptions on f(u, x) and w(x). There are four assumptions F1, F2,

F3, F4 on f, and two W1, W2 on w. As one can find out soon, they are general

enough, and have natural physical meanings. In this section, we list the assumptions

on f. Those on w will appear in Section 5.1.

(F1) f(u, x) is sufficiently differentiable, so that f(u(x), x) Î Cq(ℝ) if u Î Cq(ℝ) for

q = 0, 1, 2, ....

(F2) f(u, x) · u ≥ 0, and fu(u, x) ≥ 0 for every u, x Î ℝ.

(F3) For every υ ≥ 0, supx∈R,|u|≤υ

∣∣∣∣ ∂qf∂uq
(u, x)

∣∣∣∣ < ∞ for q = 0, 1, 2.

(F4) infxÎℝ fu(0, x) >h0 supxÎℝ fu(0, x), where

η0 =

√
2 exp

(
−3π

4

)

1 − exp(−π) +
√
2 exp

(
−3π

4

) ≈ 0.123.

Note first that F1 will free us of any unnecessary consideration for differentiability,

and in fact, f(u, x) is usually infinitely differentiable in most applications. F2 means

that the elastic force of the elastic foundation, represented by f(u, x), is restoring, and

increases in magnitude as does the amount of the deflection u. F3 also makes sense

physically: The case q = 0 implies that, within the same amount of deflection u < |υ|,

the restoring force f(u, x), though non-uniform, cannot become arbitrarily large. Note

that fu(u, x) ≥ 0 is the linear approximation of the spring constant (infinitesimal with

respect to x) of the elastic foundation at (u, x). Hence, the case q = 1 means that this

non-uniform spring constant fu(u, x) be bounded within a finite deflection |u| <υ.

Although the case q = 2 of F3 does not have obvious physical interpretation, we can

check later that it is in fact satisfied in usual situations.

Especially, F3 enables us to define the constant k:

k := sup
x∈R

fu(0, x). (11)

We justifiably rule out the case k = 0; hence, we assuming k > 0 for the rest of the

article. Define

N(u, x) := f (u, x) − ku, (12)

which is the nonlinear and non-uniform part of the restoring force f(u, x) = ku + N

(u, x). Finally, F4 implies that, for any x Î ℝ, the spring constant fu(0, x) at (0, x) can-

not become smaller than about 12.3% of the maximum spring constant k = supxÎℝ fu
(0, x). This restriction, which is realistic, comes from the unfortunate fact that the

operator K in Section 4 is not a contraction. The constant h0 is related to another

constant τ, which will be introduced later in (41) in Section 4, by

η0 =
τ − 1

τ
. (13)
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We define a parameter h which measures the non-uniformity of the elastic foundation:

η :=
infx∈Rfu(0, x)
supx∈Rfu(0, x)

=
infx∈Rfu(0, x)

k
. (14)

Then, by F4, we have

η0 < η ≤ 1. (15)

A uniform elastic foundation corresponds to the extreme case h = 1, and the non-

uniformity increases as h becomes smaller. In order for our current method to work,

the condition F4 limits the non-uniformity h by h0 ≈ 0.123.

Using the function N, we define the operator N by N [u](x) := N(u(x), x) for func-

tions u : ℝ ® ℝ. Note that N is nonlinear in general.

Lemma 1. (a) N [u] ∈ C0(R) for every u Î C0(ℝ).

(b) For every u, v Î L∞(ℝ), we have

||N [u] − N [v]||∞ ≤ {(1 − η)k + ρ(max{||u||∞, ||v||∞})} · ||u − v||∞
for some strictly increasing continuous function r : [0, ∞) ® [0, ∞), such that r(0) = 0.

Proof. Suppose u Î C0(ℝ). N [u] is continuous by F1. Let � > 0. Then there exists M > 0

such that |u(x)| <� if |x| >M, since limx®±∞ u(x) = 0. By the mean value theorem, we have

N [u](x) = N(u(x), x) = f (u(x), x) − ku(x) = fu(μ, x) · {u(x) − 0} − ku(x),

for some μ between 0 and u(x), and hence |μ| ≤ |u(x)| <� if |x| >M. Hence, for

|x| >M, we have

|N [u](x)| = |fu(μ, x)u(x) − ku(x)| ≤ {fu(μ, x) + k} · |u(x)|

≤
{
k + sup

x∈R,|μ|≤ε

fu(μ, x)

}
ε.

(16)

Note that (16) can be made arbitrarily small as M gets larger, since supxÎℝ, |μ|≤� fu
(μ, x) < ∞ by F3. Thus, N [u] ∈ C0(R) , which proves (a).

By the mean value theorem, we have

N(u, x) − N(v, x) = Nu(μ, x) · (u − v)

for some μ between u and v, and hence |μ| ≤ max{|u|, |v|}. Hence,

|N(u, x) − N(v, x)| ≤ sup
|μ|≤max{|u|,|v|}

|Nu(μ, x)| · |u − v|.

Now suppose u, v Î L∞(ℝ). Then

||N [u] − N [v]||∞ = sup
x∈R

|N(u(x), x) − N(v(x), x)|

≤ sup
x∈R

{
sup

|μ|≤max{|u(x)|,|v(x)|}
|Nu(μ, x)| · |u(x) − v(x)|

}

≤ sup
x∈R

{
sup

|μ|≤max{|u(x)|,|v(x)|}
|Nu(μ, x)|

}
· sup
x∈R

|u(x) − v(x)|

≤
{

sup
x∈R,|μ|≤max{||u||∞,||v|∞}

|Nu(μ, x)|
}

· ||u − v||∞.

(17)
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Put

ρ1(t) := sup
x∈R,|μ|≤t

|Nu(μ, x)|, t ≥ 0. (18)

Note that (18) is well-defined by F3, since we have Nu(μ, x) = fu(μ, x) - k from (12).

Clearly, r1 is non-negative and non-decreasing.

We want to show r1 is continuous. Fix t0 ≥ 0. We first show the left-continuity of r1
at t0. Let {tn}∞n=1 be a sequence in [0, t0) such that tn ↗ t0. Suppose there exists t’ <t0
such that r1(t’) = r1(t0). Then, since r1 is non-decreasing, it becomes constant on [t’,

t0], and hence r1 is clearly left-continuous at t0. So we assume that r1(t’) <r1(t0) for
every t’ <t0. It follows that there exists a sequence {(μn, xn)}∞n=1 in [-t0, t0] × ℝ, such

that |μn| = tn and |Nu(μn, xn)| ® r1(t0) as n ® ∞, since |Nu(u, x)| is continuous. Thus,

we have r1(tn) ® r1(t0) as n ® ∞, since |Nu(μn, xn)| ≤ r1(tn) ≤ r1(t0) for n = 1, 2, ....

This shows that r1 is left-continuous at t0.
Suppose r1 is not right-continuous at t0. Then there exist � > 0 and a sequence

{tn}∞n=1 in (t0, ∞), such that tn ↘ t0 and r1(tn) - r1(t0) ≥ � for n = 1, 2, .... Suppose there

exists t’ >t0 such that r1(t’) = r1(t0). Then r1 becomes constant on [t0, t’], so that r1 is

right-continuous at t0. So we assume that r1(t’) >r1(t0) for every t’ >t0. It follows that

there exists a sequence {(μn, xn)}∞n=1 in {(t0, ∞) ∪ (-∞, -t0)} × ℝ, such that t0 < |μn| ≤ tn

and |Nu(μn, xn)| > ρ1(tn) − ε

2n
> ρ1(t0) for n = 1, 2, ..., since |Nu(u, x)| is continuous.

With no loss of generality, we can assume μn > 0. By the mean value theorem, we have

Nu(μn, xn) − Nu(t0, xn) = Nuu(μ, xn) · (μn − t0)

for some μ between t0 and μn, and so we have

ε ≤ ρ1(tn) − ρ1(t0)

= {ρ1(tn) − |Nu(μn, xn)|} + {|Nu(μn, xn)| − |Nu(t0, xn)|} + {|Nu(t0, xn)| − ρ1(t0)}
≤ {ρ1(tn) − |Nu(μn, xn)|} + {|Nu(μn, xn)| − |Nu(t0, xn)|}
≤ {ρ1(tn) − |Nu(μn, xn)|} + |Nu(μn, xn) − Nu(t0, xn)|
<

ε

2n
+ |Nuu(μ, xn)| · |μn − t0|

(19)

for n = 1, 2, .... By F3, (19) goes to 0 as n ® ∞, since

|Nuu(μ, xn)| · |μn − t0| ≤ sup
x∈R,|μ|≤t1

|Nuu(μ, x)| · |tn − t0|.

This is a contradiction. It follows that r1 is right-continuous, and thus, is continuous.

By (11) and (14), we have hk ≤ fu(0, x) ≤ k, and so -(1 - h) k ≤ fu(0, x) - k ≤ 0 for

every x Î ℝ. It follows that

ρ1(0) = sup
x∈R,|μ|≤0

|Nu(μ, x)| = sup
x∈R

|Nu(0, x)| = sup
x∈R

|fu(0, x) − k| ≤ (1 − η)k.

Put r2(t): = r1(t) - r1(0). Then r2 is a nondecreasing continuous function such that

r2(0) = 0. By Lemma 2 below, there exists a strictly increasing continuous function r
such that r(0) = 0, and r(t) ≥ r2(t) for t ≥ 0. Thus, we have a desired function r, since
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||N [u] − N [v]||∞ ≤ ρ1(max{||u||∞, ||v||∞}) · ||u − v||∞
≤ {ρ1(0) + ρ2(max{||u||∞, ||v||∞})} · ||u − v||∞
≤ {(1 − η)k + ρ(max{||u||∞, ||v||∞})} · ||u − v||∞,

where the first inequality is from (17) and (18). This proves (b), and the proof is

complete.

Lemma 2. Let g : [0, ∞) ® [0, ∞) be a non-decreasing continuous function such that

g(0) = 0. Then there exists a strictly increasing continuous function

g̃ : [0,∞) → [0,∞) such that g̃(0) = 0 , and g̃(t) ≥ g(t) for t ≥ 0.

Proof. Note that, for every s Î [0, ∞), g-1(s)is a compact connected subset of [0, ∞),

since g is continuous and non-decreasing. It follows that g-1(s) is either a point or a

closed interval in [0, ∞) for every s Î [0, ∞). Let A be the set of all points in [0, ∞) at

which g is locally constant, i.e.,

A = {t ∈ [0,∞)|g−1(g(t)) is an interval with non-zero length}.

Define g̃ : [0,∞) → [0,∞) by

g̃(t) := g(t) + l(A ∩ [0, t]), t ≥ 0,

where l(B) is the Lebesque measure, and hence the length in our case, of the set B ⊂
[0, ∞). From the definition of g̃ , it is clear that g̃(0) = 0 , and g̃(t) ≥ g(t) for t ≥ 0.

We omit the proof that g̃ is continuous and strictly increasing, which is an easy

exercise.

Example 1. Let

f (u, x) = (1 + εcosx)
(

k
1 + ε

u + λu2n+1
)
, 0 ≤ ε ≤ 1

2
, n ≥ 1.

Then,

fu(u, x) =
1 + ε cos x

1 + ε
k + λ(2n + 1)(1 + ε cos x)u2n,

and hence,

1 − ε

1 + ε
k ≤ fu(0, x) ≤ k, η =

1 − ε

1 + ε
.

We also have

N(u, x) = f (u, x) − ku = − kε
1 + ε

(1 − cos x)u + λ(1 + ε cos x)u2n+1,

Nu(u, x) = − kε
1 + ε

(1 − cos x) + λ(2n + 1)(1 + ε cos x)u2n,

|Nu(u, x)| ≤ 2ε

1 + ε
k + λ(2n + 1)|1 + ε cos x| · |u|2n

≤ (1 − η)k + 2(2n + 1)λ · |u|2n.

Thus, we can take r(t) = r2(t) = 2(2n + 1)lt2n.
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Example 2. Let

f (u, x) = (1 + εcosx)
[

k
1 + ε

u + λ{exp(au) − 1 − au}
]
, 0 ≤ ε ≤ 1

2
, a > 0.

Then,

fu(u, x) =
1 + ε cos x

1 + ε
k + aλ(1 + ε cos x){exp(au) − 1},

and hence,

1 − ε

1 + ε
k ≤ fu(0, x) ≤ k, η =

1 − ε

1 + ε
.

We also have

N(u, x) = f (u, x) − ku = − kε
1 + ε

(1 − cos x)u + λ(1 + ε cos x){exp(au) − 1 − au},

Nu(u, x) = − kε
1 + ε

(1 − cos x) + aλ(1 + ε cos x){exp(au) − 1},

|Nu(u, x)| ≤ 2ε

1 + ε
k + aλ(1 + ε) · {exp(au) − 1}

≤ (1 − η)k + 2aλ · {exp(au) − 1}.

Thus, we can take r(t) = r2(t) = 2al {exp(at) - 1}.

Example 3. As an extreme case, we take f(u, x) = ku, for which the original differen-

tial equation (2) becomes linear. Clearly, h = 1. Since N(u, x) = Nu(u, x) ≡ 0, we have

r2(t) ≡ 0. The function r taken according to Lemma 2 would be r(t) = t. However, a

better choice is

ρ(t) = σk
(
1 − 1√

1 + σ 2k2t

)
, (20)

as we will check in Section 5.1, where the constant s is defined as well.

4 The Operator K
Let

K(y) :=
α

2k
exp

(
− α√

2
y
)
sin

(
α√
2
y +

π

4

)
,

so that G(x, ξ) = K (|ξ - x|) for G in (7). Using the function K, we define the linear

operator K by

K[u](x) :=

∞∫
−∞

K(|x − ξ |)u(ξ) dξ =

∞∫
−∞

G(x, ξ)u(ξ) dξ

for functions u : ℝ ® ℝ. With this notation, we can rewrite the solution u in (6) of

the following linear differential equation:

EI
d4u(x)
dx4

+ ku(x) = w(x), (21)
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which is just the linear case of (2), as u = K[w] . In fact, understanding the properties

of the operator K is important not only for the linear case (21), but also for the gen-

eral nonlinear non-uniform case (2).

Lemma 3.

K(i)(y) =
αi+1

2k
exp

(
− α√

2
y
)
sin

{
α√
2
y +

(3i + 1)π
4

}
, i = 0, 1, 2, . . . .

Proof. We use induction on i. Note first that the case i = 0 is trivially true. Suppose

that the statement is true for some i ≥ 0. Using the following trigonometric equality

− sin t + cos t =
√
2
{
sin t cos

3π

4
+ cos t sin

3π

4

}
=

√
2 sin

(
t +

3π

4

)
,

we have

K(i+1)(y) =
d
dy

K(i)(y)

=
αi+1

2k
exp

(
− α√

2

)
·
(

− α√
2

)
· sin

{
α√
2
y +

(3i + 1)π
4

}

+
αi+1

2k
exp

(
− α√

2
y
)

· cos
{

α√
2
y +

(3i + 1)π
4

}
· α√

2

=
αi+2

2
√
2k

exp
(

− α√
2
y
){

− sin
{

α√
2
y +

(3i + 1)
4

π

}
+ cos

{
α√
2
y +

(3i + 1)
4

π

}}

=
αi+2

2
√
2k

exp
(

− α√
2
y
)

·
√
2 sin

{
α√
2
y +

(3i + 1)π
4

+
3π

4

}

=
α(i+1)+1

2k
exp

(
− α√

2
y
)
sin

{
α√
2
y +

{3(i + 1) + 1}π
4

}
,

which shows that the statement is true for i + 1. Thus, we have the proof.

Using Lemma 3, we can obtain more detailed information on the derivatives of K[u] .

Note that, for every u Î L∞(ℝ),

K[u](x) =

x∫
−∞

K(x − ξ)u(ξ) dξ +

∞∫
x

K(ξ − x)u(ξ) dξ

= −
0∫

∞
K(y)u(x − y) dy +

∞∫
0

K(y)u(x + y) dy

=

∞∫
0

K(y){u(x − y) + u(x + y)} dy.

(22)

Lemma 4. (a) Let u Î C(ℝ) ∩ L∞(ℝ). Then we have

K[u](i)(x) =

∞∫
0

K(i)(y){u(x − y) + (−1)iu(x + y)} dy, i = 1, 2, 3,

K[u](4)(x) =

∞∫
0

K(4)(y){u(x − y) + u(x + y)}dy + 2K(3)(0)u(x)

= −α4K[u](x) +
α4

k
u(x).
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Consequently, K[u] ∈ C4(R) for every u Î C(ℝ) ∩ L∞(ℝ).

(b) Let q = 0, 1, 2, .... Suppose u Î Cq(ℝ) and u(i) Î L∞(ℝ) for i = 0, 1, ..., q. Then we

have K[u(q)] = K[u](q) .

Proof. Let u Î C(ℝ) ∩ L∞(ℝ). Then there exists a function U Î Cl(ℝ) such that U’ =

u. Since u Î L∞(ℝ), U has at most linear growth, and hence by Lemma 3,

lim
y→∞K(i)(y)U(x − y) = lim

y→∞K(i)(y)U(x + y) = 0 (23)

for i = 0, 1, 2, .... Using integration by parts, (22) becomes

K[u](x) = [K(y){−U(x − y) +U(x + y)}]∞0 −
∞∫
0

K ′(y){−U(x − y) +U(x + y)} dy

=

∞∫
0

K ′(y){U(x − y) − U(x + y)} dy,

by (23), and hence we have

K[u]′(x) =
d
dx

∞∫
0

K ′(y){U(x − y) − U(x + y)} dy

=

∞∫
0

K ′(y){u(x − y) − u(x + y)} dy.
(24)

By (23) and integration by parts again, (24) becomes

K[u]′(x) = [K ′(y){−U(x − y) − U(x + y)}]∞0 −
∞∫
0

K ′′(y){−U(x − y) − U(x + y)} dy

= 2K ′(0)U(x) +

∞∫
0

K ′′(y){U(x − y) +U(x + y)} dy

=

∞∫
0

K ′′(y){U(x − y) +U(x + y)} dy,

since K’(0) = 0 by Lemma 3. Hence,

K[u]′′(x) =
d
dx

∞∫
0

K ′′(y){U(x − y) +U(x + y)} dy

=

∞∫
0

K ′′(y){u(x − y) + u(x + y)} dy.
(25)

Again by (23) and integration by parts, (25) becomes

K[u]′′(x) = [K ′′(y){−U(x − y) +U(x + y)}]∞0 −
∞∫
0

K(3)(y){−U(x − y) +U(x + y)} dy

=

∞∫
0

K(3)(y){U(x − y) − U(x + y)} dy,
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and hence,

K[u](3)(x) =
d
dx

∞∫
0

K(3)(y){U(x − y) − U(x + y)} dy

=

∞∫
0

K(3)(y){u(x − y) − u(x + y)} dy.
(26)

Once more by (23) and integration by parts, (26) becomes

K[u](3)(x) = [K(3)(y){−U(x − y) − U(x + y)}]∞0 −
∞∫
0

K(4)(y){−U(x − y) − U(x + y)} dy

= 2K(3)(0)U(x) +

∞∫
0

K(4)(y){U(x − y) +U(x + y)} dy,

and hence, by (22),

K[u](4)(x) =
d
dx

⎡
⎣ ∞∫

0

K(4)(y){U(x − y) +U(x + y)} dy + 2K(3)(0)U(x)

⎤
⎦

=

∞∫
0

K(4)(y){u(x − y) + u(x + y)} dy + 2K(3)(0)u(x)

(27)

= −α4K[u](x) +
α4

k
u(x), (28)

since K(3)(0) =
α4

2k
and K(4)(y) = -a4K(y) by Lemma 3. Thus (a) follows from (24),

(25), (26), (27), and (28).

From (22), we have

K[u]′(x) =
d
dx

∞∫
0

K(y){u(x − y) + u(x + y)} dy

=

∞∫
0

K(y){u′(x − y) + u′(x + y)} dy
(29)

for every u Î Cl(ℝ) with u, u’ Î L∞(ℝ). Suppose now u Î Cq(ℝ) and u(i) Î L∞(ℝ) for

i = 0, 1, ..., q. Then, by successively applying (29), we have

K[u](q)(x) =

∞∫
0

K(y){u(q)(x − y) + u(q)(x + y)} dy,

and hence, K[u](q)(x) = K[u(q)] by applying (22) to u(q). This proves (b), and the

proof is complete.

Lemma 5. For every u Î C0(ℝ), K[u](i) ∈ C0(R) for i = 0, 1, 2, 3, 4.
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Proof. Suppose u Î C0(ℝ). Since C0(ℝ) ⊂ C(ℝ) ∩ L∞(ℝ), we have K[u](i) ∈ C(R) for i

= 0, 1, 2, 3, 4 by Lemma 4 (a). So it is sufficient to show that limx→±∞K[u](i)(x) = 0

for i = 0, 1, 2, 3, 4. We first consider the case i = 0, 1, 2, 3. Let � > 0 be arbitrary.

Since u Î C0(ℝ), there exists M > 0 such that

|u(x)| <

√
2k

6αi
ε, i = 0, 1, 2, 3 (30)

for every |x| ≥ M/2. Moreover, we can assume M is large enough so that it also satis-

fies

αi

√
2k

||u||∞ exp
(

− α√
2

· M
2

)
<

ε

2
, i = 0, 1, 2, 3. (31)

Suppose x >M. By (22) and Lemma 4 (a), we have

|K[u](i)(x)| ≤
∣∣∣∣∣∣

∞∫
0

K(i)(y)u(x − y) dy

∣∣∣∣∣∣ +
∣∣∣∣∣∣(−1)i

∞∫
0

K(i)(y)u(x + y) dy

∣∣∣∣∣∣
≤

∞∫
0

|K(i)(y)| · |u(x − y)| dy +
∞∫
0

|K(i)(y)| · |u(x + y)| dy
(32)

for i = 0, 1, 2, 3. Consider the second term in (32). If y ≥ 0, then x + y ≥ M >M/2,

and so |u(x + y)| <

√
2k

6αi
ε by (30). Hence,

∞∫
0

|K(i)(y)| · |u(x + y)| dy ≤
√
2k

6αi
ε

∞∫
0

|K(i)(y)| dy ≤
√
2k

6αi
ε · αi

√
2k

=
ε

6
, (33)

since

|K(i)(y)| ≤ αi+1

2k
exp

(
− α√

2
y
)

(34)

by Lemma 3, and hence

∞∫
0

|K(i)(y)| dy ≤ αi+1

2k
·
(

−
√
2

α

)[
exp

(
− α√

2
y
)]∞

0
=

αi

√
2k

. (35)

Note that the first term in (32) is

∞∫
0

|K(i)(y)| · |u(x − y)| dy =
x−M/2∫
0

|K(i)(y)| · |u(x − y)|dy +
x+M/2∫

x−M/2

|K(i)(y)| · |u(x − y)|dy

+

∞∫
x+M/2

|K(i)(y)| · |u(x − y)|dy.
(36)

If 0 ≤ y ≤ x - M/2, then x - y ≥ M/2, and hence |u(x − y)| <

√
2k

6αi
ε by (30). If y ≥ x

+ M/2, then x - y ≤ - M/2, and we also have |u(x − y)| <

√
2k

6αi
ε by (30). Thus, by
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(35), we have

x−M/2∫
0

|K(i)(y)| · |u(x − y)| dy ≤
√
2k

6αi
ε

x−M/2∫
0

|K(i)(y)| dy ≤
√
2k

6αi
ε

∞∫
0

|K(i)(y)| dy

=

√
2k

6αi
ε · αi

√
2k

=
ε

6
,

(37)

∞∫
x+M/2

|K(i)(y)| · |u(x − y)| dy ≤
√
2k

6αi
ε

∞∫
x+M/2

|K(i)(y)| dy ≤
√
2k

6αi
ε

∞∫
0

|K(i)(y)| dy

=

√
2k

6αi
ε · αi

√
2k

=
ε

6
.

(38)

By (31) and (34), the remaining term in (36) becomes

x+M/2∫
x−M/2

|K(i)(y)| · |u(x − y)|dy

≤ ||u||∞
x+M/2∫

x−M/2

|K(i)(y)| dy ≤ ||u||∞
∞∫

x−M/2

|K(i)(y)| dy

≤ ||u||∞
∞∫

x−M/2

αi+1

2k
exp

(
− α√

2
y
)
dy = ||u||∞ · αi+1

2k
·
(

−
√
2

α

)[
exp

(
− α√

2
y
)]∞

x−M/2

= ||u||∞ αi

√
2k

[
exp

{
− α√

2
(x − M/2)

}
− 0

]
< ||u||∞ αi

√
2k

exp
(

− α√
2

· M
2

)

<
ε

2
,

(39)

since x >M. Combining (32), (33), (36), (37), (38), and (39), we have

|K(i)[u](x)| <
ε

6
+

ε

2
+

ε

6
+

ε

6
= ε

for every x >M. This implies limx→∞|K(i)[u](x)| = 0 for i = 0, 1, 2, 3. We omit the

similar proof that limx→∞|K(i)[u](x)| = 0. Thus we conclude that K(i)[u] ∈ C0(R) for

i = 0, 1, 2, 3. It follows that K(4)[u] ∈ C0(R) , since K(4)[u] = −α4K[u] +
α4

k
u by

Lemma 4 (a).

In what follows, we put τ to be the following constant:

τ := 2k

∞∫
0

|K(y)|dy. (40)

The exact value of τ can be determined by elementary calculation, which we omit. It

turns out that

τ = 1 +

√
2 exp

(
−3π

4

)
1 − exp(−π)

≈ 1.140.
(41)
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Lemma 6. (a) ||K[u]||∞ < (τ /k) · ||u||∞ for every u Î L∞(ℝ). Thus, K[u] ∈ L∞(R) for

every u Î L∞(ℝ).

(b) For every u Î C(ℝ) ∩ L∞(ℝ), we have ||K[u](i)||∞ ≤ (ταi/k) exp(3iπ/4) · ||u||∞ for

i = 1, 2, 3, and ||K[u](4)||∞ < ((τ + 1)α4/k) · ||u||∞ .

Proof. By (22) and (40), we have

||K[u]||∞ ≤ sup
x∈R

∞∫
0

|K(y)| · |u(x − y) + u(x + y)| dy

≤
∞∫
0

|K(y)| · sup
x∈R

|u(x − y) + u(x + y)|dy

≤ 2||u||∞
∞∫
0

|K(y)|dy = τ

k
||u||∞

for every u Î L∞(ℝ). This shows (a).

Suppose u Î C(ℝ) ∩ L∞(ℝ). By Lemma 4 (a),

||K[u](i)||∞ ≤ sup
x∈R

∞∫
0

|K(i)(y)||u(x − y) + (−1)iu(x + y)|dy

≤
∞∫
0

|K(i)(y)| · sup
x∈R

|u(x − y) + (−1)iu(x + y)|dy

≤
∞∫
0

|K(i)(y)| ·
{
sup
x∈R

|u(x − y)| + sup
x∈R

|u(x + y)|
}
dy

≤ 2||u||∞
∞∫
0

|K(i)(y)|dy

(42)

for i = 1, 2, 3. By Lemma 3 and with the substitution z = y +
3iπ

2
√
2α

, we have

∞∫
0

|K(i)(y)|dy =
∞∫
0

αi+1

2k
exp

(
− α√

2
y
)

·
∣∣∣∣sin

{
α√
2
y +

π

4
+
3iπ
4

}∣∣∣∣dy

=

∞∫
3iπ/(2

√
2α)

αi+1

2k
exp

(
− α√

2
z +

3iπ
4

)
·
∣∣∣∣sin

{
α√
2
z +

π

4

}∣∣∣∣dz

≤ αi exp
(
3iπ
4

) ∞∫
0

α

2k
exp

(
− α√

2
z
)

·
∣∣∣∣sin

{
α√
2
z +

π

4

}∣∣∣∣dz

= αi exp
(
3iπ
4

) ∞∫
0

|K(z)|dz,

which, together with (40) and (42), gives

||K[u](i)||∞ ≤ 2||u||∞ · αi exp
(
3iπ
4

)
· τ

2k
=

ταi

k
exp

(
3iπ
4

)
· ||u||∞
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for i = 1, 2, 3. This proves (b) for i = 1, 2, 3.

Finally, by Lemma 4 (a) and the above result (a),

||K(4)[u]||∞ =

∥∥∥∥−α4K[u] +
α4

k
u

∥∥∥∥
∞

≤ α4||K[u]||∞ +
α4

k
||u||∞

≤ α4 · τ

k
||u||∞ +

α4

k
||u||∞ =

(τ + 1)α4

k
· ||u||∞,

and the proof is therefore complete.

5 Main result
Using the operators N and K in Sections 3 and 4, the nonlinear integral operator Ψ

defined in (10) can be expressed in abstract notation as

�[u] = K[w] − K[N [u]]

for u : ℝ ® ℝ. We will show that Ψ is a contraction when it is restricted to an

appropriate function space X ⊂ C0(ℝ) which will be defined later in this section.

5.1 Assumptions on w and the space X

Here, we introduce two assumptions W1 and W2 on the function w in (2):

(W1) w Î C0(ℝ).

(W2) ∥w∥∞ < sup0≤s≤sk {r-1(s) · (sk - s)}, where s is defined by

σ :=
1 − τ

τ
+ η. (43)

W1 means that the loading w should be sufficiently localized, which was also

assumed for the linear solution (6) of (21). Nonetheless, w need not be compactly sup-

ported, and it is sufficient that limx®±∞ w(x) = 0. Note that the constant s is positive

by (13), (14), and (15). The function r is taken to satisfy Lemma 1 (b). Since r is con-

tinuous and strictly increasing, the inverse function r-1 : r([0, ∞)) ® [0, ∞) is well

defined, and is also a strictly increasing continuous function with r-1(0) = 0. It is easy

to see that the range r([0, ∞)) of r, which is the domain of r-1, is always of the form

[0, s̄) for some 0 < s̄ ≤ ∞ . In fact, the supremum in W2 should be meant to be taken

in the range s ∈ [0, σk] ∩ [0, s̄) . Note that the set {ρ−1(s) · (σk − s)|s ∈ [0, σk] ∩ [0, s̄)}
should be connected, and hence of the form [0, c̄) or [0, c̄] for some 0 < c̄ ≤ ∞ ,

since [0, σk] ∩ [0, s̄) is connected and r-1(s) · (sk - s) is continuous. In fact, we have

c̄ = sup0≤s≤σk
{ρ−1(s) · (σk − s)} . It follows from W2 that there exists

s∗ ∈ (0, σk) ∩ (0, s̄) ⊂ (0, σk) such that

||w||∞ = ρ−1(s∗) · {σk − s∗}. (44)

We remark that the trivial case ∥w∥∞ = 0 is safely excluded in this article. The physi-

cal meaning of W2 is that the size ∥w∥∞ of the loading w cannot be arbitrarily large,

and its upper limit is closely related to the nonlinearity and the non-uniformity of the

given elastic foundation.

Now define the subset X of C0(ℝ) by

X :=
{
u ∈ C0(R)

∣∣∣∣||u||∞ ≤ ||w||∞
σk − s∗

}
. (45)

Choi and Jang Boundary Value Problems 2012, 2012:5
http://www.boundaryvalueproblems.com/content/2012/1/5

Page 16 of 24



We view X as a metric space with the metric ∥· - ·∥∞. Note that X is a complete

metric space, since it is a closed set in C0(ℝ) which itself is a complete metric space.

Note that

1
σk

‖w‖∞ <
‖w‖∞

σk − s∗
,

since 0 <s* <sk. It follows that{
u ∈ C0(R)

∣∣∣∣||u||∞ ≤ 1
σk

||w||∞
}

⊂ X. (46)

In our system described by the differential equation (2), it is physically clear that the

size ∥u∥∞ of the output deflection u cannot be too large compared to the size ∥w∥∞ of

the input loading w. In fact, Lemma 6 (a) describes this relationship quantitatively in

the linear case (21). Thus, (46) implies that the space X, though it is not the whole of

C0(ℝ), is big enough in some sense.

Example 4. Consider the case

f (u, x) = (1 + εcosx)
(

k
1 + ε

u + λu2n+1
)
, 0 ≤ ε ≤ 1

2
, n ≥ 1,

in Example 1. Then we have r(t) = 2(2n + 1)lt2n, and hence

ρ−1(s) =
(

s
2(2n + 1)λ

) 1
2n . Put j(s) = r-1(s) · (sk - s). Since

φ′(s) =
d
ds

⎧⎪⎨
⎪⎩
(

s

2(2n + 1)λ

) 1
2n (σk − s)

⎫⎪⎬
⎪⎭ =

1
2n
√
2(2n + 1)λ

⎧⎨
⎩ 1
2n

s

1
2n

−1
(σk − s) − s

1
2n

⎫⎬
⎭

=
s

1
2n

−1

2n 2n
√
2(2n + 1)λ

{(σk − s) − 2ns} = (2n + 1)s

1
2n

−1

2n 2n
√
2(2n + 1)λ

(
σk

2n + 1
− s

)
,

j is strictly increasing on

[
0,

σk
2n + 1

]
, and strictly decreasing on

[
σk

2n + 1
, σk

]
. Note

also that j(0) = j(sk) = 0. Thus,

sup
0≤s≤σk

{
ρ−1(s) · (σk − s)

}

= ρ−1
(

σk
2n + 1

)(
σk − σk

2n + 1

)
=
{

σk

2(2n + 1)2λ

} 1
2n · 2n

2n + 1
σk

=
2n

(2n + 1){2(2n + 1)2λ}
1
2n

· (σk)1+
1
2n < ∞.

There are exactly two solutions in (0, sk) of the equation r-1(s) · (sk - s) = ∥w∥∞, or
equivalently, s(s − σk)2n − 2(2n + 1)λ||w||2n∞ = 0. Note that we have bigger X, if we

take s* to be the larger among them.
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Example 5. Consider the case

f (u, x) = (1 + εcosx)
[

k
1 + ε

u + λ{exp(au) − 1 − au}
]
, 0 ≤ ε ≤ 1

2
, a > 0,

in Example 2. Then we have r(t) = 2al {exp(at) - 1}, and hence

ρ−1(s) =
1
a
ln
(
1 +

s
2aλ

)
. Putting j(s) = r-1(s) · (sk - s), we have

φ′(s) =
d
ds

{
1
a
ln
(
1 +

s
2aλ

)
(σk − s)

}
=
1
a

⎧⎪⎨
⎪⎩

1
2aλ

1 +
s

2aλ

(σk − s) − ln
(
1 +

s

2aλ

)⎫⎪⎬
⎪⎭

=
1

2a2λ
(
1 +

s
2aλ

) {
(σk − s) − 2aλ

(
1 +

s
2aλ

)
ln
(
1 +

s
2aλ

)}

=
1

2a2λ
(
1 +

s
2aλ

) [
σk −

{
s + 2aλ

(
1 +

s
2aλ

)
ln
(
1 +

s
2aλ

)}]
.

It follows that j is strictly increasing on [0, s̃], and strictly decreasing on [s̃, σk] , and

hence, sup0≤s≤σk
{ρ−1(s) · (σk − s)} = φ(s̃) < ∞, where s̃ is the unique solution in (0,

sk) of the equation

σk −
{
s + 2aλ

(
1 +

s
2aλ

)
ln
(
1 +

s
2aλ

)}
= 0.

Again, there are exactly two solutions in (0, sk) of the equation r-1(s) · (sk - s) = ||

w||∞. Among them, we take s* to be preferably the larger.

Example 6. In Example 3, we took r as in (20), rather than r(t) = t, for the case f(u,

x) = ku. Then we have

ρ−1(s) =
1

(σk − s)2
− 1

σ 2k2
.

Let j(s) = r-1(s) · (sk - s). We can easily check that j is strictly increasing on [0, sk),
j(0) = 0, and lims®sk- j(s) = ∞. Thus, we have sup0≤s≤sk {r-1(s) · (sk - s)} = ∞. This

implies that we have no restriction on the upper bound of ∥w∥∞, which indeed is

expected with the linear equation (21). Note, however, this observation could not have

been possible to be made, if we took r(t) = t. The equation j(s) = ∥w∥∞, which is

equivalent to s2 - sk(2 + sk∥w∥∞)s + s3k3∥w∥∞ = 0, has the unique solution

s∗ = σk

⎧⎨
⎩
(
1 +

σk||w||∞
2

)
−
√
1 +

(
σk||w||∞

2

)2
⎫⎬
⎭

in (0, sk).

5.2 Contractiveness of the operator Ψ

Suppose u Î C0(ℝ). Then N [u] ∈ C0(R) by Lemma 1 (a), and again,

K[N [u]] ∈ C0(R) by Lemma 5. We also have K[w] ∈ C0(R) by W1 and Lemma 5.

Thus, we have �[u] = K[u] − K[N [u]] ∈ C0(R) for every u Î C0(ℝ). In short, the

operator Ψ is a well-defined map from C0(ℝ) into C0(ℝ). The next lemma confirms

that the solutions of (2) are the fixed points of Ψ in C0(ℝ).
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Lemma 7. Suppose u Î C4(ℝ) ∩ C0(ℝ) and u(i) Î L∞(ℝ) for i = 1, 2, 3, 4. Then u is a

solution of the differential equation (2), if and only if Ψ[u] = u.

Proof. Suppose u satisfies Ψ[u] = u. By Lemma 4 (a), we have

u(4) = �[u](4) = {K[w] − K[N [u]]}(4) = K[w](4) − K[N [u]](4)

=
{
−α4K[w] +

α4

k
w
}

−
{
−α4K[N [u]] +

α4

k
N [u]

}

=
α4

k
{w − N [u]} − α4{K[w] − K[N [u]]}

=
α4

k
{w − N [u]} − α4�[u] =

α4

k
{w − N [u]} − α4u,

and hence, u is a solution of (2) by (12).

Conversely, suppose u is a solution of (2), so that u(4) + α4u +
α4

k
N [u] =

α4

k
w by (12).

Applying the operator K , we get

K[u(4)] + α4K[u] +
α4

k
K[N [u]] =

α4

k
K[w],

and hence

�[u] = K[w] − K[N [u]] =
k
α4

K[u(4)] + kK[u] =
k
α4

K[u](4) + kK[u]

=
k

α4

{
−α4K[u] +

α4

k
u
}
+ kK[u] = u

by Lemma 4 (a), and (b), and the proof is complete.

Unfortunately, Ψ is not a contraction on the whole of C0(ℝ). Nevertheless, if we

restrict Ψ to the subset X of C0(ℝ) defined in (45), then we can show that Ψ is a con-

traction from X into X. This enables us to use the usual argument of the Banach fixed

point theorem, and to prove the existence and the uniqueness of the fixed point of Ψ,

which is the solution of the differential equation (2), at least in X.

Lemma 8. Ψ[u] Î X for every u Î X. Moreover, Ψ: X ® X is a contraction, i.e., ∥Ψ[u] -
Ψ[v]∥∞ ≤ L · ∥u - v∥∞ for every u, v Î X for some constant L < 1.

Proof. Suppose u Î X. Note that N [0] = 0 by F2, if we denote the zero function by

0(x) ≡ 0. Hence, by Lemma 1 (b) and Lemma 6 (a), we have

||�[u]||∞ = ||K[w] − K[N [u]]||∞ ≤ ||K[w]||∞ + ||K[N [u]]||∞
≤ τ

k
||w||∞ +

τ

k
||N [u]||∞ ≤ τ

k
||w||∞ +

τ

k
||N [u] − N [0]||∞

≤ τ

k
||w||∞ +

τ

k
· {(1 − η)k + ρ(||u||∞)} · ||u||∞,

where r is taken as in Lemma 1 (b). Hence, by (44) and (43), we have

||�[u]||∞ ≤ τ

k
||w||∞ +

τ

k
·
{
(1 − η)k + ρ

( ||w||∞
σk − s∗

)}
· ||w||∞
σk − s∗

=
τ

k
||w||∞ +

τ

k
· {(1 − η)k + ρ(ρ−1(s∗))} · ||w||∞

σk − s∗

=
τ

k

{
1 +

(1 − η)k + s∗
σk − s∗

}
||w||∞ =

τ (σ + 1 − η)
σk − s∗

||w||∞

=
τ

(
1 − τ

τ
+ η + 1 − η

)
σk − s∗

||w||∞ =
||w||∞
σk − s∗

,
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which shows Ψ[u] Î X.

Now suppose u, v Î X. Again by Lemma 6 (a) and Lemma 1 (b), we have

||�[u] − �[v]||∞ = ||{K[w] − K[N [u]]} − {K[w] − K[N [v]]}||∞ = ||K[N [u]] − K[N [v]]||∞
= ||K[N [u] − N [v]]||∞ ≤ 2τ

k
||N [u] − N [v]||∞

≤ τ

k
{(1 − η)k + ρ(max{||u||∞, ||v||∞})} · ||u − v||∞

≤ τ

k

{
(1 − η)k + ρ

( ||w||∞
σk − s∗

)}
· ||u − v||∞

=
τ

k
{(1 − η)k + ρ(ρ−1(s∗))} · ||u − v||∞ = τ

(
1 + η +

s∗
k

)
· ||u − v||∞.

Since 0 < s* <sk, we have

τ
(
1 − η +

s∗
k

)
< τ

(
1 − η +

σk
k

)
= τ (1 − η + σ ) = τ

(
1 − η +

1 − τ

τ
+ η

)
= 1

by (43). Thus, we have the desired inequality by taking L = τ
(
1 − η +

s∗
k

)
, and the

proof is complete.

Proposition 1. (Banach Fixed Point Theorem [20]) Let Y be a complete metric space

with the metric d(·, ·), and suppose the map F: Y ® Y satisfies d(F(y1), F(y2)) ≤ L · d(y1,

y2) for every y1, y2 Î Y for some constant L < 1. Then F has a unique fixed point in Y.

Moreover, for any y0 Î Y, the sequence {yn}∞n=0 , defined by yn = F(yn-1), n = 1, 2, ..., con-

verges to this unique fixed point.

Lemma 9. Ψ has a unique fixed point in X. Moreover, this fixed point, denoted by u*,

is in C4(ℝ), and u(i)∗ ∈ C0(R) for i = 1, 2, 3, 4.

Proof. The fact that Ψ has a unique fixed point in X is immediate from Proposition 1 and

Lemma 8, since X is a complete metric space with the metric ∥· - ·∥∞. Let u* be this unique
fixed point.

Take any u0 in X, and define un = Ψ[un-1], n = 1, 2, .... By Proposition 1, the sequence of

functions {un}∞n=0 in X converges uniformly to the fixed point u* Î X. We assume u0 Î C4

(ℝ) and u(i)0 ∈ C0(R) for i = 1, 2, 3, 4, which can always be achieved: For example, we

could take u0 to be the zero function. Suppose, for some n, un-1 Î C4(ℝ) and

u(i)n−1 ∈ C0(R) for i = 1, 2, 3, 4. Then N [un−1] ∈ C0(R) by Lemma 1 (a), since un-1 Î C0

(ℝ). Hence, K[N [un−1]] ∈ C4(R) by Lemma 4 (a), and K[N [un−1]](i) ∈ C0(R) , i = 1, 2,

3, 4 by Lemma 5. Since w Î C0(ℝ) by W1, we also have K[w] ∈ C4(R) by Lemma 4 (a),

and K[w](i) ∈ C0(R) for i = 1, 2, 3, 4 by Lemma 5. Hence, we have un Î C4(ℝ) and

u(i)n ∈ C0(R) for i = 1, 2, 3, 4, since un = �[un−1] = K[w] − K[N [un−1]] . Thus, by induc-

tion on n, we have un Î C4(ℝ) and u(i)n ∈ C0(R) for i = 1, 2, 3, 4, for every n = 0, 1, 2, ....

By Lemma 6 (b), we have ||K[u](i)||∞ ≤ A · ||u||∞, i = 1, 2, 3, 4, for every u Î C0(ℝ)

⊂ C(ℝ) ∩ L∞(ℝ), where we put

A = max
{
max
i=1,2,3

ταi

k
exp

(
3iπ
4

)
,
(τ + 1)α4

k

}
.
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Hence, we have∥∥∥u(i)n+1 − u(i)n
∥∥∥

∞
=
∥∥∥�[un]

(i) − �[un−1]
(i)
∥∥∥

∞
=
∥∥∥{K[w] − K[N [un]]}(i) − {K[w] − K[N [un−1]]}(i)

∥∥∥
∞

=
∥∥∥K[N [un]]

(i) − K[N [un−1]]
(i)
∥∥∥

∞
=
∥∥∥K[N [un] − N [un−1]]

(i)
∥∥∥

∞
≤ A · ||N [un] − N [un−1]||∞, i = 1, 2, 3, 4,

(47)

for every n = 0, 1, 2, ..., since N [un] − N [un−1] ∈ C0(R) . Since un-1, un Î X ⊂ L∞(ℝ),

we have∥∥∥u(i)n+1 − u(i)n
∥∥∥

∞
≤ A{k + ρ(max{||un||∞, ||un−1||∞})} · ||un − un−1||∞

≤ A
{
k + ρ

( ||w||∞
σk − s∗

)}
· ||un − un−1||∞

= A{k + ρ(ρ−1(s∗))}.||un − un−1||∞
= A(k + s∗) · ||un − un−1||∞, i = 1, 2, 3, 4

(48)

by Lemma 1 (b) and (44), (47). Since

||un+1 − un||∞ = ||�[un] − �[un−1]||∞ ≤ L · ||un − un−1||∞, n = 1, 2, . . .

by Lemma 8, we have

||un − un−1||∞ ≤ Ln−1 · ||u1 − u0||∞, n = 1, 2, . . . . (49)

Combining (48) and (49), we have∥∥∥u(i)n+1 − u(i)n
∥∥∥

∞
≤ A(k + s∗)||u1 − u0||∞ · Ln−1, n = 1, 2, . . . , i = 1, 2, 3, 4. (50)

Let � > 0. Since 0 ≤ L < 1, we can take N large enough so that

LN

1 − L
· A(k + s∗)||u1 − u0||∞ < ε. (51)

Let m, n >N. Assume m >n with no loss of generality. Then by (50) and (51), we

have

∥∥∥u(i)m − u(i)n
∥∥∥

∞
=

∥∥∥∥∥∥
m−n−1∑

j=0

(
u(i)n+j+1 − u(i)n+j

)∥∥∥∥∥∥
∞

≤
m−n−1∑

j=0

∥∥∥u(i)n+j+1 − u(i)n+j

∥∥∥
∞

≤
m−n−1∑

j=0

Ln+j−1 · A(k + s∗)||u1 − u0||∞ ≤ Ln−1

1 − L
· A(k + s∗)||u1 − u0||∞

≤ LN

1 − L
· A(k + s∗)||u1 − u2||∞ < ε, i = 1, 2, 3, 4.

This implies that, for every i = 1, 2, 3, 4, the sequence {u(i)n }∞n=0 is Cauchy in C0(ℝ)

with respect to the metric ∥· - ·∥∞, and hence, converges uniformly to a function vi Î
C0(R). So by Lemma 10 below, u* Î C1(ℝ) and u′

∗ = v1 , since un converges uniformly

to u* and u′
n converges uniformly to v1. Applying Lemma 10 again to u′

n , we see that

v1 Î C1(ℝ) and v′i = v2 . By repeating the same argument, we see that v2 Î C1(ℝ),
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u(i)∗ = v1 ∈ C0(R) , and v3 Î C1(ℝ), v′3 = v4 . Thus, we have u* Î C4(ℝ) and

u(i)∗ = v1 ∈ C0(R) for i = 1, 2, 3, 4. Hence, the proof is complete.

Lemma 10. Suppose a sequence of functions {gn}∞n=1 in C1(ℝ) converges uniformly to a

function g. Suppose also g′
n converges uniformly to a function h. Then g Î C1(ℝ) and g’ = h.

Proof. Fix x0 Î ℝ, and define hn : ℝ ® ℝ, n = 1, 2, ... by

hn(x) =

⎧⎨
⎩

gn(x) − gn(x0)
x − x0

, x �= x0,

g′
n(x0), x = x0.

,

which is continuous since gn Î C1(ℝ). Note that hn(x0) = g′
n(x0) → h(x0) as n ® ∞.

For x ≠ x0, we have

hm(x) − hn(x) =
gm(x) − gm(x0)

x − x0
− gn(x) − gn(x0)

x − x0

=
1

x − x0
[{gm(x) − gn(x)} − {gm(x0) − gn(x0)}]

=
1

x − x0
· {g′

m(ξ) − g′
n(ξ)}(x − x0) = g′

m(ξ) − g′
n(ξ)

for some ξ between x0 and x by the mean value theorem for gm - gn. Thus, we have

||hm − hn||∞ ≤ ||g′
m − g′

n||∞ for any m, n. It follows that hn converges uniformly to a

continuous function, since g′
n converges uniformly. Note that

lim
x→x0

g(x) − g(x0)
x − x0

= lim
x→x0

lim
n→∞

gn(x) − gn(x0)
x − x0

= lim
x→x0

lim
n→∞ hn(x). (52)

Since hn converges uniformly, we can change the order of the limit in (52), so that

lim
x→x0

lim
n→∞ hn(x) = lim

n→∞ lim
x→x0

hn(x) = lim
n→∞ g′

n(x0) = h(x0).

Hence, g′(x0) = limx→x0
g(x) − g(x0)

x − x0
exists, and is equal to h(x0). Thus, the proof is

complete, since x0 is arbitrary.

Now the following main result of the article is immediate from Lemmas 9 and 7.

Theorem Suppose the functions f(u, x) and w(x) satisfy the conditions F1, F2, F3, F4,

and W1, W2. Then the differential equation (2) has a unique solution in

X =
{
u ∈ C0(R)

∣∣∣∣||u||∞ ≤ ||w||∞
σk − s∗

}
,

where k, s, s* are as defined in (11), (43), (44) respectively. Moreover, the unique solu-

tion, denoted by u*, satisfies limx→±∞u(i)∗ (x) = 0 for i = 1, 2, 3, 4.

6 Concluding remarks
It is intuitively clear that the nature of the resulting beam deflection depends on both

the nonlinearity and the non-uniformity of the given elastic foundation. In this study,

we introduced a physical parameter h in (14) measuring the non-uniformity, and a

function r in Lemma 1 which mainly measures the nonlinearity. Accordingly, the pair

(h, r) may be considered as a systematic encoding of the non-uniformity and the
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nonlinearity of the given foundation. Together with the maximal linear spring constant

k in (11) at the equilibrium state u ≡ 0, h and r capture the dominating mechanical

properties of the present beam problem represented by the differential equation (2).

We transformed the original nonlinear differential equation into an equivalent non-

linear integral equation Ψ[u] = u, thereby positioning our problem into the realm of the

fixed point theory. However, the integral operator Ψ is not a contraction in the whole

function space C0(ℝ) equipped with the usual sup-norm ∥·∥∞. The reason for this is two-

fold: first, the nonlinearity of the elastic foundation, encoded in the function r, makes Ψ

expansive for functions with large norms, which can be seen from Lemma 1 (b). Second,

the value of the constant τ which gives the L∞-norm of the operator K in Lemma 6 (a),

is greater than 1. Because of this, too much non-uniformity of the elastic foundation,

encoded in the parameter h, can also contribute to the non-contractiveness of Ψ.

Thus to resort to the Banach fixed point theorem, it is necessary to find a subspace

smaller than C0(ℝ), where the operator Ψ is contractive. This “shrinking the space”

idea also conforms with the physical intuition that the norm of the resulting beam

deflection cannot be too large compared to that of the input loading w. Meanwhile,

the nonlinearity and the non-uniformity of the system suggest that the norm of the

loading w itself should also be bounded. All these heuristic ideas were materialized

into the actual construction of the upper-bound in W2 and the subspace X, which,

besides the input loading w, depend only on the three main attributes k, h, and r of

the given mechanical system.

The subspace we are looking for should satisfy two conditions other than complete-

ness: first, it should be invariant under the operator Ψ. Second, the restriction of Ψ to

it should be contractive. Once we proved in Lemma 8 that the function space X actu-

ally satisfies these conditions, the existence and the uniqueness of the solution in

Lemma 9 follows immediately from the Banach fixed point theorem. Note carefully

that Lemma 7 establishes the equivalence between the original differential equation (2)

and our integral equation (9), only for solutions satisfying the regularity condition to

be in C4(ℝ). In this respect, what Lemma 9 is really up to are the regularity of the

unique solution thus found, and its behavior at infinity. Consequently, the main theo-

rem in Section 5.2 states that the unique solution u* has enough regularity for the dif-

ferential equation (2), and satisfies our boundary condition (3), and hence, is the

solution of the present nonlinear boundary value problem.
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