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1 Introduction

In quantum field theory there are two distinct fundamental notions which may be formu-

lated: the algebra of local operators, and the Hilbert space of single-particle states. In free

field theories there are simple relations between these quantities. A fundamental field φ(x)

may act on the vacuum state to create a particle at position x. Repeated action of the

fundamental fields then produces multi-particle states which fill out the entire Fock space.
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This simple connection between operators and particles is broken in interacting field

theories, where in general the action of a local operator on the vacuum creates a complicated

spectrum of states. The situation is even more stark in the case of interacting conformal

field theories which do not contain any single-particle states in their Hilbert space.

Things may be better in theories with extended supersymmetry. In that case, there

are protected local operators annihilated by some supercharges. On the other hand, after

activating moduli and spontaneously breaking conformal symmetry, there is also a well-

defined particle spectrum which contains in particular BPS states. One may then ask if

there remains any connection between local operators and particles if we focus only on the

subsectors of each which are protected by some supersymmetry.

In this paper we propose a sharp version of such a connection in the context of four-

dimensional N = 2 field theories. On the local operator side, we consider the so-called

Schur limit of the superconformal index [1–3]

I(q) = Tr
[
(−1)F q∆− 1

2
R
]
. (1.1)

Here the trace is over the Hilbert space of states on S3, or equivalently, the space of local

operators. The quantity ∆ is the scaling dimension, and R is the Cartan of the SU(2)R
symmetry normalized to take integral values. This limit of the index has been widely

studied [4–6] due to the fact that it has enhanced supersymmtery. It is related, in the

context of class S theories, to q-deformed Yang-Mills theory [2, 3, 7–11], and most recently

has made a prominent appearance in the connection of four-dimensional N = 2 theories to

two-dimensional chiral algebras [12–15].

The quantity we compare to on the particle side has a more involved definition, using

ingredients developed in [16–18] and especially [19]. The subtlety is that although any

non-conformal vacuum has a well-defined set of BPS states, the exact spectrum of such

particles depends on the vacuum in question and jumps at walls of marginal stability. Since

the index I(q) has no knowledge of the vacuum, we must therefore form a wall-crossing

invariant generating function of BPS particles.

A natural candidate emerges from wall-crossing formulas and the work of [19, 20].

Specifically, there exists an operator O(q) valued in a quantum torus algebra. This operator

takes the schematic form

O(q) ≡
y∏
Eq(Xγ) . (1.2)

Here the Eq(Xγ) are particular non-commutative operators and q ∼ e~ is a parameter

controlling the commutation relations. There is one factor of Eq(Xγ) for each BPS state

of electro-magnetic charge γ, and the product is taken in the phase order of the associated

central charge.

According to the wall-crossing formula of [16], crossing a wall of marginal stability the

individual factors change but the operator O(q) is invariant. In particular, its trace con-

structed via the techniques of [19] is therefore a wall-crossing invariant generating function

of BPS states. Moreover, as noticed in [19], these traces have surprising connections to

characters of two dimensional chiral algebras. This observation will play a crucial role in

the following.
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With these preliminaries we may now formulate our conjectured relation between the

index I(q) and the spectrum of BPS particles as simply

I(q) =

[ ∞∏
n=1

(1− qn)

]2r

Tr
[
O(q)

]
, (1.3)

where r is the rank of the Coulomb branch. When the theory has flavor symmetry, the

index above may be further refined using flavor fugacities.1

The general paradigm, that wall-crossing invariant generating functions of BPS states

may be related to quantities like local operators defined naturally at the origin of moduli

space originated in [19–21]. For instance, in two-dimensional (2, 2) theories there is a precise

connection between the BPS soliton spectrum on the moduli space and the r-charges of

chiral operators at the origin of moduli space [21]. A similar idea was studied in [19] where

r-charges of chiral operators were also connected to BPS states in four-dimensions. Our

conjecture (1.3) is inspired by those ideas, and the general philosophy of connecting moduli

space physics to data at the conformal point, but differs from [20] which studies another

limit of the index.2

One interesting aspect of the conjecture (1.3) is that it provides a connection between

physics on distinct branches of moduli space. Indeed, the generating function of BPS states

is, by construction, computed on the Coulomb branch. On the other hand, the Schur index

I(q) can detect operators whose expectation values parameterize the Higgs branch.

At a heuristic level, one may view our proposal (1.3) as follows. The prefactor multiply-

ing the trace is the contribution of the r abelian vector multiplets arising on the Coulomb

branch. Meanwhile the trace of O(q) selects gauge invariant combinations of BPS particles

which may be produced by acting on the vacuum with BPS operators. The conjecture (1.3)

might be amenable to analysis via supersymmetric localization, and we leave any potential

derivation as an interesting problem for future work. In the remainder of this paper we

present the details of our proposal and subject it to various tests and applications.

We begin in section 2 with a detailed formulation of the conjecture including in partic-

ular the formalism needed to define the operator O(q) and its trace. We also briefly recall

the definition of the Schur index as a matrix integral in the special case of Lagrangian

field theories. We find it convenient to discuss the index I(q) even in the case where the

four-dimensional theory in question is not conformal. Although we lack a first principles

construction of such an index, we take as a working definition in Lagrangian field theories

the naive generalization of the matrix integral to this case. The conjecture (1.3) naturally

extends to this non-conformal setting.

In section 3 we marshall evidence for our proposal. We evaluate independently both

sides of (1.3) in the cases of free field theories, N = 2 QED, and SU(2) gauge theory

coupled to fundamental matter, including all possible refinements by flavor fugacities. In

each case we find complete agreement.

1A connection of the Schur index with the traces defined in [19] has also been suggested by A. Gadde.
2We have been told that the connection between the Schur index and the traces of the BPS monodromy

operator, as a refinement of the proposal of [20], has been recently formulated [22].
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Lastly, in section 4 we consider various non-trivial consequences of the conjecture. A

particularly natural application concerns the Argyres-Douglas superconformal field theo-

ries [23–27]. These theories are strongly-coupled with no known Lagrangian presentation,

and little is known about their operator spectrum.3 They arise on the moduli space of

more familiar gauge theories at special loci where electric and magnetic degrees of freedom

become massless. These field theories may also be constructed in string theory or with

M5-branes [29–32]. On their moduli space, the Argyres-Douglas theories have particularly

simple BPS spectra [18, 19, 33–36], and evaluation of the BPS trace produces a natural

conjecture for the Schur index. Using this idea we produce candidate expressions for the

Schur indices of all Argyres-Douglas theories.

There are a variety of consistency conditions satisfied by our proposal for the Schur

indices of the Argyres-Douglas theories. For instance, the low-order terms in the series

expansion in q indicate the expected operators with small scaling dimension. In particular,

we correctly recover the known global symmetries of these models.

A sharper check on our results comes from the fact that the operators contributing to

the Schur index have the structure of a two-dimensional chiral algebra [12–15]. The central

charges of these chiral algebras are inherited from those of the four-dimensional theory.

This in turn leads to natural proposals for the Schur index of simple Argyres-Douglas

theories as the characters of certain non-unitary minimal models [37, 38]. We find that

such characters are exactly reproduced by our calculations.

The fact that traces of wall-crossing invariant operators (O(q))n produce characters

of two-dimensional chiral algebras featured prominently in [19]. For instance, the trace

of O(q) to negative powers gives rise to the characters of unitary coset models. More

relevant for our purposes, it was observed that the character of the non-trivial primary

of the (2, 5) Virasoro minimal models arises from the traces of O(q)−1 in the context of

the A2 Argyres-Douglas theory, and a more general connection to non-unitary minimal

models was anticipated.4 These relations between generating functions of BPS states and

non-unitary minimal models established in [19] provide a crucial link in the conjecture (1.3)

that we propose.

Our work extends the observations and calculations of [19] to make contact with the

specific Schur index observable at the origin of moduli space. It would be interesting to

generalize our calculations to the larger structure discovered in [19] involving traces over

O(q) to fractional powers, connections with the Verlinde algebra, and to determine if the

unitary chiral algebras play a role in the operator spectrum of the four-dimensional N = 2

theory as in [12].

As a particular sampling of our results with regards to non-unitary minimal models,

our conjecture implies that the A2n sequence of Argyres-Douglas theories, defined by the

Seiberg-Witten curve singularity

y2 + x2n+1 = 0 , (1.4)

3The Hilbert series for the Higgs branch of some of the (Ak−1, AN−1) Argyres-Douglas theories is com-

puted in [28], which could potentially be related to the Hall-Littlewood limit of the superconformal index

(see for example, [13]).
4See section 9.6 of [19].
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have Schur indices given by the vacuum character of the (2, 2n+3) Virasoro minimal model.

Meanwhile, for the D2n+1 series of Argyres-Douglas models we find the vacuum character

of an ŜU(2) Kac-Moody algebra at level k2d = − 4n
2n+1 , and for the D4 theory the vacuum

character of ŜU(3)− 3
2
. These results agree with the conjectures of [12, 37–39]. In E6 and

E8 theories, we encounter the vacuum characters of the (3, 7) and (3, 8) W3 minimal models

respectively. Based on these results we are led to propose that the chiral algebra of the

generalized (Ak−1, AN−1) Argyres-Douglas theory with k and N coprime is the vacuum

sector of the non-unitary (k, k + N) Wk minimal model, and that the Schur index is the

associated vacuum character.

Finally, another significant check on our results for the Schur indices of Argyres-

Douglas theories comes from the recent work [40, 41] building on [42, 43]. Using alter-

native arguments, the authors propose conjectures for the Schur index of the A2n+1 and

D2n Argyres-Douglas theories. In all cases we have examined our answer reproduces their

expressions thereby providing additional evidence for both our work and theirs.

2 Statement of the conjecture

In this section we explain the exact statement of our conjecture. We begin in section 2.1

with a brief review of the Schur index. We discuss the behavior of its low-order terms as well

as its definition in Lagrangian theories as a simple integral. Moreover, we propose a naive

definition for this index for non-conformal Lagrangian field theories by simply extending

the standard matrix integral definition. Next, in section 2.2 we describe the wall-crossing

technology needed to formulate the generating function of BPS states. We introduce the

quantum torus algebra, and the operator O(q) which behaves nicely under wall-crossing.

Finally, in section 2.3 we formulate the notion of trace of the operator paying particular

attention to the subtleties that arise for theories with flavor symmetry. We then state our

conjecture.

2.1 Schur index

For the formulation of the Schur index we follow standard references [1–3]. In a general

N = 2 conformal field theory with flavor symmetry of rank nf we may define the Schur

index abstractly as a trace over the Hilbert space of states on S3, or equivalently by the

state operator correspondence, the space of local operators. Refined by all possible flavor

symmetries this takes the form

I(q, z1, · · · , znf ) = Tr

[
(−1)F q∆− 1

2
R

nf∏
i=1

zfii

]
, (2.1)

where fi indicate Cartans of the flavor symmetry group, ∆ is the scaling dimension, and

R is the Cartan of the SU(2)R R-symmetry normalized to take integral values.

The index I(q) is protected under continuous deformations of the theory and hence is

frequently computable. A price that we pay for this simplicity is that the index does not

count operators absolutely and non-trivial cancellations may occur. The first few terms

– 5 –
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in the series expansion however, are protected against cancellations. Specifically, from the

character decompositions of [3, 44] one may deduce that if the theory in question does not

contain any free sector and has rank nf flavor symmetry, then the first few terms in the

Schur index (at vanishing flavor fugacity) take the form

I(q) = 1 + (nf )q + (c3)q3/2 + (nf + 1 + c4 − d)q2 + · · · . (2.2)

This answer has several interesting features:

• The coefficient of q0 counts the unique unit operator in the theory.

• The flavor symmetry may be determined unambiguously from I(q). If the index is

further refined by flavor fugacities as in (2.1) then the linear term is refined to the

character of the adjoint representation of the flavor group.

• The coefficients cm are non-negative integers. They count Higgs branch type opera-

tors whose primary is a Lorentz scalar in the (m + 1)-dimensional representation of

the SU(2)R symmetry, and with scaling dimension m.

• The coefficient of q2 includes a contribution the flavor currents, and from the unique

energy-momentum tensor multiplet of the theory (the offset by 1). The quantity d is

a non-negative integer which counts the number of multiplets whose superconformal

primary is a Lorentz scalar, in an SU(2)R triplet, with scaling dimension ∆ = 3, and

with U(1)r charge ±2.5

We will use this behavior of the low-order terms in the index as a simple consistency

condition on our conjecture.6

In the case of Lagrangain field theories the Schur index may be computed in the limit

of zero coupling constants by a simple matrix integral. The ingredients in this calculation

are the so-called single-letter partition functions for vector and half hypermultiplets. They

are defined by

fV (q) = − 2q

1− q , f
1
2
H =

q1/2

1− q . (2.3)

We also have need of the plethystic exponential defined for a function of several variables

by the operation

P.E.[f(q, z)] ≡ exp

[ ∞∑
n=1

1

n
f(qn, zn)

]
. (2.4)

Then, for a theory with gauge group G and hypermultiplet matter in a representation R

of G, the (flavor refined) Schur index takes the form

I(q, z) =

∫
[dU ] P.E.

[
fV (q)χG(u) + f

1
2
H(q)χR(u)χF (z)

]
, (2.5)

5Our convention for the U(1)r charge is such that the supercharges have U(1)r equal to ±1.
6As a point of caution, we stress that in theories with free sectors there are additional multiplets con-

taining for instance the free fields or higher spin currents which modify the expression (2.2).
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where in the above, [dU ] denotes the Harr measure7 on the maximal torus of G, and χG,

χR, and χF are respectively the characters of the adjoint representation of G, the matter

representation R, and the representation F of the flavor group.

As described above, the Schur index I(q) is defined only for conformal field theories.

Nevertheless, the integral (2.5) may clearly be defined for any N = 2 theory with a La-

grangian definition. We propose this matrix integral as a working definition of the “Schur

index” for the case of non-conformal N = 2 theories. This definition is unsatisfactory since

it is not clear how to extend it to general field theories, and even more worrying, it is not

clear why this definition will give a protected observable. However we will see that, at

least in cases we have computed, the non-conformal extension of I(q) is indeed a robust

observable and in particular is also captured by the generating function of BPS states as

in (1.3). Developing a more satisfactory theory of this non-conformal index is an important

problem for future research.

2.2 Kontsevich-Soibelman operator O(q)

We now turn to the particle side of our proposal. The data entering our construction

resides on the Coulomb branch of the N = 2 theory. In this phase the physics is infrared

free and governed by a U(1)r gauge theory. The massive spectra may be described in terms

of particles carrying various electric, magnetic, and flavor charges. These charges reside in

an integral lattice Γ equipped with an integer-valued antisymmetric Dirac pairing that we

denote by 〈·, ·〉.
A crucial role is played by the central charge Z. For each fixed vacuum modulus, Z

is a complex-valued linear function on Γ. Its importance lies in the fact that the mass of

any single-particle state of charge γ ∈ Γ obeys

M ≥ |Z(γ)| . (2.6)

Particles whose masses saturate the above bound are BPS. They are annihilated by some

of the supersymmetries. As a result, they may be frequently computed even at strong

coupling using a variety of distinct methods.

For each fixed charge γ ∈ Γ the spectrum of one-particle BPS states is captured by an

index, the protected spin character [18]. The particles are in representations of the SU(2)J
little group and the SU(2)R R-symmetry group. Upon factoring out the center-of-mass

hypermultiplet, the one-particle Hilbert space of charge γ is

Hγ =
[
(2,1)⊕ (1,2)

]
⊗Hint(γ) , (2.7)

where Hint(γ) is some representation of SU(2)J×SU(2)R which encodes the internal degrees

of freedom of the particles. The protected spin-character is then the trace

Ω(γ, y) = TrHint(γ)

[
yJ(−yR)

]
=
∑
n∈Z

Ωn(γ)yn , (2.8)

7We normalize [dU ] such that it has total integral one.
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where J is the Cartan of the SU(2)J little group, and R is the Cartan of the SU(2)R
symmetry. The quantities Ωn(γ) are thus integers which encode the spin content of BPS

particles of charge γ.

The spectrum of BPS particles (and hence the collection of integers Ωn(γ)) is stable

under small deformations in parameters. However, as moduli are varied the phases of cen-

tral charges for distinct γ’s may align. These loci are the walls of marginal stability. When

crossing such a wall, the BPS spectrum may jump. The changes in the BPS degeneracies

are controlled by wall-crossing formulas [16, 17] which we now review.

To begin, for each γ ∈ Γ, we introduce a formal variable Xγ . These variables obey a

quantum torus algebra,

XγXγ′ = q
〈γ,γ′〉

2 Xγ+γ′ = q〈γ,γ
′〉Xγ′Xγ . (2.9)

In this equation q is a formal variable controlling the non-commutativity of the algebra.

In our final proposal relating BPS particles and indices, we will see that q is reinterpreted

as the Schur index fugacity parameter. We also define a function, the q-exponential, as

Eq(z) =

∞∏
i=0

(1 + qi+
1
2 z)−1 =

∞∑
n=0

(−q 1
2 z)n

(q)n
. (2.10)

where we use the standard definitions of the q-Pochhammer symbols

(q)n ≡
{

1 if n = 0 ,∏n
k=1(1− qk) if n > 1 .

(2.11)

The basic fact that makes wall-crossing formulas possible is that, when evaluated on

elements of the quantum torus algebra, products of the functions Eq(z) obey remarkable

identities. The simplest of these is

Eq(Xγ1)Eq(Xγ2) = Eq(Xγ2)Eq(Xγ1+γ2)Eq(Xγ2) , (2.12)

for charges γi with 〈γ1, γ2〉 = 1. This equality encodes the most simple wall-crossing process

where a single hypermultiplet disappears across a wall.

Returning to the general story, we may now phrase the consequence of the wall-crossing

formula which we require. For each charge γ ∈ Γ we build the following element of the

quantum torus algebra using the q-exponential (2.10) and the protected spin character (2.8)

Uγ =
∏
n∈Z

Eq((−1)nqn/2Xγ)(−1)nΩn(γ) . (2.13)

Note that in simple chambers where there are only hypermultiplets, all of the Uγ reduce

to q-exponentials.

We then form an element O(q) in the quantum torus algebra by taking a product over

all the Uγ

O(q) ≡
y∏
γ∈Γ

Uγ . (2.14)

– 8 –
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Since the quantum torus algebra is non-commutative we must prescribe a specific order

to the above product. This is achieved with the central charge. Specifically, we pick an

arbitrary phase θ in the central charge plane. We then define O(q) to be the product over

all the Uγ taken in order of the phase of Z(γ) with operators of smallest phase on the left.

Defined in this way the resulting operator O(q) depends upon the initial phase θ. We will

ultimately see that this ambiguity drops out of our index prescription.

We refer to the element O(q) as the Kontsevich-Soibelman (KS) operator. Because of

CPT invariance, the product over the first sector of phase π in the central charge plane

may be interpreted as arising from particles, while the product over the second sector of

total phase π may be interpreted as arising from antiparticles. The KS operator therefore

samples the entire BPS particle spectrum of the theory. The content of the wall-crossing

formula is that O(q) is in fact independent of the Coulomb branch vacuum. Therefore,

as observed by [19–21], any quantity constructed out of O(q) has a chance to reproduce

aspects of the quantum field theory defined at the origin of moduli space.

Let us also clarify the relation of our operator O(q) to the BPS monodromy M(q)

appearing in [19]. Up to insignificant details in conventions, we have the relation

O(q) = M(q)−1 . (2.15)

Both expressions are wall-crossing invariant and may be used to define invariant quan-

tities at the origin of moduli space following the general philosophy of [19–21]. In [19]

traces of various powers, positive, negative, and even fractional, of O(q) were considered

and connected to characters of two-dimensional chiral algebras. Our conjecture relates

traces of O(q) to the Schur index. It would be interesting to find similar direct interpreta-

tions of traces of these various powers in terms of local operator counting at the origin of

moduli space.

2.3 Trace of O(q) and the Schur index

We are at last in a position to precisely define the BPS generating function that we claim

is related to the Schur index. We use the notions of trace defined in [19].

We begin in the simplest case where there is no flavor symmetry and subsequently relax

this assumption. We define a trace operation on the quantum torus algebra by specifying

its action on generators and extending linearly

Tr[Xγ ] =

{
1 γ = 0 ,

0 else .
(2.16)

Note that with this definition the trace is cyclic (for instance Tr[XγXγ′ ] = Tr[Xγ′Xγ ]).

This cyclic property enables us to form an unambiguous notion of the trace of the operator

O(q). Indeed recall from the definition (2.14), that O(q) depends on an initial phase θ. As

θ is varied, the factors Uγ reorder cyclicly so that the trace is unmodified.

With this understanding, we may now state our conjectured relation between the Schur

index and the trace of O(q) as

I(q) = (q)2r
∞ Tr

[
O(q)

]
, (2.17)

where as above r is the rank of the Coulomb branch.

– 9 –



J
H
E
P
0
1
(
2
0
1
6
)
0
4
0

When the N = 2 theory has flavor symmetry the notion of trace and the statement of

the conjecture must be refined. Flavor charges enter into the discussion as elements of the

charge lattice Γ with trivial Dirac pairings. Thus, γ is a flavor charge if and only if for all

γ′ ∈ Γ we have

〈γ, γ′〉 = 0 . (2.18)

It then follows from the definition of the quantum torus algebra (2.9) that if γ is a flavor

charge the associated element Xγ is central i.e.

XγXγ′ = Xγ′Xγ , ∀γ′ ∈ Γ . (2.19)

To extend the notion of trace to this case, we allow the traces of the flavor charges to

be general non-vanishing numbers, and we define the trace of any element in terms of these

choices. Thus, pick an integral basis γfi ∈ Γ for the flavor charges. For a general element

Xγ we define

Tr[Xγ ] =

{∏
i Tr[Xγfi

]fi(γ) 〈γ, γ′〉 = 0 ∀ γ′ ∈ Γ ,

0 else ,
(2.20)

where fi(γ) are the flavor charges of γ. So defined, the trace of any element of the quantum

torus algebra, (in particular O(q)) is a function of q and of the nf variables Tr[Xγfi
] where

i = 1, · · · , nf runs over a basis of the flavor charges.

We may now again connect the trace of O(q) to the flavor refined Schur index. We

conjecture that

I(q, z1, · · · , zn) = (q)2r
∞ Tr

[
O(q)

] (
Tr[Xγf1

], · · · ,Tr[Xγfi
]
)
. (2.21)

To fully specify this proposal, the flavor fugacities zi in the index must be related to traces

of the flavor generators. Thus, for each i we must specify functions hi as

Tr[Xγfi
] = hi(z1, · · · , znf ) . (2.22)

The functions hi(z) are model (and basis) dependent. In practice they may be fixed by

examining the low-order terms in the index and matching, for instance, the linear coefficient

in q to the character of the adjoint representation as explained in (2.2).8

Before concluding we should also note a significant technical point that requires further

development. The trace operations defined here can be readily evaluated on finite sums of

elements of the quantum torus algebra. However the operator O(q) whose trace we desire

is an infinite sum. In practice, the only way that we know to evaluate the trace is to expand

the infinite sums and to commute the order of trace and summation. While in the simplest

examples that we describe in section 3 and section 4 this gives a well-behaved answer, in

more complicated examples the resulting sums do not appear to converge absolutely. This

obstructs us from testing our conjecture in these examples. For instance SU(2) Nf = 4

Yang-Mills is of this type. To understand these BPS traces more directly in such examples

is necessary to make (2.21) into a universally calculable tool.

8In examples it is also the case that the functions hi do not in general evaluate to one at zi = 1. Thus

the hi must be determined even if one wishes to compute the unrefined index.
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3 Tests of the proposal

In this section we study simple examples of the conjectured relations (2.17) and (2.21)

between the Schur index and the trace of O(q). In all theories where we have independently

computed both quantities we find perfect agreement. This is true even in examples which

are not conformal, where we use the matrix integral (2.5) to extend the definition of the

Schur index to this case.

We begin in section 3.1 by considering the simplest models of free field theories. In

these cases, the quantum torus algebra is trivial and the relationship can be proven using

simple identities obeyed by the q-exponential. Next in section 3.2, we consider the infrared

free theory of N = 2 QED. This is the simplest example with non-trivial torus algebra and

again the conjecture can be proven using functional identities. Finally in section 3.3, we

study examples of SU(2) gauge theory coupled to fundamental matter. We consider the

casesNf = 0, 1, 2, 3 and verify the conjecture including the dependence on flavor fugacities.9

3.1 Free field theories

3.1.1 U(1) vector multiplet

Let us start by considering the free theory of a U(1) vector multiplet. This theory has no

flavor symmetry. There are no massive BPS states so the KS operator is trivial. The Schur

index is given by

IV (q) = P.E.
[
fV (q)

]
= exp

[ ∞∑
n=1

1

n

−2qn

1− qn

]
, (3.1)

where fV (q) = −2q
1−q is the single-letter partition function for a vector multiplet and P.E.

is the plethystic exponential P.E. [f(q, z)] = exp
[∑∞

n=1
1
nf(qn, zn)

]
. We can rewrite the

exponent as

∞∑
n=1

1

n

−2qn

1− qn = −2

∞∑
n=1

qn

n

∞∑
k=0

qkn = 2

∞∑
k=0

log(1− qk+1) = 2 log[(q)∞] . (3.2)

Therefore, we find agreement with our conjectured relation (2.17)

IV (q) = (q)2
∞ . (3.3)

3.1.2 Free hypermultiplet

Having checked the free theory of a single vector multiplet, let us move on to the case of

a free hypermultiplet. This theory has an Sp(1) ∼= SU(2) flavor symmetry whose fugacity

will be denoted by z. The charge lattice Γ of this free theory is real, and one-dimensional

corresponding to the SU(2) flavor symmetry and the quantum torus algebra is commuta-

tive. The only BPS particle is the hypermultiplet state itself and there is no wall-crossing

phenomenon. We denote the lattice vector of this hypermultiplet state by γ ∈ Γ and the

9As explained in section 2.3, the case Nf = 4 cannot be evaluated using our current understanding since

the trace of O(q) does not absolutely converge.
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corresponding generator in the quantum torus algebra by Xγ . We normalize the trace of

the generator as

Tr[Xγ ] = −z . (3.4)

The KS operator is given by

O(q) = Eq(X−γ)Eq(Xγ) . (3.5)

Its trace is obtained by replacing Xγ by −z,

Tr [O(q)] = Eq(−z−1)Eq(−z) . (3.6)

Using the identity

Eq(−z) :=
∞∏
i=0

(
1− qi+ 1

2 z
)−1

= exp

[ ∞∑
n=1

1

n

q
n
2

1− qn z
n

]
, (3.7)

we can rewrite the trace as

Tr [O(q)] = exp

[ ∞∑
n=1

1

n

q
n
2

1− qn (zn + z−n)

]
. (3.8)

On the other hand, the Schur index of a free hypermultiplet is given by

IH(q, z) = P.E.
[
f

1
2
H(q)(z + z−1)

]
= exp

[ ∞∑
n=1

1

n

q
n
2

1− qn (zn + z−n)

]
, (3.9)

where f
1
2
H(q) = q

1
2

1−q is the single-letter partition function for a half-hypermultiplet. Indeed,

we see that the our proposal

IH(q, z) = Tr [O(q)] , (3.10)

is satisfied. Note that there is no Coulomb branch in the free hypermultiplet theory, r = 0,

so the prefactor (q)2r
∞ in (2.21) is trivial.

3.2 QED

Consider the non-conformal theory of a U(1) vector multiplet coupled to a hypermultiplet

with one unit of U(1) charge. The would-be flavor symmetry of the hypermultiplet is

gauged so there is no flavor symmetry left. The Coulomb branch of the theory is complex

one-dimensional and the charge lattice Γ has real dimension two. The only BPS particle

in this theory is the hypermultiplet state. We will denote the charge lattice vector for the

hypermultiplet by γ and the corresponding generator by Xγ . Since there is a nontrivial

Dirac pairing on the charge lattice Γ, i.e. γ does not commute with every element in Γ, the

trace of Xγ is zero, Tr[Xγ ] = 0.

The KS operator is given by

O(q) = Eq(X−γ)Eq(Xγ) . (3.11)
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The trace projects out the constant term in Xγ ,

Tr[O(q)] =
∞∑

k,`=0

Tr

[
(−1)k+`q

k+`
2

(q)k(q)`
X−kγX`γ

]
=
∞∑
`=0

q`

(q)2
`

. (3.12)

Meanwhile, the index for this non-conformal theory computed at zero coupling is

IQED(q) =

∫ 2π

0

dθ

2π
P.E.

[
fV (q) + f

1
2
H(q)(eiθ + e−iθ)

]
= (q)2

∞

∫ 2π

0

dθ

2π
exp

[ ∞∑
n=1

1

n

q
n
2

1− qn (eiθ + e−iθ)

]
.

(3.13)

We can evaluate the integral in θ more explicitly as follows. Using (3.7), we have

IQED(q) = (q)2
∞

∫ 2π

0

dθ

2π
Eq(−e−iθ)Eq(−eiθ) = (q)2

∞

∞∑
k,`=0

q
k+`
2

(q)k(q)`

∫ 2π

0

dθ

2π
ei(−k+`)θ

= (q)2
∞

∞∑
`=0

q`

(q)2
`

.

(3.14)

Hence we have verified that

IQED(q) = (q)2
∞ Tr[O(q)] . (3.15)

3.3 SU(2) with matter

The Schur index evaluated at the zero coupling point for the N = 2 SU(2) theory with Nf

fundamental hypermultiplets can be uniformly written as

ISU(2),Nf (q) =
1

π

∫ 2π

0
dθ sin2 θP.E.

[
fV (q)χ

SU(2)
3 (θ) +Nff

1
2
H(q)χ

SU(2)
2 (θ)

]
, (3.16)

where χ
SU(2)
2 (θ) = eiθ+e−iθ and χ

SU(2)
3 (θ) = e2iθ+e−2iθ+1 are the characters for SU(2) in

the fundamental and adjoint representation respectively, and 1
π sin2 θdθ is the normalized

Haar measure.

In the case Nf > 0, the theory has an SO(2Nf ) flavor symmetry and we will further

weight the index by the corresponding fugacities. We will consider the case where the bare

mass of the hypermultiplet is zero and the central charges of the BPS particles therefore

satisfy certain linear relations.

Throughout, we evaluate the trace of O(q) in the strong-coupling chamber where there

are only a finite number of hypermultiplets. The charges of these states are conveniently

encoded by the BPS quiver [19, 34–36]. Each node of the quiver represents a hypermul-

tiplet and the Dirac pairing 〈γi, γj〉 is read off from the number of arrows from node i to

node j.10

10Note that the quiver encodes only the particles, there are also an equal number of antiparticles with

opposite charges. The fact that the nodes of the quiver are the only stable states is special to this particular

chamber of moduli space. In other chambers, non-trivial bound states of the node particles exist. See

e.g. [45, 46] for a systematic calculation for both the gauge theory and Argyres-Douglas examples.
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Figure 1. The BPS quiver for the N = 2 pure SU(2) gauge theory.

3.3.1 Pure SU(2)

The N = 2 SU(2) gauge theory with no matter is our first example where there is a

nontrivial wall-crossing phenomenon. The BPS quiver is shown in figure 1. There are two

chambers in the Coulomb branch. The weak-coupling chamber defined by argZ(γ1) >

argZ(γ2) has infinitely many BPS particles, whereas the strong-coupling chamber

argZ(γ2) > argZ(γ1) , (3.17)

has only two particles, the monopole γ1 and the dyon γ2. Their Dirac pairing is 〈γ1, γ2〉 = 2.

There is no flavor symmetry in this theory.

The KS operator written in the strong coupling chamber is

O(q) = Eq(X−γ1)Eq(X−γ2)Eq(Xγ1)Eq(Xγ2) . (3.18)

The trace of the KS operator can be computed as follows

Tr[O(q)] =
∞∑

k1,k2,`1,`2=0

(−1)k1+k2+`1+`2 q
1
2

(k1+k2+`1+`2)

(q)k1(q)k2(q)`1(q)`2
Tr
[
Xk1
−γ1X

k2
−γ2X

`1
γ1X

`2
γ2

]
=

∞∑
k1,k2,`1,`2=0

(−1)k1+k2+`1+`2 q
1
2

(k1+k2+`1+`2)

(q)k1(q)k2(q)`1(q)`2
q2`1k2 Tr

[
X−k1+`1
γ1 X−k2+`2

γ2

]
,

(3.19)

where we have used the commutation relation in the quantum torus algebra (2.9) Xγ1Xγ2 =

q〈γ1,γ2〉Xγ2Xγ1 . Finally, by noting that Tr[Xγ1 ] = Tr[Xγ2 ] = 0, we have

Tr[O(q)] =

∞∑
`1,`2=0

q`1+`2+2`1`2

[(q)`1(q)`2 ]2
. (3.20)

We therefore obtain a q-expansion for

(q)2
∞Tr[O(q)] = 1 + q2 + q6 + q12 + q20 + · · · . (3.21)

On the other hand, the Schur index is given by

ISU(2),Nf=0(q) =
1

π

∫ 2π

0
dθ sin2 θP.E.

[
fV (q)(e2iθ + e−2iθ + 1)

]
= 1 + q2 + q6 + q12 + q20 + · · · ,

(3.22)

which indeed agrees with our proposal

ISU(2),Nf=0(q) = (q)2
∞Tr[O(q)] . (3.23)
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Figure 2. The BPS quiver for the N = 2 SU(2) gauge theory with one hypermultiplet in the

fundamental representation.

3.3.2 SU(2) with Nf = 1

The N = 2 SU(2) gauge theory with one hypermultiplet in the fundamental representation

has an SO(2) flavor symmetry, whose fugacity will be denoted by z. The BPS quiver is

shown in figure 2. There is a strong coupling chamber with the following BPS phase order

argZ(γ2) > argZ(γ3) > argZ(γ1) , (3.24)

where the only BPS particles are the nodes γ1, γ2, γ3. The lattice vector γf corresponding

to the flavor symmetry is

γf = γ1 + γ2 − γ3 . (3.25)

By definition, 〈γf , γ〉 = 0 for all γ ∈ Γ. We normalize the trace of the flavor generator as

Tr[Xγf ] = z2 . (3.26)

The KS operator is

O(q) = Eq(X−γ1)Eq(X−γ3)Eq(X−γ2)Eq(Xγ1)Eq(Xγ3)Eq(Xγ2) . (3.27)

By expanding out Eq(x), the trace of the KS operator becomes

Tr[O(q)] =

∞∑
`1,`2,`3,

k1,k2,k3=0

(−1)
∑3
i=1(ki+`i)q

1
2

∑3
i=1(ki+`i)∏3

i=1(q)ki(q)`i
Tr
[
Xk1
−γ1X

k3
−γ3X

k2
−γ2X

`1
γ1X

`3
γ3X

`2
γ2

]
.

(3.28)

We can compute the trace of six generators with the help of the quantum torus algebra (2.9),

Xk1
−γ1X

k3
−γ3X

k2
−γ2X

`1
γ1X

`3
γ3X

`2
γ2 = q(`1+`3)k2 Xk1

−γ1X
k3
−γ3X

`1
γ1X

`3
γ3X

−k2+`2
γ2

= q(`1+`3)k2+`1k3 X−k1+`1
γ1 X−k3+`3

γ3 X−k2+`2
γ2 .

(3.29)

Finally, using γf = γ1 + γ2 − γ3 we can write

Xn
γ3 = Xn

γ1+γ2−γf = q−
1
2
n2
Xn
γ1X

−n
γf

. (3.30)
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Figure 3. The BPS quiver for the N = 2 SU(2) gauge theory with two hypermultiplets in the

fundamental representation.

Plugging this into (3.28) and (3.29) we obtain

Tr[O(q)]

=

∞∑
`1,`2,`3,

k1,k2,k3=0

(−1)
∑3
i=1(ki+`i)q

1
2

∑3
i=1(ki+`i)− 1

2
(k3−`3)2+(`1+`3)k2+`1k3∏3

i=1(q)ki(q)`i
z2(k3−`3) δk1+k3,`1+`3δk2+k3,`2+`3 .

(3.31)

We therefore obtain a q-expansion for

(q)2
∞Tr[O(q)] = 1 + q +

(
− 1

z2
+ 2− z2

)
q2 +

(
− 1

z2
+ 2− z2

)
q3 +

(
− 2

z2
+ 4− 2z2

)
q4

+

(
1

z4
− 3

z2
+ 5− 3z2 + z4

)
q5 +

(
1

z4
− 5

z2
+ 8− 5z2 + z4

)
q6 + · · · .

(3.32)

On the other hand, the Schur index computed at the zero coupling is

ISU(2),Nf=1(q, z) =
1

π

∫ 2π

0
dθ sin2 θP.E.

[
fV (q)(e2iθ+e−2iθ+1)+f

1
2
H(q)(eiθ+e−iθ)(z+z−1)

]
= 1+q+

(
− 1

z2
+ 2− z2

)
q2+

(
− 1

z2
+ 2− z2

)
q3+

(
− 2

z2
+ 4− 2z2

)
q4

+

(
1

z4
− 3

z2
+ 5− 3z2 + z4

)
q5+

(
1

z4
− 5

z2
+ 8− 5z2 + z4

)
q6 + · · · ,

(3.33)

which agrees with ISU(2),Nf=1(q, z) = (q)2
∞Tr[O(q)] as a function of two variables.

3.3.3 SU(2) with Nf = 2

TheN = 2 SU(2) gauge theory with two hypermultiplets in the fundamental representation

has an SO(4) flavor symmetry, whose fugacities will be denoted by z1, z2.11 The BPS quiver

is shown in figure 3. There is a strong coupling chamber where

argZ(γ1) = argZ(γ2) > argZ(γ3) = argZ(γ4) . (3.34)

11Our convention for the character is, for example, χ
SO(4)

(2,2) (z1, z2) = (z1 + z−1
1 )(z2 + z−1

2 ).
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In this chamber the only BPS particles are the nodes γ1, γ2, γ3, γ4. The lattice vectors for

the flavor symmetry are

γf1 = γ1 − γ2 , γf2 = γ3 − γ4 . (3.35)

We will normalize the trace of the flavor generators to be

Tr[Xγfi
] = z2

i , i = 1, 2 . (3.36)

The trace of the KS operator can be similarly evaluated to be

Tr[O(q)] =

∞∑
`1,··· ,`4,
k1,··· ,k4=0

(−1)
∑4
i=1(ki+`i)q

1
2

∑4
i=1(ki+`i)∏4

i=1(q)ki(q)`i
Tr
[
Xk4
−γ4X

k3
−γ3X

k2
−γ2X

k1
−γ1X

`4
γ4X

`3
γ3X

`2
γ2X

`1
γ1

]
(3.37)

=

∞∑
`1,··· ,`4,
k1,··· ,k4=0

(−1)
∑4
i=1(ki+`i)q

1
2

∑4
i=1(ki+`i)+(k1+k2)(`3+`4)∏4

i=1(q)ki(q)`i
Tr

[
4∏
i=1

X−ki+`iγi

]
.

Now using (3.35), we can perform the following replacements,

Xγ1 = Xγ2Xγf1
, Xγ3 = Xγ4Xγf2

. (3.38)

and obtain the final expression for the trace of the KS operator,

Tr[O(q)] =

∞∑
`1,··· ,`4,
k1,··· ,k4=0

q
∑4
i=1 `i+(`1+`2)(`3+`4)∏4

i=1(q)ki(q)`i
z

2(`1−k1)
1 z

2(`3−k3)
2 δk1+k2,`1+`2δk3+k4,`3+`4 .

(3.39)

We therefore obtain a q-expansion for

(q)2
∞Tr[O(q)] = 1 +

(
χ

SO(4)
(3,1) + χ

SO(4)
(1,3)

)
q +

(
χ

SO(4)
(5,1) + χ

SO(4)
(3,1) + χ

SO(4)
(1,1) + χ

SO(4)
(1,3) + χ

SO(4)
(1,5)

)
q2

+
(
χ

SO(4)
(7,1) + χ

SO(4)
(5,1) + 2χ

SO(4)
(3,1) + χ

SO(4)
(1,1)

+ 2χ
SO(4)
(1,3) + χ

SO(4)
(1,5) + χ

SO(4)
(1,7) + χ

SO(4)
(3,3)

)
q3 + · · · , (3.40)

where χ
SO(4)
R (z1, z2) is the character of SO(4) in the representation R.

Meanwhile, the index for the SU(2) gauge theory with two flavors is

ISU(2),Nf=2(q, z1, z2)=
1

π

∫ 2π

0
dθ sin2 θ

×P.E.
[
fV (q)(e2iθ+e−2iθ+1)+f

1
2
H(q)(eiθ+e−iθ)χSO(4)

(2,2) (z1, z2)
]

=1+
(
χ

SO(4)
(3,1) +χ

SO(4)
(1,3)

)
q+
(
χ

SO(4)
(5,1) +χ

SO(4)
(3,1) +χ

SO(4)
(1,1) +χ

SO(4)
(1,3) +χ

SO(4)
(1,5)

)
q2

+
(
χ

SO(4)
(7,1) + χ

SO(4)
(5,1) + 2χ

SO(4)
(3,1) + χ

SO(4)
(1,1)

+ 2χ
SO(4)
(1,3) + χ

SO(4)
(1,5) + χ

SO(4)
(1,7) + χ

SO(4)
(3,3)

)
q3 + · · · . (3.41)

This agrees with ISU(2),Nf=2(q, z1, z2) = (q)2
∞Tr[O(q)] as a function of three variables.
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Figure 4. The BPS quiver for the N = 2 SU(2) gauge theory with three hypermultiplets in the

fundamental representation.

3.3.4 SU(2) with Nf = 3

The N = 2 SU(2) gauge theory with three hypermultiplets in the fundamental represen-

tation has an SO(6) flavor symmetry, whose fugacities will be denoted by z1, z2, z3.12 The

BPS quiver is shown in figure 4. There is a strong coupling chamber where

argZ(γ1) > argZ(γ2) = argZ(γ3) = argZ(γ4) = argZ(γ5) . (3.43)

In this chamber the only BPS particles are the nodes γ1, γ2, γ3, γ4, γ5. We will choose the

basis for the flavor symmetry to be

γf1 =
1

4
(−γ2 − γ3 − γ4 + 3γ5) , γf2 =

1

2
(γ2 − γ3 − γ4 + γ5) , γf3 =

1

4
(γ2 + γ3 − 3γ4 + γ5) ,

(3.44)

and normalize the trace of the flavor generators to be

Tr[Xγfi
] = zi , i = 1, 2, 3 . (3.45)

This basis will turn out to be the most convenient choice when comparing with the index.

The trace of the KS operator can be similarly computed to be

Tr[O(q)] =

∞∑
`1,··· ,`5,
k1,··· ,k5=0

(−1)
∑5
i=1(ki+`i)q

1
2

∑5
i=1(ki+`i)+k1

∑5
i=2 `i∏5

i=1(q)ki(q)`i
Tr

[
5∏
i=1

X−ki+`iγi

]
. (3.46)

Now using (3.44), we can perform the following replacements,

Xγ2 = Xγ5X
−2
γf1
Xγf2

, Xγ3 = Xγ5X
−1
γf1
X−1
γf2
Xγf3

, Xγ4 = Xγ5X
−1
γf1
X−1
γf3

, (3.47)

12Our convention for the SO(6) character is, for example,

χ
SO(6)
6 (z1, z2, z3) = z2 + z1z

−1
2 z3 + z−1

1 z3 + z1z
−1
3 + z−1

1 z2z
−1
3 + z−1

2 . (3.42)
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and obtain the final expression for the trace of the KS operator,

Tr[O(q)] =
∞∑

`1,··· ,`5,
k1,··· ,k5=0

q
∑5
i=1 `i+`1

∑5
i=2 `i∏5

i=1(q)ki(q)`i
z
−(`2−k2)+(`5−k5)
1

× z(`2−k2)−(`3−k3)
2 z

(`3−k3)−(`4−k4)
3 δk1,δ1δ∑5

i=2 ki,
∑5
i=2 `i

.

(3.48)

We therefore obtain a q-expansion for

(q)2
∞Tr[O(q)] = 1 + χ

SO(6)
15 (z1, z2, z3)q +

(
χ

SO(6)
1 + χ

SO(6)
15 + χ

SO(6)
84

)
(z1, z2, z3) q2 + · · · .

(3.49)

Meanwhile, the index for the SU(2) gauge theory with two flavors is

ISU(2),Nf=3(q, z1, z2, z3)

=
1

π

∫ 2π

0
dθ sin2 θP.E.

[
fV (q)(e2iθ+e−2iθ+1)+f

1
2
H(q)(eiθ+e−iθ)χSO(6)

6 (z1, z2, z3)
]

= 1 + χ
SO(6)
15 (z1, z2, z3)q +

(
χ

SO(6)
1 + χ

SO(6)
15 + χ

SO(6)
84

)
(z1, z2, z3) q2 + · · · , (3.50)

which agrees with ISU(2),Nf=3(q, z1, z2, z3) = (q)2
∞Tr[O(q)] as a function of four variables.

4 Applications to Argyres-Douglas theories

In this section, we assume the validity of our conjecture (2.21) and apply it to compute

the index of the strongly-coupled Argyres-Douglas conformal field theories [23, 24]. These

theories are labelled by and ADE singularity plane curve singularity which describes the

(singular) Seiberg-Witten curve at the conformal fixed point.

The BPS spectra of the Argyres-Douglas theories is known [18, 19, 33–36]. As dis-

covered in [19], for all models, there is a chamber where the only BPS particles can be

represented as a node of the associated ADE quiver diagram and every node is either

a sink (all arrows coming in) or a source (all arrows going out). We will refer this to

the sink/source chamber. The only BPS particles in the sink/source chamber are those

corresponding to the nodes with the following phase order

argZ(γI) > argZ(γJ) , for all I ∈ sink, J ∈ source . (4.1)

We will use the indices I, I ′ for the sink nodes and J, J ′ for the source nodes.

The KS operator can then be written uniformly as [19]

O(q) =
∏

J ′∈source

Eq(X−γJ′ )
∏

I′∈sink

Eq(X−γI′ )
∏

J∈source

Eq(XγJ )
∏

I∈ sink

Eq(XγI ) . (4.2)

We evaluate the trace of this operator and use it to predict the index.

A strong check on our results comes from recent work connecting chiral algebras to

four-dimensional N = 2 theories [12–14]. Specifically, it is known that the operators that

may contribute to the Schur index form the structure of a two-dimensional chiral algebra.
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Figure 5. The BPS quiver for the A2n Argyres-Douglas theory in the sink/source chamber.

Moreover the central charges of this chiral algebra are inherited from four dimensional

central charges as [12]

c2d = −12c4d , k2d = −1

2
k4d , (4.3)

where c2d is the two-dimensional central charge, and k2d is the level of a flavor symmetry

(if any is present). Based on these results, one expects the Schur index to be modular with

the given c2d. Since the central charges c4d of the Argyres-Douglas theories are known, this

provides a prediction for our calculations. Moreover, as anticipated from the work of [19]

the trace of O(q) should also be related to a non-unitary minimal model.

Our results match perfectly with these expectations. In the series A2n, D2n+1, D4,

and E6 and E8 we find characters of non-unitary minimal models or Kac-Moody algebras

with known 2d central charges exactly agreeing with (4.3). Interestingly in the A2n case,

the q series we produce appear similar to the fermionic representation of Virasoro minimal

model characters appearing in [47, 48].

As another consistency condition, we observe that in the case of the A2n+1 and D2n

Argyres-Douglas theories, our formulas agree with the recent results of [40] derived by

different reasoning.

Bolstered by these calculations, we conclude in section 4.4 with a proposal for the

generalized Argyres-Douglas theories of type (Ak−1, AN−1). Specifically, we conjecture that

for k and N coprime, the chiral algebra of this theory is the vacuum sector of the non-

unitary Wk (k, k +N) minimal model, and that the Schur index is the associated vacuum

character.

4.1 An Theories

4.1.1 A2n

For the A2n Argyres-Douglas theory, the 4d central charge is c4d = n(6n+5)
6(2n+3) [30, 32, 49, 50].

The BPS quiver is shown in figure 5. There is no flavor symmetry. From the 4d/2d relation

c2d = −12c4d, we determine the 2d central charge of the chiral algebra to be

c2d = −2n(6n+ 5)

2n+ 3
. (4.4)

On the other hand, for two coprime integers p and p′, the central charge of the (p, p′)
Virasoro minimal model is given by

c(2)(p, p′) = 1− 6
(p− p′)2

pp′
, (4.5)
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where the superscript (2) indicates that this is a minimal model of the Virasoro algebra.

We recognize c2d in (4.4) as the central charge of the (p = 2, p′ = 2n + 3) Virasoro

minimal model.

Indeed, we will see that the Schur index of the A2n Argyres-Douglas theory is the

vacuum character of the (2, 2n + 3) Virasoro minimal model as conjectured by [37, 38].

This is an extension of the calculations of [19] where it was found that, in the case of the

A2 model, the trace of O(q)−1 is closely related to the character of the non-trivial primary

in the (2, 5) Virasoro minimal model, and confirms their more general expectation of a link

between traces of powers of O(q) and characters of non-unitary Virasoro minimal models.

We will work in the sink/source chamber where all the even (odd) nodes are sinks

(sources). The KS operator O(q) is then given by (4.2). By expanding out Eq(x) as

in (2.10), the trace of the KS operator can be written as

Tr[O(q)] =

∞∑
`1,··· ,`2n,
k1,··· ,k2n=0

(−1)
∑2n
i=1(ki+`i)q

1
2

∑2n
i=1(ki+`i)∏2n

i=1(q)ki(q)`i
Tr

[ ∏
J ′∈odd

X
kJ′
−γJ′

∏
I′∈even

X
kI′
−γI′

∏
J∈odd

X`J
γJ

∏
I∈even

X`I
γI

]
.

(4.6)

By passing
∏
I′∈evenX

kI′
−γI′ through

∏
J∈oddX

`J
γJ

, we pick up a power of q from the quantum

torus algebra (2.9),∏
I′∈even

X
kI′
−γI′

∏
J∈odd

X`J
γJ

= q `1k2+`3(k2+k4)+···`2n−1(k2n−2+k2n)
∏
J∈odd

X`J
γJ

∏
I′∈even

XI′
−γI′ . (4.7)

It follows that

Tr[O(q)] =

∞∑
`1,··· ,`2n,
k1,··· ,k2n=0

(−1)
∑2n
i=1(ki+`i)q

1
2

∑2n
i=1(ki+`i)q `1k2+`3(k2+k4)+···`2n−1(k2n−2+k2n)∏2n

i=1(q)ki(q)`i

× Tr

[ ∏
J∈odd

X`J−kJ
γJ

∏
I∈even

X`I−kI
γI

]
.

(4.8)

Finally, since there is no flavor symmetry, we have Tr[Xγi ] = 0 for all i = 1, · · · , 2n.

The trace then enforces a Kronecker delta δki,`i associated to each node. Assuming our

conjecture IA2n(q) = (q)2n
∞Tr[O(q)], we arrive at our final formula for the Schur index of

the A2n Argyres-Douglas theory

IA2n(q) = (q)2n
∞

∞∑
`1,··· ,`2n=0

q
∑2n
i=1 `i +

∑2n−1
i=1 `i`i+1∏2n

i=1[(q)`i ]
2

. (4.9)

It will be more illuminating to write the answer as

IA2n(q) = (q)2n
∞

∞∑
`1,··· ,`2n=0

q
∑2n
i=1 `i + 1

2

∑2n
i,j=1 b

A2n
ij `i`j∏2n

i=1[(q)`i ]
2

, (4.10)
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where

bA2n
ij = −CA2n

ij + 2δij , (4.11)

with CA2n
ij the Cartan matrix of A2n. We will see similar expressions for other Argyres-

Douglas theories.

On the other hand, the vacuum character of the (p, p′) Virasoro minimal model is given

by (see, for example, [51])13

χ
(p,p′)
0 (q) = q

1
24

(c(2)(p,p′)−1) 1

(q)∞

∑
`∈Z

(
q

(2pp′`+p−p′)2
4pp′ − q

(2pp′`+p+p′)2
4pp′

)
, (4.12)

with c(2)(p, p′) = 1− 6 (p−p′)2
pp′ .

We conjecture that the Schur index IA2n(q) of the A2n Argyres-Douglas theory equals

to the vacuum character χ
(2,2n+3)
0 (q) of the (2, 2n + 3) Virasoro minimal model. Let us

examine this conjecture in the A2 theory. The Schur index has the following q-expansion,

IA2(q) = (q)2
∞

∞∑
`1,`2=0

q`1+`2+`1`2

[(q)`1(q)`2 ]2
(4.13)

= 1 + 0q + q2 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 3q9 + 4q10 + 4q11 + 6q12 + · · · .

On the other hand, the (2,5) Virasoro minimal model vacuum character can be expanded as

χ
(2,5)
0 (q) = q−

27
120

1

(q)∞

∑
`∈Z

(
q

(20`−3)2

40 − q
(20`+7)2

40

)
(4.14)

= 1 + 0q + q2 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 3q9 + 4q10 + 4q11 + 6q12 + · · · .

Incidentally, the vacuum character of the (2,5) Virasoro minimal model is known to be

equal to the Rogers-Ramanujan function H(q) :=
∑∞

`=0
q`

2+`

(q)`
.

The Schur index for the A4 Argyres-Douglas theory is

IA4(q)=(q)4
∞

∞∑
`1,`2,`3,`4=0

q`1+`2+`3+`4+`1`2+`2`3+`3`4

[(q)`1(q)`2(q)`3(q)`4 ]2
(4.15)

=1 + 0q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 6q9 + 8q10 + 9q11 + 13q12 + · · · .

On the other hand, the vacuum character for the (2,7) Virasoro minimal model is

χ
(2,7)
0 (q)=q−

75
168

1

(q)∞

∑
`∈Z

(
q

(28`−5)2

56 − q
(28`+9)2

56

)
(4.16)

=1+0q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 6q9 + 8q10 + 9q11 + 13q12+· · · .

As a further consistency check, we notice that the first few terms in the vacuum

character of a Virasoro minimal model have the following universal form,

χ
(2,2n+3)
0 = 1 + 0q + q2 + · · · , (4.17)

13We normalize the character such that the leading term is 1.
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Figure 6. The BPS quiver for the A2n+1 Argyres-Douglas theory in the sink/source chamber.

which has the desired property for the Schur index of the A2n Argyres-Douglas theory.

Indeed, as discussed in (2.2), the vanishing of the linear coefficient implies the absence

of any flavor symmetry, and the 1 for the q2 term is naturally interpreted as the unique

energy-momentum tensor multiplet.

4.1.2 A2n+1

For the A2n+1 Argyres-Douglas theory, the 4d central charge is c4d = 3n2+5n+1
6(n+2) [30, 32, 49,

50]. The BPS quiver is shown in figure 6. There is an U(1) flavor symmetry if n > 1 and

an SU(2) flavor symmetry if n = 1. From the 4d/2d relation c2d = −12c4d, we determine

the 2d central charge of the chiral algebra to be

c2d = −2(3n2 + 5n+ 1)

n+ 2
. (4.18)

We will choose the lattice vector γf for the flavor symmetry to be

γf =

n∑
i=0

(−1)iγ2i+1 . (4.19)

We will normalize the trace of the flavor generator to be

Tr[Xγf ] =

{
z2 , if n = 1 ,

(−1)n+1z , if n > 1 .
(4.20)

Again in the sink/source chamber, the KS operator is given by (4.2). Following an

identical calculation as the A2n case, the trace of the KS operator can be written as

Tr[O(q)] =

∞∑
`1,··· ,`2n+1,
k1,··· ,k2n+1=0

(−1)
∑2n+1
i=1 (ki+`i)q

1
2

∑2n+1
i=1 (ki+`i)q k2(`1+`3)+k4(`3+`5)+···k2n(`2n−1+`2n+1)∏2n+1

i=1 (q)ki(q)`i

× Tr

[ ∏
J∈odd

X`J−kJ
γJ

∏
I∈even

X`I−kI
γI

]
. (4.21)

Using (4.19), we can perform the following replacement

Xγ1 = Xγf

n∏
i=1

(Xγ2i+1)(−1)i+1
. (4.22)

The traces on the even nodes then enforce the Kronecker delta δk2i,`2i while those on the odd

nodes enforce δ(−1)j+1k1+k2j+1,(−1)j+1`1+`2j+1
(except for γ1 which has already been solved for
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Figure 7. The BPS quiver for the D2n+1 Argyres-Douglas theory in the sink/source chamber.

in terms of other charges in (4.22)). Assuming our conjecture IA2n+1(q, z) = (q)2n
∞Tr[O(q)],

we obtain the Schur index for the A2n+1 Argyres-Douglas theory

IA2n+1(q, z) = (q)2n
∞

∞∑
`1,··· ,`2n+1,
k1,··· ,k2n+1=0

(−1)
∑2n+1
i=1 (ki+`i)q

1
2

∑2n+1
i=1 (ki+`i)+

∑n
j=1 `2j(`2j−1+`2j+1)∏2n+1

i=1 (q)ki(q)`i

×
[
(−1)n+1z

]`1−k1 n∏
i=1

δk2i,`2i

n∏
j=1

δ(−1)j+1k1+k2j+1,(−1)j+1`1+`2j+1
.

(4.23)

Because of the isomorphism D3
∼= A3, the A3 Argyres-Douglas theory is special in the

A2n+1 series and we defer its discussion to section 4.2.1 where we treat the whole series

D2n+1 uniformly. The q-expansion for the first few A2n+1 theories with n > 1 is

IA5(q)= 1 + q + (z + z−1)q
3
2 + 3q2 + (2z + 2z−1)q

5
2 + (z2 + 5 + z−2)q3

+ (4z + 4z−1)q
7
2 + (2z2 + 10 + 2z−2)q4 + (z3 + 8z + 8z−1 + z−3)q

9
2 + · · · ,

IA7(q)= 1 + q + (z + 3 + z−1)q2 + (2z + 5 + 2z−1)q3 + (z2+4z+10+4z−1+z−2)q4 + · · · ,
IA9(q)= 1 + q + 3q2 + (z + z−1)q

5
2 +· · · . (4.24)

Note that the linear term in q encodes the correct U(1) flavor symmetry. As a consistency

check, we note that the above q-expansions agree with the formula conjectured in [40].

4.2 Dn Theories

4.2.1 D2n+1

The D2n+1 theory has an SU(2) flavor symmetry. The BPS quiver is shown in figure 7.

The 4d central charges c4d = n
2 and the flavor central charge k4d = 8n

2n+1 [30, 32, 50]. Using

the 4d/2d relations, c2d = −12c4d and k2d = −1
2k4d, we have the following 2d central charge

and level,

c2d = −6n, k2d = − 4n

2n+ 1
. (4.25)
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Note that in this case the SU(2) Sugawara central charge

D2n+1 : cSug =
3k2d

k2d + 2
= −6n = c2d , (4.26)

saturates the 2d central charge c2d. This strongly suggests that the chiral algebra for the

D2n+1 Argyres-Douglas theory is the Kac-Moody algebra ŜU(2)− 4n
2n+1

. Indeed, we will

check that the Schur index of the D2n+1 Argyres-Douglas theory equals to the vacuum

character of ŜU(2)− 4n
2n+1

as conjectured by [37, 38].

We choose the flavor lattice vector to be

γf = γ2n+1 − γ2n . (4.27)

We normalize the trace of the flavor generator to be

Tr[Xγf ] = z2 . (4.28)

We again work in the sink/source chamber where γ2, γ4, · · · , γ2n, γ2n+1 are sinks and

γ1, γ3, · · · , γ2n−1 are sources. The KS operator is again given by (4.2). By a similar

calculation as in A2n+1, the trace of the KS operator can be written as

Tr[O(q)] =

∞∑
`1,··· ,`2n+1,
k2n,k2n+1=0

(−1)k2n+k2n+1+`2n+`2n+1q
∑2n−1
i=1 `i+

1
2

(k2n+k2n+1+`2n+`2n+1)

(q)k2n(q)k2n+1(q)`2n(q)`2n+1

∏2n−1
i=1 [(q)`i ]

2

× q`2n−1(`2n−2+k2n+k2n+1)+
∑n−1
i=1 `2i(`2i−1+`2i+1) Tr

[
X−k2n+`2n
γ2n X−k2n+1+`2n+1

γ2n+1

]
.

(4.29)

Note that we have already performed the trace on Xγi which enforces `i = ki for i =

1, · · · , 2n− 1. Using (4.27), we can replace

Xγ2n+1 = Xγ2nXγf . (4.30)

Assuming our conjecture ID2n+1(q) = (q)2n
∞Tr[O(q)], we arrive at our final expression for

ID2n+1(q, z) = (q)2n
∞

∞∑
`1,··· ,`2n+1,
k2n,k2n+1=0

q
∑2n+1
i=1 `i+

1
2

∑2n+1
i,j=1 b

D2n+1
ij `i`j

(q)k2n(q)k2n+1(q)`2n(q)`2n+1

∏2n−1
i=1 [(q)`i ]

2

× z2(`2n+1−k2n+1) δk2n+k2n+1,`2n+`2n+1 ,

(4.31)

where b
D2n+1

ij = −CD2n+1

ij + 2δij and C
D2n+1

ij is the Cartan matrix of D2n+1.

On the other hand, the vacuum character of ŜU(2)− 4n
2n+1

can be derived straightfor-

wardly by applying the Kac-Wakimoto formula [52],

χ
ŜU(2)− 4n

2n+1

(q, z)

=
1∏∞

n=1(1− qn)(1− z2qn)(1− z−2qn)

∞∑
m=0

(−1)m
z2m+1 − z−(2m+1)

z − z−1
q
m(m+1)

2
(2n+1) .

(4.32)
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Figure 8. The BPS quiver for the D2n+2 Argyres-Douglas theory in the sink/source chamber.

The q-expansion for the Schur indices of the first two D2n+1 theories are listed below.

ID3
∼=A3(q, z) = 1 + χ

SU(2)
3 (z)q +

(
χ

SU(2)
1 + χ

SU(2)
3 + χ

SU(2)
5

)
(z) q2

+
(
χ

SU(2)
1 + 2χ

SU(2)
3 + χ

SU(2)
5 + χ

SU(2)
7

)
(z) q3

+
(

2χ
SU(2)
1 + 3χ

SU(2)
3 + 3χ

SU(2)
5 + χ

SU(2)
7 + χ

SU(2)
9

)
(z) q4 + · · · , (4.33)

ID5(q, z) = 1 + χ
SU(2)
3 (z)q +

(
χ

SU(2)
1 + χ

SU(2)
3 + χ

SU(2)
5

)
(z) q2

+
(
χ

SU(2)
1 + 3χ

SU(2)
3 + χ

SU(2)
5 + χ

SU(2)
7

)
(z) q3

+
(

3χ
SU(2)
1 + 4χ

SU(2)
3 + 4χ

SU(2)
5 + χ

SU(2)
7 + χ

SU(2)
9

)
(z) q4 + · · · . (4.34)

They match with the q-expansions for the vacuum characters of ŜU(2)− 4n
2n+1

(4.32) exactly.

This strongly supports our claim,

ID2n+1(q, z) = χ
ŜU(2)− 4n

2n+1

(q, z) . (4.35)

4.2.2 D2n+2

The D2n+2 Argyres-Douglas theory has an SU(2) × U(1) flavor symmetry for n > 1 and

SU(3) flavor symmetry for n = 1. The BPS quiver is shown in figure 8. The 4d central

charge and the flavor central charge are c4d = n
2 + 1

6 and k4d = 2(2n+1)
n+1 [30, 32, 49, 50].

Using the 4d/2d relations c2d = −12c4d and k2d = −1
2k4d, we obtain

c2d = −6n− 2 , k2d = −2n+ 1

n+ 1
. (4.36)

For the special case of D4, the SU(3) Sugawara central charge saturates the 2d central

charge,

D4 : cSug =
8k2d

k2d + 3
= −8 = c2d . (4.37)

Indeed, we will check that the Schur index of the D4 Argyres-Douglas theory agrees with

the vacuum character of ŜU(3)− 3
2

as conjectured by [37, 38].
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We will choose flavor lattice vectors to be

γf1 = γ2n+2 − γ2n+1 , γf2 =

n∑
i=0

(−1)iγ2i+1 . (4.38)

We will use y, x as variables for the characters of SU(2) × U(1), with the convention

χ
SU(2)
2 (y) = y + y−1. The D4 theory enjoys an enhanced SU(3) flavor symmetry and we

discuss the convention for that case in more detail later. To match with this convention for

the characters, we need to normalize the trace of the flavor generators in the following way,

Tr[Xγf1
] = y2 , Tr[Xγf2

] =

{
xy if n is odd ,

−x
y if n is even .

(4.39)

Finally, using (4.38), we can then replace the generators Xγ1 and Xγ2n+2 by

Xγ2n+2 = Xγf1
Xγ2n+1 , Xγ1 = Xγf2

n∏
i=1

(−1)i+1Xγ2i+1 . (4.40)

After a similar calculation as for the D2n+1 Argyres-Douglas theory, we obtain the

Schur index of the D2n+2 Argyres-Douglas theory,

ID2n+2(q, x, y) = (q)2n
∞

∞∑
`1,··· ,`2n+2,
k1,··· ,k2n+2=0

(−1)
∑2n+2
i=1 (ki+`i)q

1
2

∑2n+2
i=1 (ki+`i)+

1
2

∑2n+2
i,j=1 b

D2n+2
ij `i`j∏2n+2

i=1 (q)ki(q)`i

×
(

Tr[Xγf1
]
)`2n+2−k2n+2

(
Tr[Xγf2

]
)`1−k1 ( n∏

i=1

δk2i,`2i

)

×
(
n−1∏
i=1

δ(−1)i+1k1+k2i+1,(−1)i+1`1+`2i+1

)
× δ(−1)n+1k1+k2n+1+k2n+2,(−1)n+1`1+`2n+1+`2n+2

, (4.41)

where b
D2n+2

ij = −CD2n+2

ij + 2δij with C
D2n+2

ij the Cartan matrix of D2n+2. The traces of

the flavor generators Tr[Xγfi
] are given in (4.39) as functions of the flavor fugacities x, y.

Let us start with the D4 Argyres-Douglas theory. The D4 theory enjoys an enhanced

SU(3) flavor symmetry so it would be more appropriate to change the flavor fugacity

variables x, y to the standard variables z1, z2 of the SU(3) character.14 The relation between

x, y and z1, z2 is

x = z
− 3

2
2 , y = z1z

− 1
2

2 . (4.42)

Equivalently, we have Tr[Xγf1
] = y2 = z2

1z
−1
2 and Tr[Xγf2

] = xy = z1z
−2
2 .

The q-expansion of the Schur index for the D4 Argyres-Douglas theory is

ID4(q, z1, z2) = 1 + χ
SU(3)
8 q +

(
χ

SU(3)
1 + χ

SU(3)
8 + χ

SU(3)
27

)
q2

+
(
χ

SU(3)
1 + 2χ

SU(3)
8 + χ

SU(3)
10 + χ

SU(3)

10
+ χ

SU(3)
27 + χ

SU(3)
64

)
q3 (4.43)

+
(

2χ
SU(3)
1 + 4χ

SU(3)
8 + χ

SU(3)
10 + χ

SU(3)

10

+ 3χ
SU(3)
27 + χ

SU(3)
35 + χ

SU(3)

35
+ χ

SU(3)
64 + χ

SU(3)
125

)
q4 + · · · ,

14Our convention is such that χ
SU(3)
3 (z1, z2) = z1 + z−1

1 z2 + z−1
2 .
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Figure 9. The BPS quiver for the E6 Argyres-Douglas theory in the sink/source chamber.

where we have suppressed the explicit z1, z2 dependence on the SU(3) characters. This

exactly matches the expansion of the vacuum character of ŜU(3)− 3
2
, which can be computed

using the Kac-Wakimoto formula [52] (see [40] for the explicit q-expansion). This supports

the claim

ID4(q, z1, z2) = χ
ŜU(3)− 3

2

(q, z1, z2) . (4.44)

For the other D2n+2 theories, the flavor symmetries are SU(2) × U(1) and we record

the q-expansion of their Schur indices below.

ID6(q, x, y) = 1 +
(
χ

SU(2)
1 + χ

SU(2)
3

)
q + (x+ x−1)χ

SU(2)
2 q

3
2

+
(

3χ
SU(2)
1 + 2χ

SU(2)
3 + χ

SU(2)
5

)
q2 + (x+ x−1)

(
2χ

SU(2)
2 + χ

SU(2)
4

)
q

5
2

+
[

5χ
SU(2)
1 + (x2 + 6 + x−2)χ

SU(2)
3 + 2χ

SU(2)
5 + χ

SU(2)
7

]
q3 + · · · , (4.45)

ID8(q, x, y) = 1 +
(
χ

SU(2)
1 + χ

SU(2)
3

)
q

+
[
3χ

SU(2)
1 + (x+x−1)χ

SU(2)
2 + 2χ

SU(2)
3 + χ

SU(2)
5

]
q2

+
[
5χ

SU(2)
1 +(x+x−1)

(
2χ

SU(2)
2 +χ

SU(2)
4

)
+6χ

SU(2)
3 +2χ

SU(2)
5 +χ

SU(2)
7

]
q3+· · · ,

where we have suppressed the y-dependence on the SU(2) characters. As a final consistency

check, we note that the above q-expansions agree with the formula conjectured in [40].

4.3 En theories

4.3.1 E6

The E6 Argyres-Douglas theory has no flavor symmetry. The BPS quiver is shown in

figure 9. The 4d central charge is c4d = 19
14 [30, 32]. Using the 4d/2d relation, we obtain

the 2d central charge,

c2d = −114

7
. (4.46)

On the other hand, for coprime integers p′, p ≥ 3, the central charge of the (p, p′) minimal

model of the W3 algebra is [53, 54]

c(3)(p, p′) = 2

(
1− 12

(p− p′)2

pp′

)
. (4.47)
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Note that c2d = −114/7 is also the central charge of the (3,7) minimal model of W3 algebra.

Indeed we will show that the Schur index of the E6 Argyres-Douglas theory equals to the

vacuum character of the (3,7) W3 minimal model.

The trace of the KS operator can be computed in a similar way as the A2n case.

Assuming the conjecture IE6(q) = (q)6
∞Tr[O(q)], we obtain the Schur index of the E6

Argyres-Douglas theory,

IE6(q) = (q)6
∞

∞∑
`1,··· ,`6=0

q
∑6
i=1 `i + 1

2

∑6
i,j=1 b

E6
ij `i`j∏6

i=1[(q)`i ]
2

, (4.48)

= 1 + 0q + q2 + 2q3 + 3q4 + 3q5 + 6q6 + 7q7 + 11q8 + 14q9 + 20q10 + 25q11 + · · · ,

where bE6
ij = −CE6

ij + 2δij and CE6
ij is the Cartan matrix of E6.

On the other hand, the vacuum character of the (3,7) W3 minimal model is [55] (see

section 4.4 for more details)

χW3, (3,7)(q) =
[(q7; q7)∞]2

[(q; q)∞]2
[(q; q7)∞]2(q5; q7)∞(q2; q7)∞[(q6; q7)∞]2 (4.49)

= 1+0q+q2+2q3+3q4+3q5+6q6+7q7+11q8+14q9+20q10+25q11 + · · · ,

where the q-Pochhammer symbol (a; q)n is defined as

(a; q)n =

n−1∏
k=0

(1− aqk) . (4.50)

In particular, (q; q)n = (q)n =
∏n
k=1(1 − qk). The match of the q-expansion strongly

supports our conjecture that the E6 Schur index is the same as the vacuum character of

the (3,7) W3 minimal model,

IE6(q) = χW3, (3,7)(q) . (4.51)

4.3.2 E7

The E7 Argyres-Douglas theory has an U(1) flavor symmetry. The BPS quiver is shown

in figure 10. The 4d central charge is c4d = 31
20 [30, 32], which gives the 2d central charge

c2d = −93

5
. (4.52)

Choose the flavor lattice vector to be

γf = γ4 − γ6 − γ7 . (4.53)

We can then replace Xγ7 by

Xγ7 = X−1
γf
Xγ4X

−1
γ6 . (4.54)

We will normalize the trace of the flavor generator to be

Tr[Xγf ] = −z . (4.55)
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Figure 10. The BPS quiver for the E7 Argyres-Douglas theory in the sink/source chamber.

The trace of the KS operator can be similarly computed to be

Tr[O(q)] =

∞∑
`1,··· ,`7,
k1,··· ,k7=0

(−1)
∑7
i=1(ki+`i)q

1
2

∑7
i=1(ki+`i)qk2(`1+`3)+k4(`3+`5)+k6`5+k7`3∏7

i=1(q)ki(q)`i

× Tr

[(
3∏
i=1

X
−k2i−1+`2i−1
γ2i−1

)
X−k7+`7
γ7

(
3∏
i=1

X−k2i+`2iγ2i

)]
. (4.56)

Now using (4.54) and assuming our conjecture IE7(q, z) = Tr[O(q)], we obtain the Schur

index of the E7 Argyres-Douglas theory,

IE7(q, z) = (q)6
∞

∞∑
`1,··· ,`7,
k1,··· ,k7=0

(−1)
∑7
i=1(ki+`i)q

1
2

∑7
i=1(ki+`i)qk2(`1+`3)+k4(`3+`5)+k6`5+k7`3∏7

i=1(q)ki(q)`i

× (−z)−`7+k7 δk4+k7,`4+`7δk6−k7,`6−`7
∏

i∈{1,2,3,5}
δki,`i (4.57)

= 1 + q + (z+z−1)q
3
2 + 3q2 + (2z−1+2z)q

5
2 + (z−2+6+z2)q3 + (5z−1+5z)q

7
2

+ (2z−2+12+2z2)q4 + (z−3+10z−1+10z+z3)q
9
2 + (6z−2+21+6z2)q5 + · · · .

The linear term q comes from the U(1) flavor symmetry current multiplet while one of the

q2 terms comes from the stress-energy tensor multiplet.

4.3.3 E8

The E8 Argyres-Douglas theory has no flavor symmetry. The BPS quiver is shown in

figure 11. The 4d central charge is c4d = 23
12 [30, 32]. Using the 4d/2d relation, we obtain

the 2d central charge,

c2d = −23 . (4.58)

We note that −23 is also the central charge of the (3,8) minimal model of W3 algebra (4.47).

Indeed we will show that the Schur index of the E8 Argyres-Douglas theory equals to the

vacuum character of the (3,8) W3 minimal model.

– 30 –



J
H
E
P
0
1
(
2
0
1
6
)
0
4
0

γ1 γ2 γ3 γ4 γ5

γ8

γ6 γ7
// oo // oo

OO

// oo

Figure 11. The BPS quiver for the E8 Argyres-Douglas theory in the sink/source chamber.

The Schur index of the E8 Argyres-Douglas theory can be derived in a similar way as

A2n and the E6 case,

IE8(q) = (q)8
∞

∞∑
`1,··· ,`8=0

q
∑8
i=1 `i + 1

2

∑8
i,j=1 b

E8
ij `i`j∏8

i=1[(q)`i ]
2

,

= 1 + 0q + q2 + 2q3 + 3q4 + 4q5 + 7q6 + · · · ,
(4.59)

where bE8
ij = −CE8

ij + 2δij and CE8
ij is the Cartan matrix of E8.

On the other hand, the vacuum character of the (3,8) W3 minimal model is [55] (see

section 4.4 for more details)

χW3, (3,8)(q) =
[(q8; q8)∞]2

[(q; q)∞]2
[(q; q8)∞]2(q6; q8)∞(q2; q8)∞[(q7; q8)∞]2

= 1 + 0q + q2 + 2q3 + 3q4 + 4q5 + 7q6 + · · · ,
(4.60)

which supports our claim

IE8(q) = χW3, (3,8)(q) . (4.61)

4.4 Generalized Argyres-Douglas theories

In this subsection we will generalize our previous observations on the A2n, E6, E8 theories

and propose that the Schur indices of the an infinite family of generalized Argyres-Douglas

theories are given by the vacuum characters of Wk minimal models.

The generalized Argyres-Douglas theory [19, 28, 30, 32] is defined by a BPS quiver

labeled by two ADE algebras (G,G′). The labeling is symmetric so the theory (G,G′)
is the same as the theory (G′, G). The ordinary Argyres-Douglas theory labeled by G

corresponds to the special case of (A1, G).

In particular, the BPS quiver for the (Ak−1, AN−1) Argyres-Douglas theory is shown

in figure 12. This theory has singular Seiberg-Witten curve

xk + yN = 0 . (4.62)

The rank of the flavor symmetry is given by [28]

gcd(k,N)− 1 . (4.63)
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Figure 12. The BPS quiver for the (Ak−1, AN−1) Argyres-Douglas theory in the sink/source

chamber.

In the following we will focus on the special case where there is no flavor symmetry, i.e.

(Ak−1, AN−1) with gcd(k,N) = 1 . (4.64)

The BPS states of these models are more complicated that the models studied in previous

sections [56]. In particular there are more stable BPS states than nodes of the quiver and

we do not know directly how to evaluate Tr[O(q)]. Nevertheless, we can make a reasonable

conjecture as to the result.

The 4d central charge of these theories are extracted from [32], c4d(k,N) =
(k−1)(N−1)(k+N+kN)

12(k+N) for k and N coprime. Using the 4d/2d relation c4d = −12c2d, we

determine the 2d central charge of the underlying chiral algebra to be

c2d(k,N) = −(k − 1)(N − 1)(k +N + kN)

(k +N)
, if gcd(k,N) = 1 . (4.65)

Note that the central charge is symmetric in k and N , c2d(k,N) = c2d(N, k), reflecting the

fact that the generalized Argyres-Douglas theory labeled by (Ak−1, AN−1) is the same as

(AN−1, Ak−1).

On the other hand, the minimal model of the Wk algebra is labeled by two coprime

integers p, p′ with p′, p ≥ n, whose central charge is given by [53, 57]

c(k)(p, p′) = (k − 1)

[
1− k(k + 1)

(p− p′)2

pp′

]
. (4.66)

We recognize that the 2d central charge (4.65) of the (Ak−1, AN−1) generalized Argyres-

Dougals theory is equal to that of the (k, k +N) Wk minimal model,

c2d(k,N) = c(k)(k, k +N) . (4.67)

We therefore conjecture that the chiral algebra of the (Ak−1, AN−1) Argyres-Douglas theory

is given by vacuum sector of the (k, k +N) Wk minimal model.
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Since the (Ak−1, AN−1) Argyres-Douglas theory is the same as that labeled by (AN−1,

Ak−1), for this conjecture to be true, there must be some equivalences between the W alge-

bra minimal models. Indeed, using their coset constructions, it has been shown that [58],

(k, k +N) Wk minimal model = (N,N + k) WN minimal model . (4.68)

In particular,

c(k)(k, k +N) = c(N)(N,N + k) . (4.69)

This equivalence further solidifies our proposal.

A consequence of our conjectured identification of the Schur operators in the (AN−1,

Ak−1) Argyres-Douglas theory as the vacuum sector of the (k, k + N) Wk minimal model

is that Schur index must equal to the associated vacuum character which has a compact

closed form expression. In general the character, or equivalently, the highest weight of the

(k, k +N) Wk minimal model is labeled by a tuple of positive integers

(j0, j1, · · · , jk−1) , (4.70)

such that
∑k−1

i=0 ji = k + N . The labeling is not unique and we need to identify the two

highest weights (j0, j1, · · · , jk−1) if they differ by a Zk cyclic permutation [54].

Explicitly, the character of the highest weight module labeled by (j0, j1, · · · , jk−1) in

the (k, k +N) Wk minimal model is given by [55] (see also [54, 59–61]),

χ
Wk, (k,k+N)
(j0,j1,··· ,jk−1)(q) =

[
(qk+N ; qk+N )∞

(q)∞

]k−1 k−1∏
a=1

k−1∏
b=0

(qjb+jb+1+···+ja+b−1 ; qk+N )∞ , (4.71)

where we define ji = ji′ if i ≡ i′ (mod n). Indeed, the character is manifestly cyclic

invariant in ji’s.

The (k, k +N) Wk minimal model character that is of particular interest to us is the

vacuum character, which is labeled by

j0 = N + 1, j1 = j2 = · · · = jk−1 = 1 , (4.72)

or a cyclic permutation thereof. One can check that the dimension of the highest weight

state is indeed zero [54]. Then, from (4.71), the vacuum character is

χ
Wk, (k,k+N)
0 (q) ≡ χWk, (k,k+N)

(N+1,1,··· ,1)(q)

=

[
(qk+N ; qk+N )∞

(q)∞

]k−1 k−1∏
a=1

[(qN+a; qk+N )∞]a[(qa; qk+N )∞]k−a .
(4.73)

We therefore have the following conjecture for the Schur index of the (Ak−1, AN−1) gener-

alized Argyres-Douglas theory,

Conjecture : I(Ak−1,AN−1)(q) = χ
Wk, (k,k+N)
0 (q) , if gcd(k,N) = 1 . (4.74)

Our previous calculations may be interpreted as evidence for this proposal. Indeed:
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• In section 4.1.1 we observed that

IAN−1
∼=(A1,AN−1)(q) = χ

W2, (2,N+2)
0 (q) , for N odd . (4.75)

• Next, consider the (A2, A3) theory. In this case the singularity (4.62) is equivalent

to the E6 singularity. Moreover the equivalences between the two BPS quivers may

be demonstrated by mutation. In section 4.3.1, we found

IE6
∼=(A2,A3)(q) = χ

W3, (3,7)
0 (q) . (4.76)

• Finally, consider the (A2, A4) theory. Again in this case we recognize the singularity

to be of E8 type and again the two quivers are mutation equivalent. In section 4.3.3,

we found

IE8
∼=(A2,A4)(q) = χ

W3, (3,8)
0 (q) . (4.77)

It would be interesting to evaluate the trace of O(q) and verify this idea.
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