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Abstract

Background: As a part of a larger Health Technology Assessment (HTA), the measurement error of a device used to
monitor the hemoglobin concentration of a patient undergoing surgery, as well as its decision consequences, were to
be estimated from published data.

Methods: A Bayesian hierarchical model of measurement error, allowing the meta-analytic estimation of both central
and dispersion parameters (under the assumption of normality of measurement errors) is proposed and applied to
published data; the resulting potential decision errors are deduced from this estimation. The same method is used to
assess the impact of an initial calibration.

Results: The posterior distributions are summarized as mean ± sd (credible interval). The fitted model exhibits a
modest mean expected error (0.24 ± 0.73 (−1.23 1.59) g/dL) and a large variability (mean absolute expected error
1.18 ± 0.92 (0.05 3.36) g/dL). The initial calibration modifies the bias (−0.20 ± 0.87 (−1.99 1.49) g/dL), but the
variability remains almost as large (mean absolute expected error 1.05 ± 0.87 (0.04 3.21) g/dL). This entails a potential
decision error (“false positive” or “false negative”) for about one patient out of seven.

Conclusions: The proposed hierarchical model allows the estimation of the variability from published aggregates,
and allows the modeling of the consequences of this variability in terms of decision errors. For the device under
assessment, these potential decision errors are clinically problematic.

Keywords: Methods, meta-analysis as topic, Observer variation, Reproducibility of results, Predictive value of tests,
Meta-analysis, Monitoring, intraoperative, Monitoring, physiologic/methods, Biological markers/blood,
Hemoglobinometry, Oximetry
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Background
The CEDIT1 is a Health Technology Assessment (HTA)
agency within the University Hospitals in Paris (AP-HP2).
It is in charge since 1982 of advising the senior manage-
ment about the adoption and use of innovative medical
technologies in AP-HP’s hospitals.
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Wehave had to assess, in a limited time frame, the possi-
ble impact of the introduction of a device3 monitoring the
hemoglobin concentration of patients undergoing surgical
intervention. This device is used to produce a measure-
ment (SpHb) of the current hemoglobin concentration
by means of a sensor which is a variation of the pulse
oxymetry sensors; this measure is supposed to replace
the measurement (tHb) produced by a laboratory ana-
lyzer, thus avoiding the wait for the laboratory results (an
element that could be important in a surgical context)
and the disruption in the laboratory work flow caused by
unplanned requests.
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Previous studies of this device in various clinical set-
tings showed that its measurement errors were large but
almost symmetric around 0. A recent meta-analysis [1]
aggregated the results reported in 32 papers, 13 of which
reported results of operating room use; the average mean
error (bias) in this surgical subgroup was 0.4 g/dL, but the
measurement error standard deviation was larger than 1
g/dL in 15 of the 16 measurement series reported by these
13 papers.
The authors report a bias whose confidence interval

includes 0, but they state “We have not found any pub-
lications that provide statistical methods to quantify the
uncertainty of SD in meta-analysis”. Therefore, its clini-
cal conclusions are based on hypotheses on the possible
standard deviation of the measurement errors, without
estimating it. The authors complete their conclusion on
the bias by warning that “the wide LOA [limits of agree-
ment] mean clinicians should be cautious when making
clinical decisions based on these devices”.
In order to assess the usability of this device, our HTA

therefore required the assessment of decision error risks,
hence the need to estimate not only the bias (which can
be done by a variety of methods, see [2] for an example),
but also the variability of the measurements used in this
decision. In other words, the use of this device requires
not only the assessment of a (possibly “significant”) bias
(i.e. an average error whose confidence/credible interval
does not contain 0), but also of its variability (e.g. by esti-
mating its standard deviation). This allows us to estimate
the probability of a potential clinical decision error.
However, as pointed out by [1], such methods for meta-

analytic assessment of variability are almost nonexistent
in the field (see Discussion), hence our proposal.
We also wanted to assess the impact of an initial calibra-

tion of the device (proposed by some authors in order to
remove patient-specific systematic errors) which consists
in the subtraction from a given measure SpHb of an ini-
tial error SpHb0 − tHb0 obtained from initial calibrating
measurements of SpHb and tHb:

cSpHb = SpHb − (
SpHb0 − tHb0

)
Therefore, we propose a Bayesian model allowing to

pool the information given in various papers about the
distribution of measurement errors, and to use this esti-
mation to assess its impact in the modeling of the clinical
decision error risks of these two modes of use of the
device.

Methods
Literature review
We repeated the published search strategy of [1] on
Pubmed and Embase databases, and augmented this
search by manual search in the references marked as
“Related to” by Pubmed; we then obtained full texts of a

first selection of papers, whose “References” section was
used to complete the search. Our selection was driven by
the following criteria :

• The device whose operating characteristics were
reported in the paper had to use the same operating
principle as our target device.

• The paper had to report clinical use during a surgical
intervention.

• The paper had to report an estimation of both mean
and standard deviation of the differences of paired
reference (tHb) and device-derived (SpHb)
measurements made at the same time, or at least to
quote some indicator (such as Bland & Altman’s
LOA [3]) enabling to reconstruct these measures.

The selected papers were analyzed to extract and/or
reconstruct sample sizes, observed point estimates of
mean and standard deviation of each study population.

Modeling
For the intended use case (monitoring of hemoglobin con-
centration in the operating room), the measurement given
by reference methods is the only available reference, and
the anesthesiologists’ methods are built against this mea-
sure. Therefore, we ignored its possible errors and choose
to consider tHb, as our standard.
In the selected papers, the same patient may have cou-

pled tHb/SpHb measurements at one or more occasions;
we shall see (see Table 1) that in most papers, these dif-
ferent occasions are merged in the same series, without
information about intra- and inter-patient variabilities:
other papers reported separately measurements made at
different occasions, but without information on the pos-
sible correlation of measurement errors on the same
patient.
Therefore, when a paper reported more than one

series of measurement errors (i.e. set of assessments of
this error made in the same circumstances on inde-
pendent patients), these series were kept separate, and
analyzed as independent: these series were usually char-
acterized by a factor (e.g. operating phase) strongly linked
to hemoglobin concentration, overwhelming the (weak)
patient-related factors.
In other words, we ignored a possible “paper” level in

our model.

Raw SpHb
We postulated that in each series i in the literature, the
individual measurement errors ei,j,k = SpHbi,j,k − tHbi,j,k
in patient j of the series i at occasion k are normally
distributed (Eq. (1) below). We also postulated that the
series-specific means μi of measurement errors (i.e. the
series-specific biases) are normally distributed in the
(hypothetical) population of all possible repetitions of
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Table 1 Data extracted from the literature

Raw SpHb Calibrated SpHb

Series n m sd n m sd

Berkow 2011 29.00 −0.30 1.05

Causey 2011 25.00 −0.30 1.05

Lamhaut 2011 44.00 0.00 1.40

Miller 2011 20.00 0.30 1.79

Applegate 2012 91.00 0.50 1.43

Butwick 2012-preop 50.00 1.20 1.07

Butwick 2012-postop 50.00 0.10 1.28

Butwick 2012-24 h 50.00 1.40 0.99

Colquhoun 2012 20.00 −1.30 1.94

Park 2012 40.00 0.90 1.33

Vos 2012 30.00 −0.20 1.02

Dewhirst 2013 45.00 −0.10 1.48

Giraud 2013 53.00 1.00 1.20

Isosu 2013 92.00 0.20 1.50 71.00 −0.70 1.10

Skelton 2013-preop 137.00 0.60 1.48

Skelton 2013-postop 137.00 1.60 1.56

Toyoda 2014-tHbLow 21.00 1.20 1.10

Toyoda 2014-tHbMed 155.00 −0.20 1.30

Toyoda 2014-tHbHigh 49.00 −1.00 1.10

Miyashita 2014-R1-25 71.00 0.60 0.96 71.00 0.15 0.57

Miyashita 2014-R1-25a 73.00 0.68 1.02 73.00 0.16 0.77

Kim 2014-pre 52.00 0.12 1.09

Kim 2014-Lefort 52.00 0.07 0.94

Kim 2014-BSSO 52.00 −0.09 0.98

Kim2014 post 52.00 −0.90 0.85

Patino 2014 140.00 0.40 1.28 140.00 0.10 1.20

Yamaura 2014-0-1 115.00 0.33 1.41

Yamaura 2014-1-2 30.00 −0.31 1.24

Yamaura 2014-2-3 18.00 −0.59 1.11

Yamaura 2014-3- 12.00 −0.53 0.87

Saito 2015-Dilution 24.00 1.43 1.24

Saito 2015-Transfusion 24.00 1.10 1.23

Awada 2015-Precision 83.00 0.00 0.79

Frasca 2015 41.00 −0.40 1.40 41.00 −0.30 1.10

n: sample size, m: mean error (SpHb-tHb), sd: standard deviation of error

such studies, with a population-level mean μm (overall
bias) and a population-level standard deviation σm (2);
similarly, the series-specific standard deviations σi are
supposed to have a lognormal (μs, σs) distribution in the
population (3).

ei,j,k ∼ N
(
μi, σ 2

i
)

(1)
μi ∼ N

(
μm, σ 2

m
)

(2)
σi ∼ LN

(
μls, σ 2

ls
)
, which we shall use as:

log σi ∼ N
(
μls, σ 2

ls
)

(3)

The postulate of normality of measurement errors (1)
allows us to use two well-known results of the sampling
theory from normal distributions to derive the likelihoods

of the usual m and s estimators of μ and σ from a sample
of size n:√

ni − 1
mi − μi

si
∼ tni−1 and, independently, (4)

(ni − 1)
s2i
σ 2
i

∼ χ2
ni−1 (5)

(4) and (5) allow us to compute the likelihoods of the pub-
lished series-level estimatorsmi and si instead of requiring
patient-level data ei,j,k .

Calibrated SpHb
The error for occasion k in patient j in series i, ei,j,k , is
defined by ei,j,k = SpHbi,j,k − tHbi,j,k . The error of cSpHb
(“calibrated error”) cei,j,k will be:
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cei,j,k = cSpHbi,j,k − tHbi, j, k
= SpHbi,j,k − (

SpHbi,j,0 − tHbi,j,0
) − tHbi, j, k

= (
SpHbi,j,k − tHbi, j, k

) − (
SpHbi,j,0 − tHbi,j,0

)
= ei,j,k − ei,j,0 .

Now, in each series i, we can decompose ei,j,k as the
sum of a series-specific bias μi, a patient specific random
effect fi,j distributed with mean 0 and variance τ 2i , and an
occasion-specific random residual gi,j,k distributed with
mean 0 and variance υ2

i,j.
Suppose further that these terms are independent and,

for simplicity, homoscedastic in each series4 (i.e. for all
patients j of the series i, υ2

i,j = υ2
i ). Then, ∀i, Var

(
ei,j,k

) =
σ 2
i = Var

(
μi + fi,j + gi,j,k

) = τ 2i + υ2
i . However,

cei,j,k = μi + fi,j + gi,j,k − (
μi + fi,j + gi,j,0

)
= gi,j,k − gi,j,0 (6)

Therefore, Var
(
cei,j,k

) = 2υ2
i . The ratio of corrected to

raw measurement standard errors is:

θi =
√

2υ2
i

τ 2i + υ2
i
.

Under our assumptions, this ratio can take values
between 0 (all error is patient-specific, with no residue,
υ = 0) and

√
2 (all error is random, with no patient-

specific component, τ = 0). Both cases make sense in the
current context.
The definition of the calibrated error implies (6) that it is

(positively) correlated to the raw error; therefore, their dif-
ference should be (negatively) correlated to the raw error,
and so should be their means.
It is equivalent to estimate τ and υ or σ and θ . The latter

allows, as we shall see, to model series with and without
calibrated errors in the same way.
We model the impact of calibration as variations of

the measurement error’s mean and standard deviation
(modeled, as before, as being normally distributed):

cei,j,k ∼ N
(
μci, σ c2i

)
(7)

μci = μi + δi (8)
σ ci = σi θi (9)

We model the position parameters μi and δi of indi-
vidual series as having a bivariate normal distribution;
similarly, we model their (suitably transformed) spread
parameters σi and θi as bivariate normally distributed:(

μi
δi

)
∼ MVN

((
μm
μδ

)
,
(

σ 2
m

ρpσmσδ

ρpσmσδ

σ 2
δ

))
(10)

( log σi
log θi√

2−θi

)
∼ MVN

((
μls
μlt

)
,
(

σ 2
lt

ρsσlsσlt

ρsσlsσlt
σ 2
lt

))
(11)

and, as before, (7) allows us to use (4) and (5), mutatis
mutandis, to compute the likelihoods from the published
data.
From (10)–(11) and the properties of the multivariate

normal distribution, it follows that the marginal distribu-
tion of μi is given by (2) and that the marginal distribution
of log σi is given by (3); therefore, despite the appearances,
(2)–(3) describe the same model as (10)–(11) when the
calibrated data are unknown.

Model implementation and fitting
A Bayesian implementation of this model was fitted by
MCMC methods, using the Stan [4] modeling language
through the rstan [5] interface to R [6]. The model uses
Eqs. (4) and (5) to compute the likelihood of the data and
directly implements Eqs. (2) and (3) for series without
calibrated SpHb and (8) to (11) for series with calibrated
SpHb.
Using (1) and (7), we also sampled the relevant param-

eters of a new study and of a new observation within
this study at each iteration of the MCMC sampling,
thus obtaining a sample representative of the (predictive)
distribution of measurement errors without being con-
strained by the particulars of any study. This simulation
of the characteristics of the device in a new setting is the
basis of our inferences on its performance.
Since our data (means and log-standard deviations of

errors in the published series) were already more or
less centered around 0 and scaled about 1, we followed
[7, 8] and choose a Cauchy(0,3) density as a weakly infor-
mative prior distribution for the location parameters μm,
μδ and the transformed spread parameters μls and μlt , a
half Cauchy(0,3) T[0,] for the standard deviations σm, σδ ,
σls and σlt , and a Uniform(-1,1) distribution for the cor-
relation coefficients ρp and ρs. This choice allows for a
weakly informative prior distribution robust with respect
to a few outlier values without expressing unreasonable a
prori beliefs in very large values of the parameters they
model.
The resulting program is available as the Additional

file 1; it is also part of the the noweb source of the present
paper (see the Additional file 2 for instructions).
The convergence of the MCMC chains was checked by

visual assessment of the MCMC traces (see Additional
file 3), the ratios of MCMC standard deviation to standard
deviation for each parameter of the model (see Additional
file 4) and the chain convergence indicator R̂ (see [9]).
The quality of the model was assessed by placing each
observed quantity in the a posteriori distribution of the
parameter it estimates (see Additional file 5).

Diagnostic impact assessment
We used the bias and standard deviation values created
during model parameter estimation to assess the impact
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of measurement errors in terms of decision errors. We
postulated that the true values tHb of hemoglobin con-
centration were uniformly distributed on the [4 12] g/dL
range.
Let f the density of the measurement error E (whose

realizations are the ei,j,k observations whose mean and
standard deviation estimates are reported), and g the den-
sity of tHb (F and G being their respective distributions).
The probability of observing a measurement SpHb lower
than some threshold t (a “positive” reading in our case) is:

Pr(SpHb < t) = Pr(tHb + E < t)

=
∫
x
Pr(x + E < t) g(x) dx

=
∫
x
Pr(E < t − x) g(x) dx

=
∫
x

(∫
e<t−x

f (e, x) de
)

g(x) d(x)

=
∫
x

∫ t−x

−∞
f (e, x) de g(x) dx (12)

Similarly, the probability of a “true positive” is:

Pr(SpHb < t ∧ tHb < t) =
∫
x<t

∫ t−x

−∞
f (e, x) de g(x) dx

(13)

Since we modeled errors independent of “true” values
tHb, these expressions simplify in:

Pr(SpHb < t) =
∫
x
F(t − x) g(x) dx (14)

Pr(SpHb < t ∧ tHb < t) =
∫ t

−∞
F(t − x) g(x) dx (15)

The probability of a “positive” case being G(t) by defini-
tion, (14) and (15) are sufficient to compute the sensitivity,
specificity and positive and negative predictive values.
The diagnostic impact of measurement errors depends

on the distribution of the true values tHb. For reasons
discussed below, we choose to assess this impact by pos-
tulating a uniform distribution of tHb on a range spanning
the clinically useful range of threshold values. Accord-
ing to the literature, this range is about 6 to 10 g/dL
[10–12]. Therefore, our impact assessment used an uni-
form distribution over the range from 4 to 12 g/dL.

Results
The literature review led us to select 21 papers [13–33]
reporting 34 distinct estimations of the mean and stan-
dard deviation of measurement error; among these, four
papers [24, 27, 28, 32] report the characteristics of

measurement error after initial calibration in five series.
The data extracted from the literature are listed in Table 1.

Model fit
In the text, posterior distributions are summarized as
mean± sd (credible interval) unit; the bounds of the cred-
ible intervals are the .025 and .975 quantiles. The full set
of summary statistics for the MCMC sample can be found
in the Additional file 4.

Analysis of raw SpHbmeasurement errors
The population-level results of the model fitting for raw
SpHb measurement errors are depicted in Fig. 1 and sum-
marized in Table 2; Table 3 summarizes predictive error
results, i.e. bias and standard deviation in a new study
(new setting), and mean error, squared error and absolute
error for an new observation.
The overall mean error (bias) of raw SpHb has mean

0.23 ± 0.12 (−0.02 0.46) g/dL; the measurement error
of raw SpHb is distributed around this mean with log-
standard deviation 0.23 ± 0.04 (0.15 0.30) g/dL.
The mean expected bias (systematic error expected in

a new study) is 0.24 ± 0.73 (−1.23 1.59) g/dL. The mean
expected error (newmeasurement error in a new study) is
0.27± 1.47 (−2.56 3.26) g/dL, whereas the mean expected
absolute error is 1.18 ± 0.92 (0.05 3.36) g/dL, and the root
of the mean quadratic expected error is 1.50 g/dL.

Impact of calibration
The population-level estimates of the impact of calibra-
tion are presented in Table 4 and Fig. 2 and the simulation-
based estimates of the resulting measurement errors are
presented in Table 5, which also reports the expected
bias correction and expected ratio of raw and calibrated
standard deviations (inflation/deflation factor).
One notes that, whereas the bias correction is almost

systematically negative (−0.42 ± 0.20 (−0.83 0.02) g/dL),
the impact of calibration on standard error and expected
errors is modest (the mean expected absolute error is
1.05 ± 0.87 (0.04 3.21) g/dL, which is not much less
than in the non-calibrated case), and has a non-negligible
probability of enlarging the standard error (actually, for a
new study, Pr(θ > 1) ≈ 0.102).

Estimation of clinical impact
The decisional impact ofmeasurement errors of raw SpHb
is summarized in Table 6 in terms of sensitivity, specificity,
positive and negative predictive values (conditional prob-
abilities) as well as accuracy and probability of a decision
error (absolute probabilities); these results are illustrated
in Fig. 3. Similarly, the Table 7 and the Fig. 4 summarize
the diagnostic impact of measurement errors of calibrated
SpHb. The resultant risks of decision errors and their
credible regions are graphically compared in Fig. 5.
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Bias and error of SpHb

−6.00 −2.00 2.00 4.00 6.00

Error

Frasca 2015
Awada 2015−Precision
Saito 2015−Transfusion
Saito 2015−Dilution
Yamaura 2014−3−
Yamaura 2014−2−3
Yamaura 2014−1−2
Yamaura 2014−0−1
Patino 2014
Kim2014 post
Kim 2014−BSSO
Kim 2014−Lefort
Kim 2014−pre
Miyashita 2014−R1−25a
Miyashita 2014−R1−25
Toyoda 2014−tHbHigh
Toyoda 2014−tHbMed
Toyoda 2014−tHbLow
Skelton 2013−postop
Skelton 2013−preop
Isosu 2013
Giraud 2013
Dewhirst 2013
Vos 2012
Park 2012
Colquhoun 2012
Butwick 2012−24h
Butwick 2012−postop
Butwick 2012−preop
Applegate 2012
Miller 2011
Lamhaut 2011
Causey 2011
Berkow 2011

−0.40 [ −3.14 , 2.34 ]
 0.00 [ −1.60 , 1.50 ]
 1.10 [ −1.31 , 3.51 ]
 1.43 [ −1.00 , 3.86 ]

−0.53 [ −2.23 , 1.18 ]
−0.59 [ −2.77 , 1.59 ]
−0.31 [ −2.74 , 2.12 ]
 0.33 [ −2.43 , 3.09 ]
 0.40 [ −2.10 , 2.90 ]

−0.90 [ −2.57 , 0.76 ]
−0.09 [ −2.02 , 1.84 ]
 0.07 [ −1.78 , 1.92 ]
 0.12 [ −2.03 , 2.26 ]
 0.68 [ −1.32 , 2.68 ]
 0.60 [ −1.28 , 2.48 ]

−1.00 [ −3.16 , 1.16 ]
−0.20 [ −2.75 , 2.35 ]
 1.20 [ −0.96 , 3.36 ]
 1.60 [ −1.50 , 4.60 ]
 0.60 [ −2.30 , 3.50 ]
 0.20 [ −2.80 , 3.10 ]
 1.00 [ −1.40 , 3.30 ]

−0.10 [ −3.00 , 2.80 ]
−0.20 [ −2.20 , 1.80 ]
 0.90 [ −1.70 , 3.50 ]

−1.30 [ −5.10 , 2.50 ]
 1.40 [ −0.60 , 3.30 ]
 0.10 [ −2.40 , 2.60 ]
 1.20 [ −0.90 , 3.30 ]
 0.50 [ −2.30 , 3.30 ]
 0.30 [ −3.20 , 3.80 ]
 0.00 [ −2.80 , 2.70 ]
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−0.30 [ −2.40 , 1.70 ]

0.24 [ −1.23 , 1.59 ]Bias

0.27 [ −2.56 , 3.26 ]Measurement error

Fig. 1Meta-analysis of raw SpHb errors. Forest plot depicting the data from the literature (top) and the inferences made on bias and measurement
error by model fitting (bottom). Top: square: reported bias (average error)mi (size proportional to weight), whiskers: possible errors (mi ± 1.96sdi).
Bottom: credible regions for bias of a new study (μ∗) and error of a new observation (e∗,∗,∗)

Discussion
Methods
Modeling
Study-level modeling A mixed-model meta-analysis
requires the estimation of one study-level parameter per
data point, plus any population-level parameters neces-
sary to the model (in our case, population level mean
and standard deviation or, in the case of cSpHb, dif-
ferences with SpHb means and ratios to the SpHb
standard deviation). This is true both for frequentist,
ML-based, estimation and for Bayesian model fitting.
Therefore, published meta-analyses usually do not allow

Table 2 Estimates of the population-level distribution of
measurement errors of raw SpHb

Mean 95% credible interval

μm 0.23 −0.02 0.46

σm 0.71 0.54 0.94

μls 0.23 0.15 0.30

σls 0.18 0.13 0.26

for checking of their assumptions on which estimations
and inferences are based on the sole basis of published
data.
In our case, Eqs. (4) and (5) are crucial. The former

is uncontroversial: this result is known to be asymptoti-
cally true for any sample of independent and identically
distributed observation sampled from a distribution for
which the central limit theorem holds; its rate of conver-
gence is known to be good enough for almost any “large”
sample (one finds often N > 30 in common practice

Table 3 Replication simulation results for raw SpHb

Mean 95% credible interval

μ∗ 0.24 −1.23 1.59

σ∗ 1.28 0.86 1.82

e∗,∗,∗ 0.27 −2.56 3.26

e2∗,∗,∗ 2.24 0.00 11.31

|e∗,∗,∗| 1.18 0.05 3.36

Distributional characteristics of the expected bias (μ∗) and standard deviation (σ∗)
of error for a replicated study, and error (e∗,∗,∗), squared error (e2∗,∗,∗) and absolute
error (|e∗,∗,∗|) for a replicated observation
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Table 4 Estimates of the population-level distribution of
corrections to measurement error allowed by calibration

Mean 95% credible interval

μδ −0.42 −0.83 0.02

σδ 0.39 0.03 1.28

ρp −0.13 −0.92 0.92

μlt 0.19 −0.33 0.73

σlt 0.51 0.09 1.43

ρls 0.39 −0.52 0.97

in applied statistics), and often considered sufficient for
“reasonably” distributed small samples.
The latter is valid only for i.i.d. samples of normally

distributed variables. We are not aware of any general
asymptotic results concerning the estimation of vari-
ability parameters. This scarceness of general results,
already noted by [1] has also motivated a recent paper
by Nakagawa et al. [34], where the authors build tools
for meta-analytic estimation of variability; the relevant
tool for their question being the Coefficient of Variation,
and ratios thereof, they derive the relevant estimators and
their properties.
Their work is based on an unbiased estimator of the log

of the standard deviation σ :

̂log σ = log s + 1
2(n − 1)

This equality can be derived from the left-hand side
of (5). The authors add: It is assumed that with a large
sample size and sufficiently large value of σ , log σ is nor-
mally distributed with variance s2log σ

. They support this
assumption by referencing a 1987 paper by Raudenbush&
Bryk, which indeed derive a large-sample theory for this
case ([35], pp 250–1). Unfortunately, this paper also states
that “First, the underlying data must be assumed nor-
mally distributed, an assumption which can be checked by
conventional methods”. (ibid., p. 252).
In other words, the validity of (5) depends on the accu-

racy and rate of convergence of log s − log σ to a normal.

We are not aware of any analytic or simulation conver-
gence results for this quantity, but the convergence rate of
a χ2

n distribution to a normal is known to be slow.
Since the individual data are unavailable by hypothesis

in a meta-analytic context, the normality of the distri-
bution of these data cannot be “checked”. The rate of
asymptotic convergence to normality being unknown, the
assumption of normality of individual data is a strong
necessity of validity of our modeling.
We are not aware of any other literature pertinent to the

meta-analytic estimtion of variability.

Population-level modeling The modeling of means
(Eq. 2) is the de facto standard in meta-analysis. The
modeling of standard deviations (Eq. 3) is less so:
By analogy with the sampling distribution of the vari-

ance of identically sized normal samples, a gamma dis-
tribution was a “natural” candidate for this modeling.
However, the interpretation of its parameters was delicate,
and the elicitation of priors to these parameters evenmore
so. Therefore, we choose to use a lognormal model of the
standard deviations population. The point of this choice
was to get a parametrization allowing easy interpretation
and easy prior elicitation.
We also modeled μi independent of σi; this assump-

tion simplifies programming, and appears reasonable: in
the original data, the correlation of biases and standard
deviations is 0.013 (similarly, the correlation of mean
cSpHb and their standard deviations is −0.53, with only
3 d.f.).

Modeling of calibrated SpHb The rationale for model-
ing cSpHb as we did has been exposed supra. We could
have also used a single model, using only (10) and (11)
and treating the (hypothetical) values of cSpHb in studies
not reporting it as missing data (supplementary parame-
ters to the model). The results should be equivalent, but
the programming would have been more awkward.

Bias and error of calibrated SpHb

−3.00 −1.00 1.00 3.00

Error

Frasca 2015
Patino 2014
Miyashita 2014−R1−25a
Miyashita 2014−R1−25
Isosu 2013

−0.30 [ −2.52 , 1.92 ]
 0.10 [ −2.27 , 2.47 ]
 0.16 [ −1.37 , 1.69 ]
 0.15 [ −0.99 , 1.29 ]

−0.70 [ −2.89 , 1.49 ]

−0.20 [ −1.99 , 1.49 ]Bias

−0.20 [ −2.92 , 2.52 ]Measurement error

Fig. 2Meta-analysis of calibrated SpHb errors. See Fig. 1 for legend
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Table 5 Replication simulation results for calibrated SpHb

Mean 95% credible interval

μc∗ −0.20 −1.99 1.49

σc∗ 1.00 0.39 1.81

δ∗ −0.44 −1.55 0.70

θ∗ 0.77 0.36 1.17

ec∗,∗,∗ −0.20 −2.92 2.52

e2c∗,∗,∗ 1.86 0.00 10.29

|ec∗,∗,∗| 1.05 0.04 3.21

Distributional characteristics of the expected bias (μc∗), standard deviation of error
(σc∗), correction term (δ∗) and inflation factor (θ∗) for a replicated study, and error
(ec∗,∗,∗), squared error (e2c∗,∗,∗) and absolute error (|ec∗,∗,∗|)for a replicated observation

Prior distributions We needed to give our hyperparam-
eters a proper prior distribution, in order to get proper
posterior distributions and to be able to use the log-
posterior samples to estimate a Bayes factor. However,
we had very little information on the distribution of our

subject of interest before reading the relevant papers;
therefore, we choose to use weakly informative priors.
Centering them on 0 was uncontroversial. The difficulty
was in the choice of shape and scale.
It has been noted that the common N (0,V 2) for some

very large standard deviation V, often used as a “weakly
informative” prior distribution, expresses a prior belief of
absolute values larger than V of about 0.32. Choosing an
unreasonably high value of V is hardly defensible in face
of the subject matter.
Our choice of priors was remotely inspired by the work

of Gelman et al. [7, 8] and we borrowed their proposed
functional form, except for correlation coefficients where
a Uniform(−1,1) was a natural choice.

Clinical impact assessment
We choose to report the clinical performance of the device
by the (absolute) probability of a (potential) decision error;
this index seemedmore clinically intepretable and useable

Table 6 Clinical impact of measurement errors of raw SpHb

Index Threshold Mean SD 2.5% 25% 50% 75% 97.5%

Se 6 0.688 0.168 0.337 0.578 0.710 0.818 0.955

Se 7 0.770 0.134 0.474 0.686 0.791 0.873 0.969

Se 8 0.823 0.106 0.580 0.758 0.842 0.905 0.977

Se 9 0.858 0.086 0.659 0.805 0.873 0.924 0.981

Se 10 0.881 0.072 0.715 0.838 0.894 0.936 0.985

Sp 6 0.919 0.058 0.775 0.889 0.932 0.963 0.992

Sp 7 0.903 0.070 0.731 0.868 0.919 0.956 0.991

Sp 8 0.880 0.087 0.666 0.835 0.899 0.945 0.988

Sp 9 0.842 0.111 0.567 0.783 0.866 0.927 0.985

Sp 10 0.782 0.145 0.433 0.699 0.809 0.893 0.977

PPV 6 0.771 0.096 0.574 0.705 0.776 0.842 0.940

PPV 7 0.845 0.078 0.678 0.795 0.854 0.904 0.971

PPV 8 0.884 0.064 0.743 0.843 0.892 0.933 0.982

PPV 9 0.908 0.053 0.790 0.875 0.916 0.948 0.987

PPV 10 0.928 0.040 0.839 0.902 0.933 0.959 0.990

NPV 6 0.903 0.044 0.817 0.872 0.905 0.936 0.981

NPV 7 0.875 0.059 0.756 0.834 0.880 0.919 0.977

NPV 8 0.844 0.071 0.698 0.793 0.850 0.898 0.969

NPV 9 0.798 0.085 0.630 0.737 0.803 0.860 0.953

NPV 10 0.716 0.101 0.527 0.642 0.716 0.786 0.914

Acc 6 0.862 0.027 0.802 0.847 0.864 0.879 0.906

Acc 7 0.853 0.032 0.778 0.836 0.857 0.875 0.904

Acc 8 0.851 0.034 0.770 0.833 0.856 0.875 0.904

Acc 9 0.852 0.034 0.771 0.834 0.857 0.875 0.904

Acc 10 0.857 0.033 0.774 0.840 0.862 0.878 0.905

Err 6 0.138 0.027 0.094 0.121 0.136 0.153 0.198

Err 7 0.147 0.032 0.096 0.125 0.143 0.164 0.222

Err 8 0.149 0.034 0.096 0.125 0.144 0.167 0.230

Err 9 0.148 0.034 0.096 0.125 0.143 0.166 0.229

Err 10 0.143 0.033 0.095 0.122 0.138 0.160 0.226

Threshold in g/dL; Se: sensitivity, Sp: specificity, PPV: positive predictive value, NPV: negative predictive value, Acc: accuracy, Err: probability of decisional error
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Fig. 3 Diagnostic values of raw SpHb. Mean values and 95% credible intervals; left: sensitivity, specificity; right: predictive values

Table 7 Clinical impact of measurement errors of calibrated SpHb

Index Threshold Mean SD 2.5% 25% 50% 75% 97.5%

Se 6 0.801 0.177 0.330 0.712 0.845 0.938 1.000

Se 7 0.858 0.135 0.503 0.795 0.894 0.958 1.000

Se 8 0.892 0.105 0.622 0.845 0.920 0.969 1.000

Se 9 0.913 0.085 0.696 0.876 0.936 0.975 1.000

Se 10 0.928 0.071 0.746 0.896 0.947 0.979 1.000

Sp 6 0.895 0.089 0.666 0.854 0.914 0.958 0.999

Sp 7 0.874 0.106 0.600 0.824 0.897 0.950 0.998

Sp 8 0.843 0.129 0.504 0.781 0.872 0.937 0.998

Sp 9 0.795 0.164 0.369 0.713 0.831 0.916 0.997

Sp 10 0.717 0.208 0.192 0.599 0.754 0.876 0.996

PPV 6 0.760 0.128 0.495 0.672 0.764 0.853 0.989

PPV 7 0.828 0.104 0.598 0.760 0.837 0.907 0.995

PPV 8 0.866 0.086 0.667 0.812 0.876 0.931 0.997

PPV 9 0.892 0.071 0.724 0.847 0.900 0.946 0.998

PPV 10 0.914 0.055 0.788 0.878 0.920 0.956 0.998

NPV 6 0.937 0.049 0.817 0.906 0.946 0.977 1.000

NPV 7 0.921 0.063 0.769 0.884 0.934 0.971 1.000

NPV 8 0.901 0.077 0.721 0.855 0.916 0.963 1.000

NPV 9 0.871 0.094 0.656 0.812 0.886 0.947 0.999

NPV 10 0.812 0.121 0.554 0.731 0.822 0.909 0.998

Acc 6 0.871 0.052 0.745 0.849 0.880 0.904 0.944

Acc 7 0.868 0.054 0.736 0.843 0.878 0.903 0.944

Acc 8 0.868 0.054 0.733 0.843 0.878 0.903 0.944

Acc 9 0.869 0.051 0.739 0.844 0.878 0.903 0.944

Acc 10 0.875 0.044 0.774 0.853 0.881 0.904 0.944

Err 6 0.129 0.052 0.056 0.096 0.120 0.151 0.255

Err 7 0.132 0.054 0.056 0.097 0.122 0.157 0.264

Err 8 0.132 0.054 0.056 0.097 0.122 0.157 0.267

Err 9 0.131 0.051 0.056 0.097 0.122 0.156 0.261

Err 10 0.125 0.044 0.056 0.096 0.119 0.147 0.226

Threshold in g/dL; Se: sensitivity, Sp: specificity, PPV: positive predictive value, NPV: negative predictive value, Acc: accuracy, Err: probability of decisional error
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Fig. 4 Diagnostic values of calibrated SpHb. Mean values and 95% credible intervals; left: sensitivity, specificity; right: predictive values

than specificities and sensitivities (which can be traded off
against one another by the choice of threshold), which are
conditional probabilities.
Postulating the independence of values of measured

variable and measurement error allowed us to use (14)
and (15), which can be simply computed, at least with our
choice of population distribution of the variable, with a
standard numerical integration routine.
They can even be explicitly solved in some cases: for

example, a normal density of values and a normal density
of errors convolve to a normal density, which can be triv-
ially used to compute the probability of errors. However,
this model would not have reasonable medical support in
our case.

Fig. 5 Decision error risks. Mean values and 95% credible intervals

Without this postulate, the multiple integrals (12) and
(13) are much more problematic to compute numerically,
and a better solution would probably be to estimate them
by one form or another of Monte Carlo integration.
We had also to choose a range of “useful” values to

assess the potential clinical impact of the measurement
errors.

• It is obvious that real values quite far from the
decision threshold do not contribute to false
positive/negative (the probability of a large error is
small).

• On the other hand, a small region quite close to the
decision threshold overstates the risk of false results.
For example, with a symmetric error density, given a
threshold T in a study i with average bias μi, the rate
of false negative a test region (T + μi + ε T + μi + 2ε)
would have a limit of 1

2 for ε → 0+.
• Similarly, a strong mode would overstate the

importance the weight of the region surrounding that
mode.

The anesthesiological literature shows that a “reason-
able” region for transfusion decision threshold is [6 10]
g/dL; the choice of a threshold in this range for a given
patient depends on various domain- and patient-specific
factors.
It was therefore necessary to cover this range (with

extension to “likely” regions), without justification to
choose a mode. This led us to choose the [4 12] g/dL.
A better choice would have been to model the distribu-

tion of tHb of measurements done for clinical reasons (i.e.
excluding the systematic or calibration measurements).
The source papers, however, did not document this infor-
mation in any usable form.
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Results
Raw SpHb
The posterior distribution of measurement errors in a
new study is slightly asymmetric around 0 and gives a
non-negligible probability to large measurement errors;
one also notes that the mean absolute expected error is
a large fraction of the range of clinically useful range of
measurement.

Impact of calibration
One notes that the convergence of the estimation of
cSpHb-related parameters byMCMC is more difficult than
for raw SpHb-related ones (smaller n_eff): this might be
accounted for by the very low number of available data;
only five series after calibration have been published,
which might be the absolute minimal sample size for
estimating variability.
One also notes that the mean calibrated measurement

error is negative. This might have a natural explana-
tion: the calibration is made at the beginning of an
intervention, when SpHb is, in general, normal for the
patient, whereas the clinically useful measurements are
done during intervention, when SpHb might have been
lowered by surgical hemorrhage and subsequent perfu-
sion. Several authors [17, 20, 21, 23, 26] have reported,
with various levels of precision, a relation between (true)
hemoglobin concentration and measurement error; this
might explain why the correction, computed on a high-
hemoglobin concentration basis, is insufficient to cancel
the actual bias observed in low-hemoglobin concentration
conditions.
One notes, however, that none of these papers reporting

this value-error relationship gave enough detail to allow
modeling; our analysis, which is therefore compelled to
ignore it, is therefore a simplification of the real situation
(but probably not an oversimplification).

Use of trends
Several authors have reported to have used SpHb (or
SpHbc) in terms of trends in time, allowing them to assess
the need for a reference measurement tHb rather than the
need for transfusion; other authors suggested using these
trends, but without reporting actual use. However, these
reports were not precise and consistent enough to allow
a modeling of this use without resorting to correspon-
dence with the original authors for crucial details. Our
time limits precluded such a research.

Clinical impact
The probability of a “false report” (false positive or false
negative) varies slightly over the range of clinically use-
ful thresholds; however, this probability (13–14% for raw
SpHb, around 13% for calibrated SpHb) remains clini-
cally problematic: it would affect about one patient out

of seven. However, the risk of “effective clinical deci-
sion error” is probably lower: the hemoglobin concen-
tration is but one input in a complex decision process,
whose analysis on the basis of published information is
impossible.
The asymmetry of the diagnostic value curves around

the midpoint of the clinically useful range (Figs. 3 and 4)
is a consequence of the slight biases of raw SpHb and
calibrated SpHb.
One should note (see Fig. 5) that the risks of “false

reports” are much more uncertain for calibrated SpHb
than for raw SpHb, a consequence (again) of the very low
number of published studies on calibrated SpHb.

Study limitations
The present study has a number of restrictions that limit
its significance:

Literature review The allocated time for our review pre-
cluded an extensive search for gray literature; it also
precluded querying the original authors for precisions
about their results. Limiting a meta-analysis to formally
published data is known to reinforce imprecision.

Similarly, we did not conduct a formal bias risk assess-
ment; this, however, was of lesser consequence for our
goals.
Study design We did not compare the proposed moni-
tor and the reference method (laboratory measurement)
to a common (hypothetical) “gold standard”; instead, we
assessed the impact of substituting the monitoring to
the reference method in terms of clinical decision differ-
ences. Since the reference method is the current “clinical
gold standard”, it is supposed perfect for clinical pur-
poses, and its possible false positives and false negatives
are ignored.

Such a comparison, which might have been be wor-
thy if the proposed monitoring had a variability close to
the variability of the reference method (various sources
quote a mean absolute expected error in the 0.1–0.3
g/dL range), would need an assessment of the reference
method, unavailable from published data.
Modeling We didn’t even consider fitting a so-called
“fixed effects” model, considering that heterogeneity of
published data was self-evident.

Lack of time precluded a sensitivity study of the impact
of the shape of the study-level parameters distribution and
most notably of the shape of the population-level parame-
ters distribution. Our choices seem “reasonable”, but their
impact has not been assessed. Further work should assess
these impacts.

Similarly, the impact of a departure from the assump-
tion of normality of measurement errors should be sys-
tematically assessed, both analytically and with simulation
approaches.
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Our goals inmodeling were limited to the assessment of
measurement error and its consequences in terms of deci-
sional errors. In contrast, the authors of [1] created a mul-
tiple regression model allowing them to assess the impact
of various covariates. This modeling, probably very inter-
esting to anesthesiologists and physiologists, was out of
our scope of assessing the practical usability of the device
under examination.

Finally, we did not try to assess the reality of the
impact of calibration in terms of “hypothesis testing” or
“model comparison”: this question was not in our scope of
interest.
Clinical impact estimation Modeling the clinical conse-
quences of “false reports” is a much more intricate prob-
lem, requiring the modelization of a large body of medical
knowledge. This question was widely out of the limited
scope of the present study.

It should be noted that the main result in terms of clin-
ical impact is an absolute probability of error rather than
a conditional probability (such as sensitivity, specificity or
predictive values).

Conclusions
This study has shown that:

• Under the assumption of normality, a hierarchical
model of variability can be built and used to estimate
the variability of a phenomenon from published
aggregate data, without recourse to individual
data.

• This estimation can be used to assess the decisional
(binary) consequences of the variability of the
phenomenon of interest.

• The device of interest has been shown to have a mean
absolute expected error of 1.18 ± 0.92 (0.05 3.36)
g/dL, which is large when compared to the clinically
useful range of measurements.

• The mean measurement error (bias) is 0.24 ± 0.73
(−1.23 1.59) g/dL, whose 95% credible interval
contains 0, and which is negligible compared to the
mean absolute expected error.

• This measurement error entails a risk of decision
error potentially impacting one patient out of seven,
which is clinically problematic.

• This risk of “false report” is therefore much less a
consequence of the mean expected error (bias) than a
consequence of the mean absolute error (variability
of the measurement).

• A calibration of the device using an initial reference
measurement does not change this situation to any
clinically relevant extent.

The proposed model, whose range of validity remains
to be assessed, allows estimation of the variability-bound

decision errors risk of a measurement from published
aggregates; in the motivating example of hemoglobin
concentration monitoring, this estimation shows that its
clinical use is problematic.

Ethical approval and consent
The present paper illustrates the proposed model with an
example using already-published data. The authors did
not check the conformance of the original papers to the
Declaration of Helsinki and relied on the original papers
publishers’ checks.

Standards of reporting
The present paper illustrates the proposed model with an
example using already-published data; however, it does
not aim to be a full-fledged systematic review of the moti-
vating case. In consequence, the authors did not use the
PRISMA checklist; this is discussed as one of the study
limitations.

Availability of supporting data
The data set supporting the results of this article is
included within the article as Table 1 and its Additional
file 6, noweb source of the article.

Endnotes
1Comité d’Évaluation et de Diffusion des Innovations

Technologiques de l’AP-HP.
2Assistance Publique — Hôpitaux de Paris.
3Masimo Radical-7, Masimo Corp., USA. This device

uses an extension of plethysmography by evaluating skin
reflectance at 12 different wavelengths.

4The assumption of homoscedasticity of the residual
errors allows for a simpler expression of the
decomposition of the total error, but is not a necessary
condition of validity; the assumption of independence is
more crucial.
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this technology, as well as its indirect and unintended consequences, and aimed
mainly at informing decisionmaking regarding health technologies” [36]; tHb:
Hemoglobin concentration as measured by the reference method; SpHb:
Hemoglobin concentration as measured by the device of interest; cSpHb:
Hemoglobin concentration as measured by the device of interest and
corrected of initial bias; LOA: Limits of agreement, a term widely used in
methods comparison studies. See [3];N (μ, σ 2): Denotes a normal density of
mean μ and variance σ 2; MCMC: Monte-Carlo Markov Chains; ML: Maximum
Likelihood;LN(μ, σ 2): Denotes a lognormal density of location parameter μ
and spread parameter σ 2;MVN(μ,�): Denotes a multivariate normal
density of mean vector μ and variance-covariance matrix �; tn : Denotes a
standard Student’s t density with n degrees of freedom; χ2

n : Denotes a
chi-squared density with n degrees of freedom.
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