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Abstract

Background: Real-time RT-PCR is the recommended method for quantitative gene expression
analysis. A compulsory step is the selection of good reference genes for normalization. A few genes
often referred to as HouseKeeping Genes (HSK), such as ACT/, RDN/8 or PDAI| are among the
most commonly used, as their expression is assumed to remain unchanged over a wide range of
conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully
selected internal control genes is now strongly recommended for normalization to avoid this
problem of expression variation of single reference genes. The aim of this work was to search for
a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae.

Results: From public microarray datasets, we selected potential reference genes whose
expression remained apparently invariable during long-term growth on glucose. Using the
algorithm geNorm, ALGY, TAFI0, TFC| and UBC6 turned out to be genes whose expression
remained stable, independent of the growth conditions and the strain backgrounds tested in this
study. We then showed that the geometric averaging of any subset of three genes among the six
most stable genes resulted in very similar normalized data, which contrasted with inconsistent
results among various biological samples when the normalization was performed with ACTI.
Normalization with multiple selected genes was therefore applied to transcriptional analysis of
genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH
and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was
no induction of these two genes at this transition phase on galactose, although in both cases, the
kinetics of glycogen accumulation was similar. In contrast, SGA| expression was independent of the
carbon source and increased by 3-fold in stationary phase.

Conclusion: In this work, we provided a set of genes that are suitable reference genes for
quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a
large panel of physiological states. In contrast, we invalidated and discourage the use of ACT/ as
well as other commonly used reference genes (PDAI, TDH3, RDN 8, etc) as internal controls for
quantitative gene expression analysis in yeast.
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Background

Real-time PCR technology has recently reached a level of
sensitivity, accuracy and practical simplicity allowing its
use as a routine bioinstrumentation for pathogen detec-
tion, single nucleotide polymorphism and gene expres-
sion analysis [1-4]. In particular for the latter application,
several controls are needed to ensure the integrity of each
step along the process [5] and therefore, to obtain reliable
and accurate results. This process includes RNA extraction
(vield, integrity, DNA contamination), efficiency of the
reverse transcription and PCR steps, amount of RNA
added into the reaction, etc. While the quantitative RT-
PCR is technically robust, the normalization procedure to
correct sample-to-sample variation remains a critical and
challenging problem of this method [1,4,6,7]. Several
procedures have been suggested based on physical param-
eters, such as volume or cell number, but these methods
are either impractical or unreliable due to the heterogene-
ity of biological samples. Some authors favour an internal
control strategy, which uses an alien RNA molecule that is
artificially incorporated into the biological sample [7]. As
an example, Liu & Slininger proposed a set of universal
external RNA calibrators for microbial mRNA expression
analysis [8]. In spite of these initiatives, the most common
practice is to normalize to either total RNA amount, ribos-
omal RNA or to a single internal reference gene termed
HouseKeeping gene (HSK). Several mathematical models
have been developed that calculate the "relative” mRNA
expression changes of a target gene with respect to an
HSK. The "2AACt" approach [9] is the most popular appli-
cation in quantitative RT-PCR, but it assumes optimal and
identical PCR efficiencies of target and reference genes.
Violation of this rule results in a systematic bias that either
underestimates or overestimates the initial copy numbers.
This problem can be bypassed by adjusting for PCR effi-
ciency, which can be estimated using many approaches
[10-12] that can be separated into three groups [12]: serial
dilutions, individual graph analysis based on the rate of
fluorescence accumulation within the exponential region,
or mathematical model fitting. Whatever the method
employed for determining the PCR efficiency, accurate rel-
ative quantification implies that the expression of the ref-
erence gene is perfectly stable in the sample set.

It is empirically assumed that housekeeping genes fulfil
the criterion of unregulated expression independent of
the experimental condition. However, some evidence
shows that these genes are regulated to some extent, rein-
forcing the idea that there is no universal reference gene
whose expression level remains constant whatever the
conditions [2]. Since even small variations of an internal
control could lead to non-reliable expression data, it is
critical to validate that the expression of reference genes is
stable prior to their use for normalization in real time RT-
PCR analysis. To overcome the "circular problem" of eval-
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uating the expression stability of a candidate gene if no
reliable measure is available to normalize the candidate
[13], Vandesompele and colleagues [14] developed a sta-
tistical algorithm termed geNorm. Their strategy relied on
(i) a careful selection of a set of genes that display mini-
mal variation across different biological conditions, and
(ii) normalization of the genes of interest to the geometric
mean of a minimal, albeit optimal number of the selected
genes. The strength of using geometric averaging is in
smoothing the individual variation of the expression
value of a single reference gene, which can lead to large
errors of normalized data in samples of interest [14].
Other statistical algorithms were also proposed, e.g. Best-
keeper [15], which allows including up to ten genes of
interest in the analysis, or Normfinder [13] that is appar-
ently less sensitive toward coregulation of the candidate
reference genes.

Real-time RT-PCR is commonly used to validate microar-
ray-generated data [16,17]. ACT1 and RDN18 are among
the most frequently used reference genes in S. cerevisiae
studies, because the expression of these genes has been
considered relatively stable under the conditions investi-
gated. However, only two recent papers showed the stabil-
ity of ACT1 expression and some other standard reference
genes to normalize the expression of genes involved in
central carbon metabolism during short-term glucose
pulse [18], or during the rehydration process in active dry
yeast [19]. With the notable exception of these works, we
could not find any study dedicated to the selection and
validation of suitable reference genes in S. cerevisaie, con-
trary to other fungal models such as the pathogenic yeast
Candida albicans [20], and the fungi Metarhizium anisopliae
[21] and Aspergillus niger [22]. Therefore, the purpose of
the present work was to identify a robust set of reference
genes for growth phase-related mRNA profiling in the
yeast Saccharomyces cerevisiae. From public microarray
datasets, we selected a set of potential reference genes that
exhibited minimal variation among various conditions.
The most stable subset of internal controls, which gave
rise to a robust normalization factor, was then applied to
quantify expression of genes involved in glycogen metab-
olism in response to changing growth conditions, and in
a mutant defective in TPS1 which encodes the trehalose-
6P synthase subunit [23].

Results

Sampling

Cell samples were regularly harvested from the yeast cul-
tures, and only samples from key physiological states were
selected and used for mRNA quantification by real time
RT-PCR assays (Figure 1 and Additional files 1 and 2).
These physiological states were defined from the macrok-
inetic growth parameters and reserve carbohydrates pro-
files as follows: the exponential - respiro fermentative-
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Schematic view of growth characteristics of a WT strain and its tps| derivative. Growth (cells) and glycogen pro-
files during cultures of CEN.PK strains on galactose. WT (left, set D from Figure 2) and tps/ (right, set H from Figure 2). EP,
Exponential Phase; DS, Diauxic Shift; PDS, Post-Diauxic Shift; SP, Stationary Phase. Original data and sampling numbering can
be found in the Additional files. Cells (ODy), Glycogen (1ig eq.glucose/OD unit).

phase (EP); the diauxic shift (DS), which corresponds to
the time when the sugar has just been exhausted from the
medium while glycogen shows a transient peak of accu-
mulation; the post-diauxic or purely respiratory phase
(PDS), which corresponds to the re-assimilation of fer-
mentation products and to a second phase of glycogen
accumulation; and finally, the stationary phase (SP) when
cells are starved for carbon nutrient. Contrary to the wild
type strain behaviour, the tps1 mutant significantly mobi-
lized glycogen during the PDS phase, and consequently
more samples were taken up during this period to better
characterize the physiological state of this mutant in this
growth phase (see also additional file 2 for details of the
sampling). In total, we carried out six independent yeast
cultures (Figure 2). The wild type KT strain was grown on
glucose (sample set B) as the basic and reference growth
condition [24]. It was also cultivated on galactose (set C),
which was used as the growth control condition for #ps1
mutant since this mutant strain cannot grow on glucose
[25]. Finally, cultures on galactose of the CEN.PK strain
and the corresponding tps1 mutant were made in dupli-
cates (sets D & E for the wild type CEN.PK and sets H & |
for the tps1 mutant).

Expression level and stability of candidate reference genes
As stated in the introduction, accurate normalization
requires reference genes whose expression changes are
negligible under the investigated conditions. Candidate
genes were therefore identified using public microarray
datasets from De Risi et al [26] and Gasch et al [27],
because the culture conditions reported in these studies

were the closest to our experimental setup. We selected
eight potential reference genes based on the stability of
their expression during growth on glucose (genes high-
lighted in bold in Table 1), taking care that these genes
belong to different functional categories to minimize the
risk of coregulation. The remaining genes listed in Table 1,
i.e. ACT1, PDA1, RDN18, IPP1 and TDH3, were also
included in the list since they are traditionally used as sin-
gle reference genes in expression studies by Northern blots
or real time RT-PCR.

Transcription profiling using real-time RT-PCR assays was
then performed with these 13 candidate genes, in samples
from the 6 cultures. We first analyzed transcript abun-
dance of these genes in the different samples by direct
comparison of their cycle threshold (Ct), assuming equal
Ct for equal transcript number since all RT-PCR reactions
were performed with equal quantity of total RNA. As can
be seen in Figure 3, most of the selected genes presented
Ct values that spanned from 20 to 30 cycles, while Ct val-
ues from RDN18 and TDH3 were clearly lower. For
RDN18, these values centered around 8 cycles with a very
low dispersion. The glycolytic gene TDH3 was also highly
expressed as indicated by Ct values around 17 cycles, but
it exhibited rather high dispersion over the growth phases
and culture conditions as indicated by large whiskers of
the box and many outliers. The Ct of the remaining
selected genes showed a reasonable dispersion, with
expression levels of ALG9, KRE11, TAF10, TFC1 and UBC6
exhibiting smaller variation than that of ACT1, HEM2,
IPP1 or PDAL.
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V(n/n+1)

(2/3) 0.098
(2/3) 0.080
(2/3) 0.088
(3/4) 0.112
(2/3) 0.098
(5/6) 0.150
(5/6) 0.141
(2/3) 0.134
(2/3) 0.095
(3/4) 0.131
(2/3) 0.133
(2/3) 0.113
(3/4) 0.142

Sample sets and Ranking of candidate reference genes as calculated by geNorm. Left panel: Independent cultures
(illustrated by the boxes) were carried out: Wild type KT strain on glucose (sample set B) and galactose (set C); Wild type
CEN.PK (set D & set E as independent cultures) and its tps/ derivative strain (set H & set | as independent cultures), on galac-
tose. Sampling [S#] was performed all along the cultures with a posteriori selection and analysis of 4 to 7 RNA samples repre-
sentative of different physiological states (e.g. samples | to 5 for growth of the KT strain on glucose; see Additional file I).
Expression data from one culture (e.g. set B/) or from several cultures (connector between boxes, e.g. set A/that includes sam-
ples from sets B & C together) were then analyzed with geNorm (A ~M sample sets). Right panel: Synthetic overview of rank-
ing of the candidate reference genes according to their expression stability, and determination of the optimal number of genes
used for normalization. The 2 most stable genes (black circle), the third (dashed circle) and the following 3 best reference
genes (empty circle). Pair-wise variation (V,,+,) between NF_ and NF ., (NF: normalization factor; n: number of genes used for
NF calculation). Right Column: pair-wise variation value below the threshold 0.15, which means that n genes might be sufficient
for NF calculation (i.e. 2 genes for set "A"). See additional file 3 for overall stability under the standard geNorm output format.

These raw Ct data were then analyzed using geNorm to
identify the most suitable candidate genes. For each inde-
pendent culture (e.g. sample set B, Figure 2 left panel), or
pool of several cultures (e.g. set A that combined samples
from cultures B & C), the 13 genes were ranked according
to their gene expression stability measure "M" (Figure 2,
right panel, and additional file 3). All genes presented an
M value below 1.5, which is the default limit for accepta-
ble expression stability as defined by Vandesompele et al
[14]. Another advantage of geNorm is to provide the opti-
mal number of reference genes required for accurate nor-
malization. This number is obtained by calculating the
Pairwise variation values (V1)) between each combi-
nation of sequential normalization factors (NF) (Figure 2,
right column). Vandesompele and coworkers [14] recom-
mended a cut-off value at 0.15, below which the inclusion
of an additional gene does not result in a significant
improvement of the normalization. According to this cri-
terion, TAF10 and UBC6 turned out to be sufficient as
internal controls to normalize expression levels from sam-
ples taken from growth on glucose (set A, V,;3 = 0.098),
whereas 5 genes were required for normalizing gene
expression from the data sets F and G (V5,5 = 0.150 and

0.141, respectively). According to the recommendation of
Vandesompele et al [14], we always used a minimum of
three of the most stably expressed genes to calculate the
normalization factor. From this analysis, ACT1, IPP1 and
TDH3 were excluded from the set of selected genes for
normalization as they always ranked among the worst
candidates. In contrast, ALG9, TAF10, TFC1, UBC6 and to
a lesser extent KRE11 turned out to be the most stable
genes in the culture conditions tested in this study (Figure
2 right panel, additional file 3).

To further support this conclusion and the suitability of
this set of genes to serve as a reference in a broader panel
of experimental conditions, we examined gene stability of
these candidate reference genes by using data from the
entire microarray datasets from the SGD server (approx. 30
experiments), which altogether correspond to several
hundred different experimental conditions. As can be
seen in Figure 4, genes like ALG9, TAF10, TFC1, UBC6 pre-
sented a significantly higher number of experiments with
a log2 ratio close to zero as compared to ACT1. This
microarray survey analysis indicated that our initially
selected genes exhibited very little expression change over
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Table I: List of candidate reference genes and genes of interest
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Name Molecular Function (SGD curated)/Biological process Primer sequence Eff
Candidate reference genes
ACTI Structural constituent of cytoskeleton/Cell polarization, endocytosis, FATTATATGTTTAGAGGTTGCTGCTTTGG 94
and other cytoskeletal functions R:CAATTCGTTGTAGAAGGTATGATGCC
ALGY Mannosyltransferase activity/Protein amino acid glycosylation F:CACGGATAGTGGCTTTGGTGAACAATTAC 93
R-TATGATTATCTGGCAGCAGGAAAGAACTTGGG
FPR2  Membrane-bound peptidyl-prolyl cis-trans isomerase activity/Unknown FTCTTTATTAGAATCGGGAACTGTATTTGACTC 89
R:AATGACGCCTGGGACACCTCTTTC
HEM2 Porphobilinogen synthase activity/Heme biosynthesis F-TTCCGCTATTCATCTCCGATAATCCAG 95
R:ACAGACATCGCAAATAATATACAGTTCAGG
IPPI Inorganic diphosphatase activity/Phosphate metabolic process F:CCCAATCATCCAAGACACCAAGAAGG 90
R:AGCAATAGTTTCACCAATTTCCAACACATC
KREI I Unknown/ER to Golgi vesicle-mediated transport F-AACTGGTTCTGTTACCCAAATCAACTCAAC 86
R:AACGCTTCAATGTGACTTCTGTTTCCC
PDAI Pyruvate dehydrogenase activity/Pyruvate metabolism FATTTGCCCGTCGTGTTTTGCTGTG 93
R-TATGCTGAATCTCGTCTCTAGTTCTGTAGG
RDNI8 Sstructural constituent of ribosome/Translation F:AACTCACCAGGTCCAGACACAATAAGG 93
R:AAGGTCTCGTTCGTTATCGCAATTAAGC
RPN2  Protein binding, bridging/Ubiquitin-dependent protein catabolic process F:-GCGGATACAGGCACATTGGATACC 101
RTGTTGCTACCTTCTCTACCTCCTTACC
TAFI0 RNA Pol Il transcription factor activity/Transcription initiation and FATATTCCAGGATCAGGTCTTCCGTAGC 96
chromatin modification R:GTAGTCTTCTCATTCTGTTGATGTTGTTGTTG
TDH3  Glyceraldehyde-3P dehydrogenase (phosphorylating) activity/Glycolysis F:CGGTAGATACGCTGGTGAAGTTTC 91
& Gluconeogenesis R:TGGAAGATGGAGCAGTGATAACAAC
TFCI  RNA Pol lll transcription factor activity/Transcription initiation on Pol Il F:-GCTGGCACTCATATCTTATCGTTTCACAATGG 91
promoter R:GAACCTGCTGTCAATACCGCCTGGAG
UBCé6 Ubiquitin-protein ligase activity/ER-associated protein catabolic process F:GATACTTGGAATCCTGGCTGGTCTGTCTC 84
R:AAAGGGTCTTCTGTTTCATCACCTGTATTTGC
Genes of interest (GOIs) in glycogen metabolism
GPH I Glycogen phosphorylase activity/Glycogen catabolic process F:ACAAAACTCAGCAGAAATTCACCACAAG 90
R:CAAGACGACCTAGACCACCATTACC
GSY2 Glycogen synthase activity/Glycogen biosynthetic process F-TGCCCAGTATAAAGACCATTACCACTTGATAGG 86
R:GCACCTTCAATCAGCCACCTCCCATAAAC
SGAI glucan |,4-alpha-glucosidase activity/Glycogen catabolic process F-TCCAAACGGATATTTCCTGGGTGGTACTGAG 89

R:GCATGATCTATTGTGTTTACATTAGCGGGTAG

Function of candidate reference genes and GOls as annotated in the SGD database http://db.yeastgenome.org. All ORF sequences were recovered
from the SGD database. Forward (F) and reverse (R) primer sequences; PCR amplification efficiency (Eff). Genes highlighted in bold were selected

from their apparent stability during growth on glucose (public microarray datasets from De Risi et al [26] and Gasch et al [27]). The remaining

reference genes are commonly used internal controls in yeast studies.
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Figure 3

Distribution overview of expression levels (Ct) of the different genes. Boxplot representation of raw Ct values
obtained from amplification curves. Lower and upper boundaries of the box indicate the 25th and the 75th percentile, respec-
tively, the thin line within the box marks the median, and the whiskers (error bars) below and above the box indicate the 10th
and 90th percentiles. Mean (thick line) and outliers (*). Complete RNA sample set from the study (n = 32, grey), sample set "A"
(n =9, yellow; see Figure 2, Glucose + Galactose) and sample set "K" (n = 11, green; see Figure 2, WT + tps| A). As stated in
methods, the 25 pL reaction mixes contained 5 pL of cDNA preparation diluted 10 times, except for RDN /8 where cDNA
was diluted 50 times. For a easy and preliminary estimation of the relative expression of a gene between two samples, a differ-
ence of 3.33 Ct with 100% PCR efficiency represents 10-fold over-expression or repression between two conditions (N,/N, =
(1+Eff)*(Ct,-Ct,)); With PCR efficiency correction, the same Ct difference with only 90% efficiency signifies a 8.5-fold variation

of transcripts between the two samples.

a wide range of experimental conditions. Therefore, this
set of genes, ALG9, TAF10, TFC1 and UBC6 should be
preferentially used to calculate normalization factors in
quantitative RT-PCR expression analysis in the yeast S. cer-
evisiae.

Impact of reference gene selection on expression ratio
values

The strength of GeNorm to select the most suitable refer-
ence genes was demonstrated by comparing normalized
data calculated from different subsets of potential HSKs.
As is shown in Figure 5, the use of a normalization factor
based on the geometric mean of expression levels of

UBC6, TAF10 and ALGY (NF(pce rario, aico)) Yielded
expected expression patterns of the glycogen metabolic
genes GSY2 and GPH1 during growth of the KT strain on
glucose (see last results section for more details). Ratios of
expression values were almost identical using the follow-
ing 3 best genes based on geNorm classification (NFypc;,
KkrE11, FRP2), COmpare grey and hatched bars) or applying
the normalization factor calculated from the six best genes
together (NFg pey) Dot plotted). These results showed
that, at least in this condition, any subset of three genes
among the most stably expressed candidates was suffi-
cient to calculate robust NF and to normalize expression
of Genes of Interest (GOls).
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Expression summary as reported in the SGD Expres-
sion Connection tool. For each gene (depicted by different
color lines), the pattern that is reported in this figure is a
copy of the "expression summary" histogram that was
obtained using the Expression Connection tool from the
SGD server http://www.yeastgenome.org. This graph indi-
cates the number of samples (also called 'experiments' on the
SGD server), at a given expression ratio value, that could be
found in all the microarray datasets stored on the SGD
server (i.e. approx. 30 studies). The expression data reported
on the axis are in log2 scale.

The advantage of using validated genes for normalization
was further analyzed comparing expression results after
normalization (NFyc6 ar10, aLco)s €t€) to those obtained
by using non-validated reference genes, e.g. ACTI
(NF(acrr)) or a combination of ACT1, PDAI and IPP1
(NFiacri, ppa1, 1pp1))- As it could be expected from the
coregulation of these three genes during growth on glu-
cose (Figure 5), identical expression data were obtained
with NF(,cryand NFcri, ppai, pp1) @s normalization fac-
tors (compare empty and black dots for RDN18 and GOlIs
normalized expression data). In contrast, a strong discrep-
ancy between normalization to ACT1 and normalization
to validated genes was observed in biological samples col-
lected in the post-diauxic phase (#3 and #4) and in the
stationary phase (#5). This strong deviation could be
explained by the drop of ACT1 mRNA as well as that of
transcripts of other HSK genes (IPP1 and PDA1) during
these growth phases (Figure 5). To better visualize the
advantage of using normalization to validated genes, data

http://www.biomedcentral.com/1471-2199/10/99

from sample set B were reported on a scatter plot (Figure
6), comparing data normalized to NF(rpcy, kge11, pre2) and
NF(scr1), respectively, to those normalized to NFpqq
TAF10, ALG9) (Figure 6). A regression coefficient close to one
(R? = 0.997) was calculated for NF e, rp11, pre2) versus
NF(ugcs, tario, aige)- In contrast, the coefficient was
extremely low for NF oy versus NF(pcs, ario, arcoy (R? =
0.598), mainly due to expression data from PDS and SP
samples.

Similar analyses were carried out by using different bio-
logical situations, as for instance, in a biological set com-
bining samples from cultures on glucose and galactose to
analyze the influence of the carbon source (Figure 7, set
A), or from wild type and #s1 mutants to analyze the
impact of the mutation on the expression data (Figure 8,
set K). Again, discrepancies in ratios of expression values
calculated by normalization to the "best reference genes"
and to ACT1, respectively, were evident in samples col-
lected from yeast cultures entering the diauxic shift. The
difference was even more pronounced with late stationary
phase samples, as the difference could reach almost 10-
fold between the two procedures (see Figure 7 &8). This
discrepancy was visualized in the scatter plots presented
in Figure 9, which report a larger range of ratio values than
those in Figures 7 &8. As expected, data from (NFp;q,
FRP2, ALG9)) Versus (NFupcs, rrci, kre1) aligned with a good
regression coefficient (panel A, R2 = 0.916), while
NF(4cr,) did not correlate at all with NF(ygc6, trct, kre11)
as shown by the worst regression coefficient of the study
(panel B, RZ = 0.124). Altogether, these results demon-
strated the benefit of using multiple selected genes instead
of a single, non-validated gene (e.g. ACT1) for accurate
and reliable data normalization.

Application to quantitative expression analysis of genes
involved in glycogen metabolism

To test the robustness of this subset of selected reference
genes, we analyzed the transcriptional regulation of genes
involved in glycogen metabolism in this yeast. It has been
reported that large variations of reserve carbohydrate con-
tent are associated with coordinated transcriptional regu-
lation of the cognate genes in response to changing
growth conditions or under various genetic contexts
[23,24,28-33]. When examining raw Ct values from GPH1
(glycogen phosphorylase) and GSY2 (glycogen synthase)
in the complete dataset (Figure 3), the very long whiskers
of the boxes and numerous outliers confirmed the high
variability of the expression of these two genes. On the
contrary, the SGA1 gene encoding the vacuolar amylo-1,4
-1,6 glucosidase [34] exhibited much lower dispersion of
Ctvalues, indicating smaller expression change than GSY2
and GPH1 under our growth conditions. Using the 3 best
reference genes for data normalization (NF s Tario,
ALGo)), we confirmed the induction of GSY2 and GPH1
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Effect of normalization strategies on expression ratios. Normalized expression of ACT/, PDAI, IPPI, RDN I8, GPHI,
GSY2 and SGAI, in 5 characteristic samples during growth on glucose (i.e. set "B" in Figure 2): early exponential phase (respiro-
fermentative), entry in (disappearance of glucose) and exit from the diauxic shift, mid of post-diauxic (respiratory) growth, and
3 days stationary phase. The exponential phase sample (S#1) was used as calibrator. Normalization was performed using the
three most stable genes (NFyacq ari0, aLco) dashed bar), the following 3 best (NI}TFC,, KRE! 1, FRP2)» 8rey bar), ACT [ alone

(NFacri), black diamond) or using ACT1, PDAI and IPP] (NF ¢y ppa, ipp1y, €mMpty

iamond). Normalized expression data and

error bars were calculated using the gene expression module of the BIORAD iQ5 software, which follows models and error
propagation rules outlined in the geNorm manual. For the sake of clarity, we did not plot standard deviation of ratios obtained

from NFucr ppai, epiy:

between the exponential phase (S#1, calibrator sample)
and the entry into the diauxic shift (S#2), and found
remarkable expression ratios close to 20 for GSY2 and
almost 100 for GPH1 (Figure 5). Moreover, this normali-
zation procedure allowed us to show that the expression
of these two genes dropped immediately after the diauxic
shift, to return to the initial level in stationary phase for
GSY2, or close to it for GPH1, while ACT1 normalization
indicated stable and high expression of these two genes all
along these growth phases. In contrast to GSY2 and GPH1,
the expression of SGA1 showed a modest increase when
cells entered the diauxic shift to reach a 3-fold activation
in the stationary phase. We also analyzed for the first time
transcriptional patterns in galactose-grown cells (Figure
7). Unexpectedly, the expression of GPH1 and GSY2 was
already very high in the exponential phase (S#6) as com-
pared to cultures on glucose (S#1), and it did not further
increase as cells entered the diauxic shift on this carbon

source, whereas glycogen accumulated with a kinetic
almost similar to that on glucose (see additional files 1
&2). The expression of these two genes then dropped dur-
ing the post diauxic phase to reach levels even lower than
on glucose in the stationary phase. In contrast to GPH1
and GSY2, SGAI expression was not affected by the car-
bon source. Finally, expression patterns of these three
genes on galactose were the same in the CEN.PK genetic
background (Figure 8) as in the KT strain (Figure 7).

The loss of TPS1 function had a strong impact on the gly-
cogen accumulation pattern on galactose, as it caused
hyper-accumulation of the polymer at the end of the
exponential phase, and also promoted its rapid and sus-
tained degradation during post-diauxic and stationary
phases (Figure 1, and in additional file 2). Therefore, to
get a preliminary idea on how this mutation could alter
the glycogen kinetics at the transcriptional level, we quan-
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Figure 6

Degree of correlation between normalization strate-
gies in simple datasets. Scatter plot of the data illustrated
in Figure 5. X axis: ratios calculated using the three most sta-
ble genes (NFyace, 1ar10, aLce))s Y axis: ratios calculated using
NF rci, kren1, rreo) (8reen diamond) or NFcr) (purple
square). Horizontal and vertical error bars: Standard devia-
tion on X and Y ratio, respectively. Grey Dotted line: y = x.
The equation and correlation coefficient of the linear regres-
sion fit (not reported) are y = 0,9178x, R2 = 0,997 (green dia-
monds), and y = 0,9327x, R2= 0,598 (purple squares).

tified the expression of GSY2, GPH1 and SGA1 during
growth on galactose of the WT and its tps1 derivative
strain. It is shown in Figure 8 that the expression pattern
of GPH1 or GSY2 was identical in both the wild type and
in the mutant strains. The only noticeable difference was
for SGA1 gene whose expression was already increased in
the exponential phase in a #ps] mutant (S#14) as com-
pared to the wild type strain (S#10, calibrator).

Discussion

In the yeast Saccharomyces cerevisiae, the microarray data-
sets available on the Saccharomyces Genome Database
website now represent a vast treasure-trove of reference
genes suitable for gene expression normalization. We
therefore used the Gene Expression Connection tool [35]
to search for a set of stably expressed genes in growth
dynamics [26,27]. Other approaches have recently been
proposed for selection of internal controls, with statistical
analysis of large microarray datasets [36,37]. Neverthe-
less, as stated by the authors [36,37], these in silico
searches for stable internal controls must be accompanied
by lab-bench work to verify that selected candidate genes

http://www.biomedcentral.com/1471-2199/10/99

are reliable for normalization in a specific experimental
context. This is what we actually performed in the present
work. Out of 13 genes analyzed in this study, i.e. 8 func-
tionally unrelated genes selected from the microarray
datasets together with 5 standard reference genes (e.g.
ACT1, PDA1 etc), we identified ALG9, TAF10, TFCl1,
UBC6 and to a lesser extent KRE11, as the most stable
genes in our experimental conditions. Another very
important result from this study was the observation that
geometric averaging of any subset of three genes among
the six most stable genes led to very similar normalization
factors, therefore highlighting the robustness of our gene
selection. This conclusion was further supported by the
weak expression change of this subset of genes as revealed
by a survey of microarray datasets from the SGD server, i.e.
in approximately 30 large scale transcriptomic studies,
which altogether correspond to several hundreds of differ-
ent samples. Therefore, ALG9, TAF10, TFC1 and UBC6
genes are the most pertinent reference genes, not only for
growth phase related mRNA profiling in S. cerevisiae, but
more generally for quantitative gene expression analysis
with samples that cover a large panel of physiological and
metabolic states.

Probably because of the tedious experimental validation
of a suitable set of reference genes, the common practice
by many authors was to use ACT1, PDA1, TDH3 or
RDN18 as a single reference gene for normalization in S.
cerevisiade expression studies, assuming a steady state level
of expression for these so-called housekeeping genes.
However, the validity of ACT1 as an internal standard has
been already questioned [38] and PDA1 was preferred to
ACT1 for normalization in Northern blot analysis since
stationary phase samples showed a more significant drop
of ACT1 mRNA. Still, by the use of Northern blot analysis,
it was indeed demonstrated that ACT1 is a representative
gene whose transcription is typically repressed following
the shift from logarithmic growth to stationary phase
[39,40]. As preliminary molecular clues on how down
regulation of this gene occurs, these authors showed that
topoisomerase 1 has a regulatory role in the transcrip-
tional repression of most of the genes following the
diauxic shift and in the stationary phase [39]. The second
work reported a major role of the RNA polymerase II sub-
unit RPB4, which permitted appropriate transcriptional
responses during stress, including nutrient stress that
accompanies entry into stationary phase [40]. Global
transcriptome analysis [27] also showed that ACTT mRNA
levels did decrease significantly during growth in a glu-
cose rich medium, a pattern that was confirmed by using
absolute quantification by real time RT-PCR [41]. In our
study, using the geometric averaging of multiple selected
reference genes for relative quantification, we also found
a significant drop of ACT1 transcripts and of other fre-
quently used genes like PDA1 (E1 alpha subunit of the
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Figure 7

Effect of carbon source on expression profiles of the commonly-used ACT/ and genes of interest. Normalized

expression of ACT[ and GPH I, GSY2, SGAI in sample set "A" (n =

9). This set includes 5 samples selected during growth on glu-

cose (grey, see legend from Figure 5) and 4 characteristic samples from growth on galactose (blue): early exponential phase
(respiro-fermentative), entry in the diauxic shift (disappearance of galactose), mid of post-diauxic (respiratory) growth, and 3
days stationary phase. The exponential phase sample on glucose was used as calibrator for this sample set. Normalization was
performed using the three most stable genes (NFyacq 7ari0, aLc9) dashed bar), the geometric mean of ACT/, PDA[ and IPPI
(NFacri, ppar, ippr) empty diamond) or ACT/ alone (NF,cr), black diamond). Normalized expression data and error bars calcu-
lated as described in Figure 5. For the sake of clarity, we did not plot standard deviation of ratios obtained from NF,cr) ppaj,

IPP1)-

pyruvate dehydrogenase complex) and IPP1 (cytoplasmic
inorganic pyrophosphatase) when cells proceed from the
exponential phase of growth to the stationary phase.
Therefore, as already mentioned by Monje-Cajas et al [41],
the use of ACT1 and related transcripts would seriously
over-estimate (approx. 10-fold) expression levels of genes
of interest in stationary phase, leading to erroneous con-
clusions. Moreover, the genes encoding glycolytic
enzymes, for example TDH3 (glyceraldehyde-3-phos-
phate dehydrogenase), were amongst the first yeast genes
to be isolated. Because of their high expression levels,
their promoters have been widely used to construct yeast
expression vectors [42-47] and as model systems to study
transcription [48]. Nevertheless, as details of the organisa-
tion of glycolytic promoters have emerged, it has become
clear that these "simple HouseKeeping genes" actually
have sophisticated molecular mechanisms controlling
their expression [48]. As reviewed in this latter reference,

some glycolytic enzymes were induced by glucose while
others such as ENO1 and TDH3 appeared to be constitu-
tively expressed irrespective of the carbon source (glucose
or other sugars versus non-fermentable carbon sources).
Our results, i.e. the large dispersion of Ct values from
TDH3 in our experimental conditions (Figure 3) and the
fact that this gene ranked amongst the worst candidate ref-
erence genes (Additional File 3