
Empir Software Eng (2011) 16:812–841
DOI 10.1007/s10664-011-9162-z

Calculation and optimization of thresholds
for sets of software metrics

Steffen Herbold · Jens Grabowski · Stephan Waack

Published online: 25 May 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com
Editors: Nachiappan Nagappan

Abstract In this article, we present a novel algorithmic method for the calculation of
thresholds for a metric set. To this aim, machine learning and data mining techniques
are utilized. We define a data-driven methodology that can be used for efficiency
optimization of existing metric sets, for the simplification of complex classification
models, and for the calculation of thresholds for a metric set in an environment
where no metric set yet exists. The methodology is independent of the metric set
and therefore also independent of any language, paradigm or abstraction level. In
four case studies performed on large-scale open-source software metric sets for C
functions, C++, C# methods and Java classes are optimized and the methodology
is validated.

Keywords Software metrics · Thresholds · Machine learning · PAC

1 Introduction

Software has become part of the everyday life. Embedded software in modern
cars controls the distance to the car in front of us. News portals on the Internet
utilize sophisticated distributed software to report the news events as they occur.
Users expect and need software to conform to a certain standard of quality. The
International Organization for Standardization (ISO) defines quality as the “degree to
which a set of inherent characteristics fulf ills requirements” in the ISO 9000 standard

S. Herbold (B) · J. Grabowski · S. Waack
Institute of Computer Science, University of Göttingen,
Goldschmidtstr. 7, 37077 Göttingen, Germany
e-mail: herbold@cs.uni-goettingen.de

J. Grabowski
e-mail: grabowski@cs.uni-goettingen.de

S. Waack
e-mail: waack@cs.uni-goettingen.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81098458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Empir Software Eng (2011) 16:812–841 813

(ISO/IEC 2005). To uphold the required standard of quality, the assurance that
software quality attributes are fulfilled is an important aspect of the execution
of software projects. Quality attributes like maintainability and understandability
are often assessed using software metrics. Software metrics provide means to put
numbers on abstract attributes, such as complexity or size. Often, one metric is
insufficient to effectively analyze a quality attribute. Instead, we use a set of metrics
to determine whether a quality attribute is fulfilled or problematic. To determine if
metric values are good or bad, clear indicators are required. Otherwise such metric
sets are hard to interpret. For this purpose, we use thresholds for metric values: a
quality attribute is said to be problematic, when at least one threshold for a metric is
violated. For thresholds to be effective indicators, the quality of the threshold values
themselves is of great importance. However, the thresholds often depend on the
project environment, e.g., programming languages and tool support. Therefore, the
definition of thresholds is often problematic and defined thresholds may not be valid
in other environments.

During the last years, machine learning has been successfully applied and has
become a standard technique for data analysis in many different fields, such as gene
analysis in biology, or data mining techniques companies use to optimize their mar-
keting strategies. It has also been used in computer science, e.g., for defect prediction
(Nagappan et al. 2006). In this article, we introduce an algorithmic approach for the
optimization of the size software metric sets and threshold values used. To this aim,
a machine learning algorithm is used to define an approach for the calculation of
thresholds for a metric set. In a previous work (Werner et al. 2007), we used relatively
simple brute-force approach for the calculation of threshold values for a metric
set for the Testing and Test Control Notation (TTCN-3) (ETSI 2007; Grabowski
et al. 2003). However, such a brute force approach has scalability problems and is
therefore infeasible for larger metric sets. This work presents a more sophisticated
approach, which utilizes the learning of axis-aligned d-dimensional rectangles for
the threshold calculation. The objective of this work is to reduce the complexity of
metric-based classifiers for software quality to improve their understandability and
interpretability, which will benefit both researchers and the industry as it allows to
pinpoint the source of deficits more effectively. To this end, we provide a versatile,
data-driven means for both threshold calculation and the optimization of metric sets
integrated into a single algorithm.

The contribution of this article is fourfold.

1. A machine learning based method for the computation of thresholds for metric
sets.

2. A high-level methodology for the optimization of already existing metric sets
with thresholds.

3. Using the same methodology to effectively replace existing classification meth-
ods, and thereby reducing their complexity.

4. An outline how a good metric set with thresholds can be determined in an
environment where no thresholds exist yet.

For the first contribution, we show how the problem of rectangle-learning relates to
sets of software metrics with thresholds and how rectangle learning can be utilized
to compute thresholds. The second contribution defines a generic methodology for
metric set efficiency optimization, which is in fact not restricted to software metrics,



814 Empir Software Eng (2011) 16:812–841

but applicable to metric sets in general. For this, we assume that an effective metric
set with thresholds is already existing. We show how a smaller and effective set can
be determined, which is due to its reduced size also efficient. The third contribution
shows how this approach can be used to replace existing classification strategies,
that may not even be metric-based, with a threshold based classification. Such a
replacement can be used to substitute hard-to-interpret or black-box classifiers with
easy-to-interpret threshold classification. Finally, we show how our approach can be
used to determine a good metric set in an environment where no means for the
automated classification of software entities exists yet. In comparison to the first
contribution, this includes not only the calculation of the threshold values, but also
the selection of an appropriate subset of metrics from a possibly large set of candidate
metrics.

All methodologies defined in course of this article are independent of the metric
sets themselves and only depend on actually observed data. The methods are
therefore independent of any specific programming language (e.g., C, Java) and level
of abstraction (e.g., methods, classes). In four case studies, we validated that the
approach works well for product metrics in large-scale open-source software projects.
As part of the case studies, metric sets for C function, C++ and C# methods, and Java
classes are analyzed.

The structure of this article is as follows. In Section 2, we introduce the concepts
of software metrics and how they can be used in combination with thresholds for
quality estimation. Afterwards, we briefly introduce machine learning and define the
foundations of the learning approach used in this article in Section 3. In Section 4, we
define the methodology for the optimization of software metric sets with thresholds
and provide a description of how it can be applied to perform different tasks is.
We validate the applicability and effectiveness of the approach in two case studies,
presented in Section 5. We discuss the results of the case studies in Section 6.
Afterwards, the article is put into the context of related work in Section 7. Finally
in Section 8, we summarize the results and conclude the article.

2 Software Metrics

According to Fenton and Pfleeger, “Measurement is the process by which numbers
or symbols are assigned to attributes of entities in the real world in such a way as to
describe them according to clearly def ined rules” (Fenton and Pfleeger 1997). A way
to measure software is to use software metrics. The IEEE defines software metrics
as “the quantitative measure of the degree to which a system, component, or process
possess a given attribute” (IEEE 1990). This means that a software metric is a clearly
defined rule, that assigns values to software entities (e.g., components, classes, or
methods) or attributes of development processes.

Fenton and Pfleeger divided software metrics into three categories (Fenton and
Pfleeger 1997): process metrics measure attributes of a development process itself;
product metrics measure documents and software artifacts that were produced as
part of a process; resource metrics measure the resources, that were utilized as part
of a process. Furthermore, each metric measures either an internal or an external
attribute. Internal attributes are those that can be measured by observing only
the process, product or resource itself, without considering its behavior. External



Empir Software Eng (2011) 16:812–841 815

attributes on the other hand are attributes that are related to the behavior of software
systems. In this work, the focus is on internal product metrics that measure source
code. Some examples for internal attributes that relate to source code are size,
reuse, modularity, algorithmic complexity, coupling, functionality, and control-flow
structuredness (Fenton and Pfleeger 1997). Further attributes are staticness, method
complexity, or attributes that relate to object-oriented software, such as usage of
inheritance.

2.1 Metric Sets Under Study

The methods described in this article are general and may be used independent of a
specific metric set. However, as part of this article, metric sets for the evaluation of
the maintainability are studied exemplary. This is done with two different metric sets
on different levels of abstraction: methods and classes. The maintainability describes
non-functional aspects such as testability, understandability, or changeability of
software. Because no single metric is able to cover all these aspects, we employ a
set of metrics that covers internal attributes like the structure, size, and complexity
instead. We selected the metrics based on our experience and with the aim to
cover the maintenance related aspects of the source code that can be measured
automatically with internal product metrics.

For the analysis of methods and functions, we use four metrics listed in Table 1a.
With the control-flow structuredness measured by the Cyclomatic Number (VG) and
Nested Block Depth (NBD), coupling measured by Number of Function Calls (NFC),
and size measured by Number of Statements (NST), these metrics cover most of
the maintainability-related attributes of methods, except the algorithmic complexity.
Since algorithmic complexity is not really an attribute of the source code and cannot
be measured automatically, it has been omitted. While both VG and NBD measure
the control-flow structuredness, they measure different aspects of this attribute:
NBD measures the maximum nesting of structural blocks, while VG measures the
overall branching between blocks.

For the analysis of classes, the seven metrics listed in Table 1b are used. With
these metrics, five internal attributes of classes are evaluated. The metric Weighted
Methods per Class (WMC) measures the method complexity as the sum of the metric
VG measured for all methods in a class. The metrics Coupling Between Objects
(CBO) and Response For a Class (RFC) measure the coupling. For the measurement
of the size of a class, the metrics Number of Methods (NOM) and Lines of Code
(LOC) are utilized. The use of inheritance is measured by Number of Overridden
Methods (NORM), the staticness of a class is measured by the metric Number of
Static Methods (NSM). We included the attributes inheritance and staticness, as they
greatly influence the maintainability of classes (Daly et al. 1996). Inheritance is often
difficult to test and also decreases the understandability of the source code. Static
methods and attributes can pose problems, as they are global for all instances of a
class and can therefore introduce unwanted side effects.

One might have noted that with WMC, CBO, and RFC, three of the six popular
metrics defined by Chidamber and Kemerer (1994) are used. Initially, all of the six
metrics were part of the set, but the metrics Depth of Inheritance Tree (DIT), Number
of Children (NOC) and Lack of Cohesion in Methods (LCOM) were excluded due
to their poor distributions. LCOM was found to be poorly distributed by Basili et al.



816 Empir Software Eng (2011) 16:812–841

Table 1 Metrics used in this article

Metric name Internal attribute Description

(a) Metrics for methods and functions
Cyclomatic Number (VG) Control-flow Calculated based on the control

structuredness flow graph G = (V, E) and
number of a method M as
VG(M)=|E|−|V|+ p, where
p is the number of entries
and exits.

Nested Block Depth (NBD) Control-flow Maximum number of nested
structuredness blocks in a method.

Number of Function Calls (NFC) Coupling Number of functions called
by a method

Number of Statements (NST) Size Number of statements of a
method

(b) Metrics for classes
Weighted Methods per Class (WMC) Method Complexity of a class as the sum

complexity of the complexity of its methods.
Here, VG is used as complexity
measure.

Coupling Between Objects (CBO) Coupling Number of classes, to which a
class is coupled.

Response For a Class (RFC) Coupling Size of the response set of a class,
i.e. all methods that can be
invoked directly or indirectly
by calling a method of a class.

Number of Overridden Methods Inheritance Number of methods defined by
(NORM) a parent that are overridden

by a class
Number of Methods (NOM) Size Number of methods of a class
Lines of Code (LOC) Size Lines of code, excluding empty

and comment-only lines.
Number of Static Methods (NSM) Staticness Number of static methods of

a class

(1996). Furthermore, DIT and NOC are poorly distributed in the projects measured
for the case studies in this work. We discuss their exclusion in Section 5.3.

2.2 Thresholds for Software Metrics

In general, thresholds discriminate values. In case a threshold defines an upper
bound, the values that are greater than a threshold value are considered to be
problematic, the values lower are considered to be acceptable. Thus, by defining
thresholds a simple analysis of measured values is possible. For the interpretation
of software metrics thresholds are required. For example, consider a metric m that
measures the size of an entity x. Then a threshold t can be used to determine if x is
to large:

m(x) > t ⇒ x is too large.



Empir Software Eng (2011) 16:812–841 817

While the above is an example of a threshold used as an upper bound, it might as
well be a lower bound. For simplicity, we assume that thresholds are always upper
bounds. However, this is no restriction as lower bounds can be transformed into
upper bounds. Let m a metric with threshold t that defines a lower bound, i.e., entities
x are considered to be problematic if m(x) < t, which is equivalent to 1/m(x) > 1/t if
m(x) and t are non-negative, as metrics and thresholds usually are. By defining a new
metric m′(x) = 1/m(x) and a new threshold t′ = 1/t a new metric with the opposite
order is defined and with t′ a threshold is obtained that defines an upper bound.
However, by inverting the metric, its scale is changed. Another way to transform a
lower bound into an upper bound while keeping it to scale is to subtract the metric
from a maximum value. Let mmax the maximum value of metric m. Then

m(x) > t ⇒ m(x) − mmax > t − mmax ⇒ mmax − t > mmax − m(x)

and a new metric m′′(x) = mmax − m(x) and a new threshold t′′ = mmax − t are
obtained, where t′′ is an upper bound for m′′. However, this method has the
disadvantage that a maximum value mmax has to be known.

Thresholds are not without problems. The first is the generality of threshold
values. In general, a threshold value is good in one setting must not necessarily be
good every setting. Depending on the organization, the programming language, the
tools used, the qualification of the developers, among other factors that are project
dependent, good threshold values may vary. This is a problem, as each organization,
and maybe even each project, has to define thresholds that are chosen depending
on its environment. This issue directly relates to a second issue, as good thresholds
depend on so many factors, the definition of thresholds itself is a problem. Therefore,
a methodology to determine environment specific thresholds is required.

Table 2 Threshold values for the metrics to measure the maintainability

Metric name Language Threshold Source

(a) Metrics for methods and functions
VG C 24 French (1999)

C++ 10 French (1999)
C# 10 French (1999)

NBD C 5 French (1999)
C++ 5 French (1999)
C# 5 French (1999)

NFC C 5 –
C++ 5 –
C# 5 –

NST C 50 –
C++ 50 –
C# 50 –

(b) Metrics for classes
WMC Java 100 Benlarbi et al. (2000)
CBO Java 5 Benlarbi et al. (2000)
RFC Java 100 Benlarbi et al. (2000)
NORM Java 3 Lorenz and Kidd (1994)
LOC Java 500 Adapted from Copeland (2005)
NOM Java 20 Adapted from Copeland (2005)
NSM Java 4 Lorenz and Kidd (1994)



818 Empir Software Eng (2011) 16:812–841

To allow a more differentiated analysis more than one threshold value for one
metric can be defined. In this article, we assume source code to be either problematic
or un-problematic. However, further shades of gray exist in between. For example,
there may be two thresholds, a low one for weak infractions and a higher one for
critical infractions. In this study, we only consider defining a single threshold for a
given metric.

As baseline for our analysis, we use the thresholds listed in Table 2 for the metric
sets introduced in the previous section to analyze the maintainability of methods
and classes. Most of them were determined as good thresholds for these metrics
in previous work (Lorenz and Kidd 1994; French 1999; Benlarbi et al. 2000). The
languages and the environments for which these threshold values were determined
are sufficiently similar to the setting of this work, which is why we argue that these
thresholds are transferable to our application. The thresholds for the metrics LOC
and NOM are based on thresholds used by the source code analysis tool PMD
(Copeland 2005). PMD defines a threshold value of 1000 for lines of code including
empty and comment-only lines for Java classes. In this work, we use different
definition for the lines of code metric that excludes both empty and comment-only
lines, thus we adapted the value to 500. Furthermore, PMD defines a threshold value
of 10 for the number of methods excluding methods that start with “get” or “set”.
As the metric NOM counts all methods, the threshold value is adapted to 20 to
account for the additional methods. For the remaining two metrics, NFC and NST, no
reference values are available in the literature. Therefore, based on our experience,
reasonable threshold values for both metrics have been defined, 5 for NFC and 50
for NST.

3 Foundations of Machine Learning

In this section, we introduce the concepts of machine learning essential for this work.
After a brief description of machine learning in general, we define the learning
framework used in this work in Section 3.1. Finally, we discuss an algorithm to
learn axis-aligned d-dimensional rectangles in Section 3.2. The approach for the
optimization of metric sets is based on this algorithm.

In general, machine learning is a way to analyze data. Learning theory assumes
that observed data can be described by an underlying process. The type of the process
varies and depends on the type of learning. For example, it could be an automaton,
but also a stochastic process. The aim of machine learning is to identify this process.
Often, this is not accurately possible. However, in most cases it is still possible to
detect patterns within the data. Assuming that the underlying stochastic process does
not change, it is possible to predict properties of unseen data using the detected
patterns. A more detailed introduction to machine learning in general can be found in
the literature (e.g. Devroye et al. 1997; Shawe-Taylor and Cristianini 2004; Schölkopf
and Smola 2002).

3.1 Concept Learning in the Presence of Noise

In this work, we use concept learning. A concept defines how to divide vectors from
the R

d into positive and negative examples. The task of a learning algorithm is to



Empir Software Eng (2011) 16:812–841 819

infer a target concept g out of a concept class C . The target concept can also be
interpreted as the bayesian classif ier (Duda and Hart 1973) of the concept. A concept
can also be understood as a map g : Xd → {0, 1}, where Xd ⊂ R

d denotes the input
space. A learning sample is of the form U = (X, Y) ∈ Xd × {0, 1}, where the input
element X is randomly distributed according to the sample distribution D defined
over the input space X, Y is the random label or output element associated with X.
In a noise free setting, the value of Y depends only on the random vector X and
the target concept g and Y = g(X). To obtain samples U , the concept of an oracle is
used. On request, an oracle EX(D, g) randomly draws an input element X according
to the distribution D , classifies X using g and returns a sample U = (X, g(X)).
In practical applications, the oracle can be seen as a training sample that contains
classified entities to be used for the learning.

Real-life applications are usually not noise-free, i.e., the property Y = g(X) is not
always fulfilled. Most algorithms designed to work on noise-free data often perform
poorly or do not work at all in the presence of noise. Therefore, noise modelling and
algorithms that use these models for learning in the presence of noise are important.
One way to introduce noise into a learning model is the classif ication noise model,
which was first formalized by Angluin and Laird (1988). Further details on noise
models can be found in Mammen and Tsybakov (1999), Tsybakov (2004). In the
classification noise model, the label of the output variable Y is changed with a
fixed probability and Y = g(X) ⊕ S, where ⊕ denotes the symmetric difference. The
random noise S ∈ {0, 1} is 1 with probability η, i.e., P(S = 1) = η, where η denotes the
noise rate. In the classification noise model, S is independent of the input element X.
It follows directly that P(Y �= g(X)) = η. In combination with oracles, noise can be
seen as an attacker that corrupts the output element of a sample generated by an
oracle. Figure 1a visualizes this concept.

In the Statistical Query Model (SQM) proposed by Kearns (1998) query functions
of the form χ : Xd × {0, 1} → [a, b ] are used to infer information about the data.
For this purpose, a statistical oracle is introduced that returns the expected result of
the queries within a specified degree of precision. The estimation is based on noise
models.

We use a generalization of the classification noise model, where the random noise
rate is orthogonal to the target concept (Brodag et al. 2010). The restriction that S
is independent of the input element X is dropped. Instead, we introduce a random
noise rate η(X) that depends on the input element, as shown in Fig . 1b. Hence,
η(x) = P(S = 1|X = x) and thus the random noise depends on the input. For a given

Oracle EX Algorithm

Attacker:
(S=1)=

(X,g(X)) (X,Y)

S

Y=g(X) S Oracle EX Algorithm

Attacker:
(S=1)= (X)

(X,g(X)) (X,Y)

S

Y=g(X) S

 X

(a) Classification noise (b) Conditional noise

Fig. 1 Visualization of noise as an attacker



820 Empir Software Eng (2011) 16:812–841

x ∈ Xd, the noise rate is η(x) = P(Y �= g(X)|X = x) and for y0 ∈ {0, 1} the condi-
tional expected noise rate given g(X) = y0 is

ηy0 := E(η(X)|g(X) = y0). (3.1)

Using the conditional expected noise rates η0, η1, the expected noise rate can be
calculated as η := Eη(X) = η0P(g(X) = 0) + η1P(g(X) = 1).

Furthermore, we assume that query functions are admissible. A query function χ

is admissible, if it is not correlated to the noise rate η(X) conditioned on the concept
g(X). The geometrical uncorrelation is orthogonality, hence it is said that the noise
is orthogonal to the target concept. For the learning, this means that it is not possible
to infer the value of χ by simply considering the noise rate η(X). This is a reasonable
assumption, as usually no information about the result of a query is obtained by
simply considering the noise rate.

Based on the introduced concepts and definitions, we can state the central
theorem of the learning framework. This theorem describes how the expected value
of an admissible query can be calculated if the conditional expected noise rates η0

and η1 are known.

Theorem 1 Let χ be admissible with respect to g ∈ C , y0 ∈ {0, 1}. Then

E(χ(X, y0)|g(X) = y0) = (1 − ηȳ0)E[1{Y=y0}χ(X, y0)] − ηȳ0E[1{Y=ȳ0}χ(X, y0)]
P(Y = y0) − ηȳ0

.

(3.2)

The proof of Theorem 1, as well as further details concerning learning with
orthogonal noise, can be found in Brodag et al. (2010). The function 1 is defined as

1{cond} =
{

1 if cond is true

0 if cond is f alse.
(3.3)

On a learning sample, the expected values ey0 := P(Y = y0), eχ,y0 := E[1{Y=y0}χ(X,

y0)], and eχ̄ ,y0 := E[1{Y=ȳ0}χ(X, y0)] can be estimated using standard maximum-
likelihood estimators. With the estimated values, the conditional expected value of
a query E(χ(X,y0)|g(X)= y0) can be calculated for y0 ∈{0, 1} according to Theorem
1 as

E(χ(X, 0)|g(X) = 0) = (1 − η1)eχ,0 − η1eχ̄ ,0

e0 − η1
(3.4)

and

E(χ(X, 1)|g(X) = 1) = (1 − η0)eχ,1 − η0eχ̄ ,1

e1 − η0
, (3.5)

where χ̄ is an abbreviation for χ̄(x, y) = χ(x, ȳ). The conditional noise rates η0

and η1 are usually unknown and estimated by guessing. In practical applications,
the noise rates are guessed by sampling. For example, if we estimate that the
noise rate is between 0.1 and 0.2, hypotheses for all pairs of noise rates η0, η1 =
0.1, 0.11, . . . , 0.19, 0.2 could be calculated. Afterwards, we select the best of these



Empir Software Eng (2011) 16:812–841 821

hypotheses. This is not an estimation of the noise rate itself, i.e., the noise rate used
to calculate the optimal solution is not necessarily the true noise rate. Such noise
handling strategies guarantee that if a noise rate close to the true noise rate is part
of the sampled noise rates, the result is at least as good as it would be with the true
noise rate.

3.2 A Rectangle Learning Algorithm

In this work, we adapted the algorithm for learning axis-aligned d-dimensional
rectangles proposed by Kearns (1998) to the noise model described above. The main
adaptations are that the conditional expected noise rates η0 and η1 have both to
be sampled, instead of only the expected noise rate η. Furthermore, the statistical
oracle used by the algorithm is changed from the SQM to the random noise model
by calculating the expected results of statistical queries based on Theorem 1. The
algorithm has two phases. In the first phase, the training data is partitioned according
to its distribution. In the second phase, the rectangle is computed based on this
partition. Both phases are described in the following.

The aim of the first phase of the algorithm is to find a partition of the d-
dimensional real-space, such that

P(Xi ∈ Ii,p) = P(Xi ∈ Ii,q) = 1
	1/ε
 ≈ ε (3.6)

for each dimension i = 1, . . . , d and p, q = 1, . . . , 	1/ε
 for X ∈ R
d randomly distrib-

uted according to D , where Xi donates the i-th component of X and ε an error bound
that the calculate hypothesis should abide. This means that it is equally likely that the
i-th component of the randomly drawn vector X falls into any of the intervals Ii,·. In
the implementation of the algorithm, a sorting algorithm is utilized to obtain these
intervals according to the empirical distribution of a discrete training sample. After
sorting the values for the i-th dimension, the intervals Ii,p can be defined by assigning
the first p

	1/ε
 vectors to Ii,1, the next p
	1/ε
 to Ii,2 and so on. These intervals fulfill the

property defined by (3.6). If there are n samples in a training set, the complexity of
the first phase is O(dn log n), as for each dimension the samples have to be sorted
and efficient sorting algorithms are O(n log n).

In the second phase, the boundaries of the target rectangle are calculated. For
each dimension separately, the probability pIi,p = P(Xi ∈ Ii,p|g(X) = 1), i.e., the
probability that the target rectangle intersects an interval Ii,p is calculated. This
probability is calculated using admissible queries and (3.5). If the target rectangle
intersects an interval, the probability pIi,p should be significantly larger than 0.
Thus, for each dimension i, the probabilities pIi,p are calculated from the left, i.e.,
p = 1, 2, . . .. The first interval, for which pIi,p is significant defines the left, i.e., lower
boundary li of the rectangle in the i-th dimension. The same is done from the right,
i.e., p = 	1/ε
, 	1/ε
 − 1, . . . to determine the right, i.e., upper boundary ui. Using
this procedure for each dimension, boundaries (li, ui) are calculated.

In the second phase, for each dimension, the probability pIi,o is calculated for at
most 	1/ε
 intervals from the left and analogously from the right. The estimation of



822 Empir Software Eng (2011) 16:812–841

this probability is O(n). Thus the complexity of the second phase is O(dn 1
ε
) and the

overall complexity of the algorithm is O(dn log n + dn 1
ε
).

4 Optimization of Metric Sets and Thresholds

In this section, we introduce our machine learning based approach to optimize metric
sets with thresholds for the detection of problematic entities. First, we describe in
Section 4.1 how the rectangle learning algorithm is utilized to calculate thresholds.
Based on that, we define a threshold optimization algorithm for the calculation of
an optimized metric set with thresholds in Section 4.2. Then, in Sections 4.3–4.5, we
show three applications for this threshold optimization algorithm: 1) optimization of
an existing metric set with thresholds to obtain an effective and efficient subset; 2)
reduction of the complexity of the used classification method; 3) determination of
environment specific thresholds.

4.1 Calculation of Thresholds Using Rectangle Learning

The analysis approach is based on a given metric set M = {m1, . . . , md} and a set of
software entities X with known classifications Y. The aim is to obtain thresholds T =
{t1, . . . , td} for the metrics in M such that the metric set can be used to discriminate
software entities in the same way, as it is done by the pair (X, Y). By measuring the
software entities X with M, we transform the set of software entities X into a set
of vectors in the d-dimensional real space, such that M(X) := {(m1(x), . . . , md(x)) :
x ∈ X} ⊂ R

d. The pair (M(X), Y) is the input for the axis-aligned rectangle learning
algorithm, introduced in Section 3.2. As result, the algorithm yields pairs of upper
and lower bounds (li, ui) for each dimension i = 1, . . . , d. As the i-th dimension
represents the values the software entities calculated using the metric mi and under
the assumption that high metric values are bad, we interpret the upper bound of
the rectangle in the i-th dimension as the threshold for the metric mi. Therefore,
with ti = ui a set of thresholds T = {t1, . . . , td} for the metric set M is obtained.
For an entity x, the classification of the metric set M and the thresholds T is
defined as

f0(x, M, T) =
{

1 if |{ i ∈ {1, . . . , d} : mi(x) > ti }| = 0
0 if |{ i ∈ {1, . . . , d} : mi(x) > ti }| > 0,

(4.1)

i.e., f0(x, M, T) is zero when at least one metric mi exceeds its threshold ti, and is one
when none of the metrics exceeds its threshold.

Under the assumption that metric values are positive, this classification describes
a rectangle with upper bounds ti and 0 as the lower bound. Figure 2a visualizes this
in a 2-dimensional setting to clarify the relationship between rectangle learning and
the usage of metric thresholds for the classification of software entities. Algorithm
1 describes this methodology in a step-wise fashion. The algorithm can be used to



Empir Software Eng (2011) 16:812–841 823

determine thresholds for a metric set given any training sample (X, Y) and any metric
set, regardless of how the training sample or the metric set were determined.

Algorithm 1: Algorithm for the calculation of thresholds
Input : Set of software entities X with classifications Y, metric set M m1 md
Output: Thresholds T t1 td
M X m1 x md x : x X ;
Apply the rectangle learning algorithm to M X Y and obtain ui li i 1 d) ;
ti ui for all i 1 d;
T t1 td ;
return T

The classif ication error is defined as the probability that a randomly drawn sample
(X, Y) is classified wrongly

ε = P( f0(X, M, T) �= Y). (4.2)

Consequently, the empirical classif ication error on a given training sample (X, Y) is
defined as

εX,Y(M, T) = 1
|X|

∑
(x,y)∈(X,Y)

1 f (x,M,T) �=y. (4.3)

4.2 Threshold and Metric Set Optimization Algorithm

Next, we define a threshold optimization algorithm that computes an optimized
metric set based on the calculation of thresholds for a metric set. This means a
metric set that is not only effective with respect to the classification it yields, but
also efficient in terms of its size. To achieve this, we reduce the dimension of the
metric set and recalculate the threshold values for the reduced sets. Recalculating
the thresholds allows the algorithm to, e.g., enforce a stronger classification using
one metric while dropping another from the set.

The algorithm uses an existing method f for the classification of software entities
X. By applying f to the entities x ∈ X, the classification Y can be calculated as Y =
{ f (x) : x ∈ X}. The resulting pair (X, Y) is the basis for the calculation of thresholds.

Let M be a metric set to be used as basis for the determination of an optimized,
i.e., effective and efficient metric set with thresholds. A metric set is called effective if
its classification error is close to 0, i.e., less than or equal to a threshold for the error
δ ∈ R. A metric set is called efficient if it is the smallest set to do so. Therefore, we
need to calculate a subset M′ = {m′

1, . . . , m′
d′ } ⊆ M with thresholds T ′ = {t′1, . . . , t′d′ }

that yields classification error smaller than δ. To this aim, we determine thresholds
based on the training set (X, Y) for all subsets of M. In other words, all sets that
are element of the power set of M: M′ ∈ P(M) \ ∅. Then, for each subset M′
the empirical classification error εX,Y is calculated. The smallest set M′ that has
a classification error εX,Y ≤ δ is an effective and efficient subset of M. Algorithm
2 describes the whole threshold optimization algorithm in a step-wise fashion. We
discuss the run time and scalability of the algorithm in Section 6.1 (research question
R5).

The value δ can be used as a steering parameter, depending on the accuracy
expected of the optimized set and the available data. The higher the accuracy shall
be and the more data is available, the smaller δ should be. It is possible that no M′,



824 Empir Software Eng (2011) 16:812–841

o
o

o

o

o

(a) Classification with two thresholds (b) Approximation with only one threshold

Fig. 2 Example for the classification of values using thresholds

T ′ satisfies the condition that its error is below δ. In this case, there are three options
to proceed: 1) choose a larger value for δ; 2) use a different metric set M; 3) abort the
optimization efforts and conclude that a metric set M′ with threshold T ′ is insufficient
to describe the classification. As a practical matter, δ can be sampled, e.g., by starting
with δ = 0.01 and increasing it in 0.01 steps till a metric set found.

Algorithm 2: The threshold optimization for metric set optimization
Input : Effective classification method f , set of software entities X, metric set M, error threshold δ
Output: Effective and efficient metric set M with thresholds T
Y f x : x X ;
foreach M M do

Calculate thresholds T for M X Y with Algorithm 1
end
M min M M : εX Y M T δ ;
return M and the corresponding T ;

4.3 Optimization of the Efficiency of Metric Sets with Thresholds

Given an existing effective metric set, the threshold optimization algorithm can
determine an effective and efficient subset. Let M be a metric set with thresholds
T and X a set of software entities. The function f0(x, M, T) defines a classification
method for X. Then, f0, X, M, and an appropriate value for δ are the input for the
threshold optimization algorithm which will compute an optimized subset M∗ with
thresholds T∗.1 As an example, Fig. 2 shows how the classification obtained by two
metrics is approximated by only one of the two metrics. The dashed lines visualize the
thresholds of the two metrics, used to classify the samples for the training. In Fig, 2a,
both metrics are used for the classification; in Fig. 2b, only metric one is used. The
squares mark the entities that are misclassified by the approximation.

1We use M′, T ′ to denote any subset/threshold combination and M∗, T∗ to denote optimal solutions.



Empir Software Eng (2011) 16:812–841 825

4.4 Reduction of the Classification Complexity

Another way to utilize the threshold optimization algorithm is to reduce the com-
plexity of the classification scheme. With thresholds, a simple kind of classification
is described: if a threshold is violated, an entity is problematic. This makes it clear
why an entity is problematic and also provides an indicator what the problem might
be. A slightly more complex approach is to allow a number of infractions λ, i.e., λ

thresholds may be violated. The function

fλ(x, M, T) =
{

1 if |{ i ∈ {1, . . . , n} : mi(x) > ti }| ≤ λ

0 if |{ i ∈ {1, . . . , n} : mi(x) > ti }| > λ,
(4.4)

describes the classification defined by a metric set M with thresholds T. With λ = 0,
this fλ is equal to f0 (4.1), hence fλ is a generalization of f0.

One reason to use such a rule is to grant the developers more freedom, e.g.,
allowing short methods with a high structural complexity or long methods with a
low structural complexity. But methods that are both long and structurally complex
are forbidden. The classification with λ allowed infractions introduces an additional
complexity to understand why a problematic entity was classified as such and
which counter measures can be taken. Complex approaches that may yield a very
good classification may be difficult to impossible to interpret, e.g., Support Vector
Machine (SVM) based techniques (Schölkopf and Smola 2002). Other techniques,
e.g., classification trees (Quinlan 1986) show directly why an entity was classified
as problematic, but it not clear how to fix as the tree may hide other reasons why
the entity is problematic. In general, the classification could be performed by an
arbitrary complex function f . A metric set that yields the same classification, with
no infractions whatsoever allowed is preferable, because as Occams Razor suggests,
the simplest solution is preferable (MacKay 2003).

The threshold optimization algorithm calculates a simple threshold-based
effective and efficient classification for a metric set M, with f , M and a set of software
entities X as input for Algorithm 2. Figure 3 shows an example of how a classification

o

o
o

o

(a) Classification with two thresholds and 
one allowed infraction

(b) Approximation with only onethreshold 
and no allowed infractions

Fig. 3 Example for the classification with one threshold infraction allowed



826 Empir Software Eng (2011) 16:812–841

obtained with two metrics and one allowed infraction is approximated by only one
of them.

4.5 Learning of Environment Specific Thresholds

An important aspect of thresholds for metrics is that they are often dependent on
the properties of the project environment such as the requirements, the developer
qualification or the programming language. Therefore, the best results are achieved
with thresholds tailored to the specific environment. In the previous two sections,
we have only shown how the threshold optimization algorithm can optimize already
existing classification methods. However, the algorithm is also able to determine
thresholds where currently no method of classification exists. For this, an expert has
to select a set of software entities X that are typical for the project environment.
Afterwards, the expert manually classifies them into good and bad based on his or
her expertise. As basis for this, the expert may use intricate knowledge, but also
information about the software, e.g., the fault history to identify which sections are
probably problematic (e.g. Rosqvist et al. 2003). This is the traditional approach to
determine the quality of a software, without metric sets and thresholds. Using the
thus obtained knowledge, we can determine a metric set with environment specific
thresholds that mimics the experts knowledge. To conform to our nomenclature, the
expert can be seen as a function f that classifies software. Then, given a metric set
M, the threshold optimization algorithm is able to determine an effective, efficient,
and environment specific metric set M∗ with thresholds T∗ that emulates the expert’s
knowledge.

5 Case Studies

For the validation of the approach for the optimization of metric sets, we performed
four case studies consisting of a total of nine experiments. After we describe the
general methodology used to perform the case studies, we present the results of
the case studies. The case studies were designed to answer the following research
questions:

R1: Is the method to optimize the efficiency of metric sets effective?
R2: Is the method to reduce classification complexity effective?
R3: Are the methods applicable and effective to different levels of abstraction (e.g.,

methods, classes, packages) and programming languages?
R4: Is threshold recalculation with the rectangle learning algorithm necessary or is

it sufficient to reuse known thresholds?
R5: Is the exponential nature of the approach a threat to its scalability?

We answer these questions with respect to the case study results in Section 6.1.

5.1 Methodology

The case studies are based on metric data mined from archives of large scale
open source software projects. By measuring code checked out from source code
repositories, we obtained sets of software entities X with metric values M(X). To



Empir Software Eng (2011) 16:812–841 827

guarantee the validity of the results, the measured data is randomly split into three
disjunctive sets: a training set (Xtrain, Ytrain) that contains 50% of the data; a selection
set (Xsel, Ysel) that contains 25% of the data; an evaluation set (Xeval, Yeval) that
contains 25% of the data. Each of the three sets is used at a different stage of our
learning approach. The training set is used to calculate a set of hypotheses hp,q for
sampled noise rates η0,p, η1,q using the rectangle learning algorithm. The selection
set is used to select the best of these hypotheses, i.e., an optimal hypothesis h∗ with
respect to the empirical classification error εXsel,Ysel . The evaluation set is used to
calculate the empirical classification error εXeval,Yeval of h∗ on data that has not been
part of the learning process. The error threshold δ for the threshold optimization
algorithm is gradually increased in steps of 0.005 until a set is found that abides the
threshold.

By splitting the data into three sets, we ensure that no overf itting occurs.
Overfitting is the effect that a hypothesis is specific to a training set and not
generalized. For example, consider the learning of the structure of credit card
numbers based on the sample {1111222233334444, 1234567812345678}. A correct and
general assumption is that a credit card number consist of 16 digits. This assumption
is also correct on any other learning sample. Therefore, it would also yield a low
error—in this case no error at all. Thus, with this hypothesis no overfitting occurs.
Another possible hypothesis would be that only the number 1111222233334444 and
1234567812345678 are valid credit card numbers. While this is a correct hypothesis
on the training data, the hypothesis is not generalized and would indeed be incorrect
for every other credit card number. However, if only the error on the training set
is considered, both of the above presented hypothesis are equally good. By splitting
the available data, this effect is prevented. Once yet unseen credit card numbers are
checked for validity, the first hypothesis still yields the correct results and the error
remains zero. However, for the second hypothesis, the error increases with every
other credit card number seen, thus making it obvious that the hypothesis is tailored
specifically to the training data and invalid in a generalized setting.

To further evaluate the case study results, we employ two additional measures for
the quality of a hypothesis. The first is the Matthews correlation coef f icient (MCC),

Fig. 4 Confusion matrix



828 Empir Software Eng (2011) 16:812–841

a measure for the quality of binary classifications often used in machine learning
(Matthews 1975). It is based on the so called confusion matrix. In the confusion
matrix, a hypothesis is compared to the actual values separately for positive and
negative samples by counting true positive (tp), true negative (tn), false positive (fp),
and false negative (fn) classified samples. In Fig. 4, the structure of the confusion
matrix is visualized. The MCC is defined as

MCC = tp · tn − fp · f n√
(tp + fp)(tp + f n)(tn + tp)(tn + f n)

. (5.1)

Its value is distributed between −1 and 1, whereas 1 represents a perfect prediction,
−1 an inverse prediction, and 0 a random prediction. In contrast to the classification
error, the MCC provides a balance between fp and fn predictions. Thus, MCC is
more sensitive if the hypothesis has a bias towards rather falsely classifying positive
samples than negative ones and vice versa.

The second is the F-score, another measure for the quality of hypothesis based
on the confusion matrix. It is based on the precision and recall of a hypothesis. The
precision measures how many of the positive predicted values of a hypothesis are
actually positives. The recall is a measure for how many of the actual positive values
are predicted correctly. They are defined as follows:

precision = tp
tp + fp

recall = tp
tp + f n

.

(5.2)

The F-score is then defined as harmonic mean between prediction and recall:

F-score = precision · recall
precision + recall

. (5.3)

Its value is distributed between 0 and 1, with 1 being a perfect score and zero being
the worst.

5.2 Case Study 1: Optimization of Metric Sets for Methods

In the first case study, we analyzed the methodology for the optimization of metric
sets for methods and functions. For this purpose, we measured software from various
domains implemented in the languages C, C++, and C#. Hereafter, we use the terms
method and function interchangeably.

For C, we measured the Apache HTTP Server,2 an open source HTTP server
for Unix/Linux and Windows systems developed and maintained by the Apache
Foundation.3 We measured C++ methods for two of the main components of the K
Desktop Environment (KDE)4 for Linux, the kdebase and the kdelibs components.
The kdebase component contains most of the core applications of KDE, e.g., the
window manager, an X terminal emulator, and the file manager Dolphin. The kdelibs

2http://httpd.apache.org/
3http://www.apache.org/
4http://www.kde.org/

http://httpd.apache.org/
http://www.apache.org/
http://www.kde.org/


Empir Software Eng (2011) 16:812–841 829

Table 3 Statistical information about the measured projects

Project name Version Language Number of methods

Total Problematic

(a) Projects used for method-level analysis
Apache Webserver 2.2.10 C 6718 1995
kdebase 12/05/2008 C++ 21404 4161
kdelibs 12/05/2008 C++ 37444 4921
AspectDNG 1.0.3 C# 2759 232
NetTopologieSuite 1.7.1.RC1 C# 3059 317
SharpDevelop 2.2.1.2648 C# 15700 1950

Project name Version Language Number of classes

Total Problematic

(b) Projects used for class-level analysis
Eclipse java development tools 3.2 Java 4833 3349
Eclipse platform project 3.2 Java 5399 3517

provide a library of important core functions that are used by KDE, e.g., for network-
ing, printing, and multi-threading. For C#, we measured three projects. The first C#
project measured is AspectDNG,5 an aspect weaver that enables Aspect Oriented
Programming (Kiczales et al. 2002) in C#. The second is the NetTopologySuite,6 a
Geographic Information System (GIS) solution for the .NET platform. Finally, we
measured SharpDevelop,7 an Integrated Development Environment (IDE) for C#,
VB.NET, and Boo. Table 3a gives further information about the analyzed versions,
as well as the size of the projects.

The aim was to optimize the metric set M = {VG, NBD, NFC, NST} with the
thresholds defined in Table 2a using Algorithm 2 and the methodology defined in
Section 5.1. We used the thresholds defined in Table 2a to determine which source
code was problematic. We performed three experiments, one for each programming
language. The optimization resulted in a metric set M∗ = {NFC} with a threshold
of tNFC = 5 for all three languages. While this threshold value is the same as
the one used to classify the data, it has actually been calculated by the rectangle
algorithm as the optimal threshold values given the classification for this subset.
With only the metric NFC instead of the whole set M, we achieve nearly the same
classification, with an empirical error of 0.78%, 0.06%, and 0.59% for C, C++,
and C#, respectively. Further analysis, using the MCC and F-score revealed no
weaknesses of the classification either. The MCC ranges from 0.9555 for C# to 0.9956
for C++, the F-score is at least 0.9942 for all three languages. Thus, a set with only
one metric can to replace a set of four metrics with nearly no loss, i.e. the size of the
set can be reduced by 75%. In fact, the error of less than 1% can be interpreted as
noise. The Tables 4 and 6a depict detailed results and statistical information about
the metrics.

5http://aspectdng.tigris.org/
6http://code.google.com/p/nettopologysuite/
7http://www.icsharpcode.net/

http://aspectdng.tigris.org/
http://code.google.com/p/nettopologysuite/
http://www.icsharpcode.net/


830 Empir Software Eng (2011) 16:812–841

Table 4 This table lists some statistical information about the measured C, C++ and C# methods

Metric Language Median Arithmetic mean Max value Threshold

VG C 2 5.74 734 24
C++ 1 3.09 366 10
C# 1 2.18 134 10

NBD C 2 2.15 21 5
C++ 2 1.76 13 5
C# 3 2.71 11 5

NFC C 2 6.1 410 5
C++ 2 7.81 997 5
C# 1 2.44 230 5

NST C 2 15.61 1660 50
C++ 3 8.33 1132 50
C# 1 4.78 544 50

5.3 Case Study 2: Optimization of Metric Sets for Classes

In the second case study, we analyzed the optimization of metric sets for Java classes.
The basis for this case study are two large-scale open source projects, both run by the
Eclipse Foundation:8 the Eclipse Platform9 and the Eclipse Java Development Tools
(JDT).10 The Eclipse Platform Project defines the main components of the Eclipse
Platform, like the handling of resources, the workbench, and the editor framework.
For the analysis, we excluded the test code and the Standard Widget Toolkit (SWT),
a framework for user-interface programming. The rational being, that test code is
inherently different from product code and thus test classes should not be compared
to other classes. For example, test-cases can be highly repetitive as lists of values
have to be compared to expected values, leading to a large size of test classes. On the
other hand, the structure of test code should be less complex to prevent errors in the
test code itself. The thresholds of the related metrics, like LOC and WMC should
therefore be different than for normal code. As for the SWT, while it is formally
a part of the Eclipse Platform Project, it is mainly independent. The Eclipse JDT
implements an IDE for Java development on top of the Eclipse Platform. Again, we
excluded the test code from the analysis. Table 3b shows further information about
the used versions and the size of both projects.

The metric set under study was M = {W MC, CBO, RFC, NORM, LOC, NOM,

NSM} with thresholds as defined in Table 2b in the same manner as in case study 1.
The metrics DIT and NOC were initially also part of this set, but we had to exclude
them beforehand due to their poor distribution. As for DIT, ∼ 98% of the classes
had an inheritance depth of 0 or 1. With the metric NORM another inheritance
related measure is still part of the metric set, thus DIT can be excluded without
reducing the internal attributes measured. The distribution of NORM is not ideal
either, with only ∼ 83% of all values greater than or equal to 2. However, this is still

8http:///www.eclipse.org/
9http://www.eclipse.org/platform/
10http://www.eclipse.org/jdt/

http:///www.eclipse.org/
http://www.eclipse.org/platform/
http://www.eclipse.org/jdt/


Empir Software Eng (2011) 16:812–841 831

Table 5 Statistical information about the measured Java classes

Metric Median Arithmetic mean Max value Threshold

WMC 12 27.48 2138 100
CBO 8 13.40 212 5
RFC 20 35.21 675 100
NORM 0 0.96 166 3
LOC 24 82.95 6619 500
NOM 6 10.79 418 20
NSM 0 0.81 128 4

better than the distribution of DIT. The same argument is used to exclude NOC,
where ∼ 91% are 0 or 1.

The optimization yielded the set M∗ = {CBO, NORM, NSM}, with thresholds
tCBO = 5, tNOM = 3 and tNSM = 4. Similar to case study 1, the calculated threshold
values are the same as the ones used for the classification. The empirical error of this
set is 0.27%. The MCC and F-score reveal no weaknesses either, both have values
above 0.99. Therefore, by using the set M∗ of size |M∗| = 3 instead of M of size
|M| = 7, the size of the metric set is reduced by 57% without loss of generality. The
Tables 5 and 6b depict detailed results and statistical information about the metrics.

5.4 Case Study 3: Reduction of the Classification Complexity for Methods

We performed this case study on the same data as case study 1 (see Section 5.2). The
case study is designed to test the capability of the threshold optimization algorithm
to reduce the classification complexity. To this aim, we calculated the classification Y
for the training using the metric set M = {VG, NBD, NFC, NST}, thresholds T as

Table 6 Case study results

M∗ T∗ Error ε MCC F-score

(a) Case study 1
Language

C {NFC} {5} 0.78% 0.9793 0.9942
C++ {NFC} {5} 0.06% 0.9956 0.9986
C# {NFC} {5} 0.59% 0.9555 0.9949

(b) Case study 2
M∗

{CBO, NORM, NSM} {5, 3, 4} 0.27% 0.9939 0.9959
(c) Case study 3

Language
C {NST} {50} 0.84% 0.9274 0.9955
C++ {VG} {10} 0.87% 0.9139 0.9954
C# {VG} {9} 1.36% 0.7598 0.9930

(d) Case study 4
λ

1 {RFC, NORM, NOM, NSM} {98, 3, 20, 4} 1.71% 0.9449 0.9894
2 {WMC, RFC} {99, 110} 2.21% 0.8494 0.9880



832 Empir Software Eng (2011) 16:812–841

defined in Table 2a, and f1(·, M, T) (see (4.4)) to calculate the classification. Thus,
an entity is only considered problematic if the threshold of more than one metric is
violated.

In contrast to case study 1, the result is different for the various languages. In
case of C, the metric NST with a threshold of tNST,C = 5 yields the best result with an
empirical error of 0.84%. For C++ and C#, the metric VG with thresholds tVG,C++ =
10 and tVG,C# = 9 performs best with an empirical error of 0.87%, respectively 1.36%.
The calculated threshold value in the C# experiment is different to the one used
in the initial classification, while remains the same in the C and C++ experiments.
The MCC revealed no weakness for the C and C++ experiments. However, in the
C# experiment, the MCC dropped to 0.7598. While this is still a very good value, it
indicates a possible weakness of this result. The F-score revealed no such weakness
and was above 0.9930 for all three languages. Thus, we were able to use a simpler
classification methodology, while also reducing the size of the metric set by 75% for
all three languages. Table 6c summarizes the results of this case study.

5.5 Case Study 4: Reduction of the Classification Complexity for Classes

We performed the fourth case study on the same data as case study 2 (see
Section 5.3). Like case study 3, it is designed to test the capability to reduce
classification complexity. The methodology is similar to the one used in case study 3.
Again, we use fλ instead of f0 for the classification of software entities. Here, we use
λ = 1, 2, i.e., we perform two experiments: 1) one threshold violation allowed; 2) two
threshold violations allowed. Allowing more infractions would render the metric set
ineffective, as more than half of the thresholds would have to be violated to even
classify a class as problematic.

In both experiments, we determined effective and efficient metric sets. In the
first experiment, with one violation allowed, the metric set M∗ = {RFC, NORM,

NOM, NSM} with thresholds tRFC,1 = 98, tNORM,1 = 3, tNOM,1 = 20, and tNSM,1 = 4
performed best with an empirical error of 1.71%. In the second experiment, the met-
ric set {W MC, RFC} with thresholds tW MC,2 = 99 and tRFC,2 = 97 was effective and
efficient with a classification error of 2.21%. Half of the threshold values calculated in
this case study deviated from the ones used for the classification. While the empirical
error of the experiment with λ = 1 was higher than with λ = 2, the MCC performed
the other way around. While the MCC of the experiment with λ = 1 is unproblematic
with 0.9449, it drops slightly for λ = 2 to 0.8494. This suggest, that the hypothesis
in the second experiment has a slight bias towards positive samples, as the F-score
revealed no such weakness. It is above 0.98 for both experiments. The results show
that a simpler classification can be used in both cases and, furthermore, the metric set
sizes can be reduced by 42% and 71%, respecitvely. Table 6d summarizes the results
of this case study.

6 Discussion

In this section, we discuss the research questions R1–R5 with respect to the case
study results. Afterwards, we discuss other methods for metric set optimization and
compare them to our methodology.



Empir Software Eng (2011) 16:812–841 833

6.1 Discussion of Research Questions

R1: Is the method to optimize the ef f iciency of metric sets ef fective? The results of
the three experiments of case study 1 and the experiment performed in case study 2
show that the methodology is capable of decreasing the size of metric sets between
57% and 75% without a significant loss of classification precision. Based on these
four successful experiments, each of them performed in a different environment, the
answer to this research question is yes.

R2: Is the method to reduce classif ication complexity ef fective? In case studies 3
and 4 we classified the data with a method more complex than the simple threshold
classification. A total of five experiments were performed, in all of which simple
thresholds were sufficient to reproduce the original classification. Furthermore, the
resulting metric sets were also 42% to 85% smaller than the ones used for the
classification. Thus, the answer to this research question is yes.

R3: Are the methods applicable and ef fective to dif ferent levels of abstraction (e.g.,
methods, classes, packages) and programming languages? In the case studies 1 and
3, we analyzed methods and functions, while classes were under consideration in
case studies 2 and 4. Thus, the approach does not depend on the level of abstraction.
Furthermore, in the case studies, we used projects written in four different program-
ming languages: C, C++, C# and Java. These four languages cover the procedural
and the object-oriented paradigm. Moreover, C is a low-level and close to the system
programming language, whereas Java and C# are relatively high level. Therefore, the
results indicate that the programming language has no impact on the capabilities of
the methodology and the answer to this question is yes.

R4: Is threshold recalculation with the rectangle learning algorithm necessary or is it
suf f icient to reuse known thresholds? On one hand, the results of case studies 1
and 2 suggest that recalculation of threshold values is not required when optimizing
a metric set. In all experiments conducted, the calculated threshold values were the
same as the original ones. On the other hand, the results of case study 3 and 4 suggest
that when the classification method is changed, recalculation of threshold values is
beneficial even if the formerly used method is based on thresholds. In addition to
the problems analyzed in the case studies, there are possible applications where no
thresholds are available, e.g., if a non-threshold based classification method is to be
optimized. In such cases threshold calculation is integral and may not be omitted.
In conclusion, whether the recalculation of threshold adds value to the proposed
method depends on the application of the method.

R5: Is the exponential nature of the approach a threat to its scalability? The execution
of all nine experiments performed as part of the four case studies took 139 seconds
in total on a normal desktop workstation running on an Intel Core2 Duo E8400
processor. For these experiments, the rectangle learning algorithm was executed a
total of 480 times, therefore, a single execution took about 0.29 seconds in average.
As there are 220 different subsets of a metric set of size 20, the execution would
take 220 · 0.29 ≈ 304.000 seconds, thus, approximately 3.5 days. While this is a pretty
long time, it has to be taken into account that such an optimization must only be
performed once and does not need to run regularly. Furthermore, run time can be



834 Empir Software Eng (2011) 16:812–841

reduced by using multiple parallel threads of execution. Of course, with even greater
metric sets, this does not resolve the problem. In conclusion, it can be said that the
approach is able to handle metric sets with a size of about 20 in an acceptable amount
of time. For larger metric sets, a heuristic for the selection of subsets to be analyzed
needs to be employed.

6.2 Comparison to Other Methods

One of the main features of the presented methods is the reduction of the number
of metrics required for the classification and, therefore, the dimension of the space
spanned by the metric set. In the following, we discuss the advantages of our method
compared to two other techniques: 1) correlation based methods; 2) the brute-force
risk minimization approach presented by Werner et al. (2007).

Correlation based techniques analyze the input variables, i.e., the metrics and
determine whether their values are correlated. If so, one of the variables may
be removed without effect or a new variable can be defined based on the corre-
lated variables. Examples for correlation based reduction techniques are Principle
Component Analysis (PCA) and Factor Analysis (FA). These techniques are similar
to each other. Therefore, we discuss only Principle Component Analysis (PCA) here.
The results of the discussion are transferable to FA.

The general idea of PCA is to linearly transform the input space, i.e., the space
of metric values. The transformed space is such that only few dimensions contain
most of the data’s variance. This is done by determining components c as linear
combination of the metrics, i.e., c = λ1m1 + λ2m2 + . . . + λdmd. The first component
contains the maximum of the variance that can be achieved using a linear transfor-
mation. The second component contains the maximum of the remaining variance,
and so on. Thus, the first components contain most of the variance. By using only
these components, the dimension of the input space is reduced. In terms of metrics,
the components can be thought of as indirect metrics based on the original ones,
e.g., c = 0.2 · W MC + 0.3 · RFC + 0.5 · LOC. In comparison to single metrics, the
components are difficult to interpret as they are influenced by several metrics at once
and the nature of their relationship is unclear.

A major disadvantage of such techniques is that the usage of only few components
does not guarantee that the number of metrics can actually be reduced. In an extreme
case, a single component can rely on all input variables. This one component can be
sufficient, however, the number of metrics remains the same. Another drawback of
using PCA is that the variance is not necessarily a good criterion for the selection
of features. For example, the metric LOC for classes has a high variance due to its
nature. Its values are distributed on a rather large scale and classes tend to be rather
variable in their size. However, this large variance does not mean that LOC is suited
for quality prediction, as in the end only threshold violations matter. Therefore,
variance is a misleading criterion.

The third drawback is a rather general one. By first determining metrics using
PCA and then thresholds in a second step, two locally optimal results are calculated.
The PCA determines a reduced metric set, e.g., MPCA, which is optimal in terms of
the criteria PCA uses. This metric set is then used to determine thresholds TPCA. The
thresholds are optimal for MPCA but this is not necessary the globally optimal result.
There can be another metric set M∗ with thresholds T∗ that yield better results, but



Empir Software Eng (2011) 16:812–841 835

Table 7 Number of threshold
combinations using Werner
et al. (2007)s method

Max. no. No. of threshold Calc. time assuming
of metrics combinations 0.1 ms per hypothesis

1 1,415 141.5 ms
2 629,076 ∼ 63 s
3 149,235,857 ∼ 248 min
4 18,565,376,659 ∼ 21.5 days
5 1,201,532,717,441 ∼ 3.8 years
6 37,125,301,717,441 ∼ 117 years
7 438,665,979,997,440 ∼ 1391 years

which is not discovered. In contrast, the approach defined in this article combines
the metric set selection with the threshold optimization and finds a globally optimal
value.

The method to optimize metric sets presented by Werner et al. (2007) is in prin-
ciple the same as the one presented in this article. They considered all combinations
of metrics up to a desired maximum size. However, the threshold calculation method
is a simple brute force approach. The algorithm evaluates all possible threshold
combinations. This means that they consider every value of metric m that occurs
in the training data as a possible threshold value tm and all combinations of these
values are tested. Afterwards, the optimal one is selected. This exhaustive search
of the hypothesis space guarantees the best possible result. However, this method
of calculation is extremely calculation time intensive, as the number of possible
hypotheses grows exponentially. This renders the method infeasible for larger metric
sets, as demonstrated by calculating the number of possible hypotheses for the metric
set used in case study 2. The seven metrics used in case study 2 had each between
28 and 525 different possible threshold values. In Table 7, the number of threshold
combinations as well as estimated calculation times are listed. As can be seen, this
method is infeasible for larger sets. The same experiment that was performed in
case study 2 would take over 1000 years, even assuming a small calculation time per
hypothesis.

6.3 Limitations

We only analyzed open source software in the case studies, non-open-source soft-
ware has not been analyzed. However, the work by Werner et al. (2007) showed that
a similar approach worked with TTCN-3 test suites, i.e., software written in a Domain
Specif ic Language (DSL) in a non-open-source environment.

The metric sets we analyzed only consist of internal product metrics on the
method and class level. Metric sets on higher levels of abstraction, as well as metric
sets including process or resource metrics have not been analyzed. Furthermore,
the chosen threshold values may have been inadequate to begin with, leading to
misclassified training data.

The proposed methodology produces a binary classification and can therefore
only differentiate between “good” and “bad”, further shades of grey are not possible.



836 Empir Software Eng (2011) 16:812–841

7 Related Work

Research on how environment specific metric sets can be obtained was per-
formed by Basili and Selby (1985). In contrast to this work, the authors use a
Goal/Question/Metric (GQM) (Basili and Weiss 1984; Basili and Rombach 1988)
approach to determine a metric set and condense it using factor analysis. A statistical
method to obtain threshold values was introduced by French (1999) who used it to
derive thresholds for object-oriented and procedural software.

An approach to determine classification trees to identify quality critical modules
was proposed by Porter and Selby (1990), Selby et al. (1991). The tree makes its
decisions based on intervals of metric values, which is similar to using thresholds.

A methodology to determine metric sets to predict quality critical modules using
Boolean Discriminant Functions (BDFs) has been introduced by Schneidewind
(1997), Schneidewind (2000). The BDFs consist of boolean disjunctions of thresh-
old violations to identify critical modules, which is just another formalization of
the classification model used in this work. They determine the thresholds using
Kolmogorov–Smirnov tests (Lilliefors 1967). This model is extended to Generalized
BDFs by introducing conjunctions into the boolean functions (Khoshgoftaar 2002).
This is similar to the more complex classification used in the case studies 3 and 4,
where one threshold and another need to be violated.

Lanza et al. (2005) use environment specific thresholds to determine whether
metric values are low, average, or high, based on the arithmetic mean and the
standard deviation of observed metric data. These thresholds are then used in an
overview pyramid to provide an overview of object-oriented software based. The
metrics are divided into three aspects: inheritance; size and complexity; coupling.
Using the thresholds, a coloring scheme is defined that visualizes the software
properties. In comparison to this work, the authors do not assume thresholds to
define metric values as problematic, but rather use them to discriminate metric values
into low, average, and high values.

An instantiation of the maintainability characteristic of the ISO 9126 quality
model (ISO/IEC 2001–2004) is described by Heitlager et al. (2007). They use both
internal and external product metrics to define ratings for the source code properties
volume, complexity per unit, duplication, unit size, and unit testing. Based on the
property ratings, the sub-characteristics of maintainability are rated from which
maintainability is inferred. The ratings are based on intervals, which are similar to
using thresholds. In comparison to our work, they have five rating classes instead of
a binary classification. Furthermore, very good ratings for one property allow bad
ratings for another, which is different to the strict threshold classification we apply.

A paper similar to this work, but using a less sophisticated approach for the
optimization of metric sets for TTCN-3 is presented by Werner et al. (2007).
However, the machine learning methodology used in this work is more mature and
the case studies analyze it in a wider setting, i.e. various programming languages and
levels of abstraction. For a detailed comparison, see Section 6.2.

In Lorenz and Kidd (1994) the authors define thresholds for many object-oriented
metrics, however, they do not validate their proposals. An overview of work on
thresholds for the object-oriented Chidamber and Kemerer metrics suite is provided
by Benlarbi et al. (2000).



Empir Software Eng (2011) 16:812–841 837

8 Conclusion

We defined a novel high-level approach for the calculation of thresholds for software
metrics to evaluate quality attributes. The method is purely data driven and utilizes
machine learning techniques. Based on this, we defined a methodology to determine
optimized metric sets that replicate a given classification of a quality attribute. We
outlined how the methodology can be applied to improve the efficiency of existing
metric sets with thresholds, reduce the complexity of a used classifier and how a new
metric set can be introduced using the methodology. In two case studies, we showed
that the methodology is able to greatly improve the efficiency of existing metric sets.
In two further case studies, we reproduced complex classifications successfully with
simple thresholds.

Future projects may include more case studies, on how well the approach works
in other environments, e.g., domain specific languages or how well it handles sparse
data. Moreover, it may be investigated how learning of Disjunctive Normal Forms
(DNFs) of thresholds instead of conjunctions affects the hypothesis quality, the
metric set reduction, and the interpretability of the resulting classifiers. Furthermore,
a detailed comparison with black-box classification techniques like Artif icial Neural
Networks (ANNs) or SVMs is an interesting topic for the future. Another research
direction is to determine metric sets and thresholds that can be used to steer
software project decisions. To this aim, the approach needs to be adapted for process
data.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix: Glossary

R
d d-dimensional real-space

g target concept
C concept class
Xd input space, defined over the d-dimensional real-space R

d

U = (X, Y) learning sample, U ∈ Xd × {0, 1}
X input element
Y output element, random label
D sample distribution
EX(D, g) oracle
S random noise
η noise rate
η(X) random noise rate
η0, η1 conditional expected noise rates
P probability
E expected value
χ query function
M a set of metrics {m1, . . . , mn}
(X, Y) a discrete learning sample



838 Empir Software Eng (2011) 16:812–841

(Xtrain, Ytrain) a training set used to calculate hypotheses
(Xsel, Ysel) a selection set used to select the best hypothesis
(Xeval, Yeval) an evaluation set, used to evalute the quality of the selected

hypothesis
M(X) the transformation of software entities into the n-dimensional

real-space using M
M(X) := {(m1(x), . . . , mn(x))t : x ∈ X} ⊂ R

n

(li, ui) the pair of lower and upper bound of an axis aligned rectangle in
the i-th dimension

ti threshold value for the metric mi

f0(x, M, T) classification of a software entity x using a metric set M with
thresholds T

fλ(x, M, T) classification of a software entity x using a metric set M with
thresholds T, with λ allowed infractions.

ε classification error
εX,Y empirical classification error
P(M) power set of the set M
X space of software entities, e.g. methods or classes
h∗ optimal hypothesis
M′, T ′ a subset M′ ⊆ M with thresholds T ′
M∗, T∗ a subset M∗ ⊆ M∗ with thresholds T∗ that is optimal, i.e., the

smallest subset that is effective.

References

Angluin D, Laird P (1988) Learning from noisy examples. Mach Learn 2(4):343–370. doi:10.1023/
A:1022873112823

Basili V, Rombach H (1988) The TAME project: towards improvement-oriented software environ-
ments. IEEE Trans Softw Eng 14(6):758–773

Basili V, Weiss D (1984) A methodology for collecting valid software engineering data. IEEE Trans
Softw Eng 10(6):728–738

Basili VR, Selby RW Jr (1985) Calculation and use of an environment’s characteristic software metric
set. In: ICSE ’85: proceedings of the 8th international conference on Software engineering. IEEE
Computer Society Press, Los Alamitos, CA, USA, pp 386–391

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality
indicators. IEEE Trans Softw Eng 22(10):751–761. doi:10.1109/32.544352

Benlarbi S, Emam KE, Goel N, Rai S (2000) Thresholds for object-oriented measures. In: ISSRE
’00: proceedings of the 11th international symposium on software reliability engineering. IEEE
Computer Society, Washington, DC, USA, p 24

Brodag T, Herbold S, Waack S (2010) A generalized model of pac learning and its applicability.
Mach Learn (manuscript in revision)

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw
Eng 20(6):476–493. doi:10.1109/32.295895

Copeland T (2005) PMD applied
Daly J, Brooks A, Miller J, Roper M, Wood M (1996) Evaluating inheritance depth on the maintain-

ability of object-oriented software. Empir Softw Eng 1(2):109–132
Devroye L, Györfi L, Lugosi G (1997) A probabilistic theory of pattern recognition. Springer, New

York
Duda R, Hart P (1973) Pattern classification and scene analysis.
ETSI (2007) ETSI Standard (ES) 201 873-1 V3.2.1 (2007-02): the testing and test control notation

version 3; part 1: TTCN-3 core language. European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France, also published as ITU-T Recommendation Z.140

http://dx.doi.org/http://dx.doi.org/10.1023/A:1022873112823
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022873112823
http://dx.doi.org/http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/http://dx.doi.org/10.1109/32.295895


Empir Software Eng (2011) 16:812–841 839

Fenton N, Pfleeger S (1997) Software metrics: a rigorous and practical approach. PWS Publishing
Co. Boston, MA, USA

French V (1999) Establishing software metric thresholds. In: International workshop on software
measurement (IWSM99)

Grabowski J, Hogrefe D, Réthy G, Schieferdecker I, Wiles A, Willcock C (2003) An introduc-
tion to the testing and test control notation (ttcn-3). Comput Netw 42(3):375–403. doi:10.1016/
S1389-1286(03)00249-4

Heitlager I, Kuipers T, Visser J (2007) A practical model for measuring maintainability. In: 6th
international Conference on the Quality of information and communications technology, 2007.
QUATIC 2007, pp 30–39. doi:10.1109/QUATIC.2007.8

IEEE (1990) Ieee glossary of software engineering terminology. ieee standard 610.12. Tech. rep.,
IEEE

ISO/IEC (2001–2004) ISO/IEC standard no. 9126: software engineering—product quality; parts 1–4.
International Organization for Standardization (ISO) / International Electrotechnical Commis-
sion (IEC), Geneva, Switzerland

ISO/IEC (2005) ISO/IEC Standard No. 9000. International Organization for Standardization (ISO)
/ International Electrotechnical Commission (IEC), Geneva, Switzerland

Kearns M (1998) Efficient noise-tolerant learning from statistical queries. J ACM 45(6):983–1006.
doi:10.1145/293347.293351

Khoshgoftaar TM (2002) Improving usefulness of software quality classification models based on
boolean discriminant functions. In: ISSRE ’02: proceedings of the 13th international symposium
on software reliability engineering. IEEE Computer Society, Washington, DC, USA, p 221

Kiczales G, Lamping J, Lopes C, Hugunin J, Hilsdale E, Boyapati C (2002) Aspect-oriented pro-
gramming. US Patent 6,467,086

Lanza M, Marinescu R, Ducasse S (2005) Object-oriented metrics in practice. Springer-Verlag New
York, Inc., Secaucus, NJ, USA

Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance
unknown. J Am Stat Assoc 62(318):399–402. http://www.jstor.org/stable/2283970

Lorenz M, Kidd J (1994) Object-oriented software metrics: a practical guide. Prentice Hall PTR
MacKay DJ (2003) Information theory, inference, and learning algorithms. Cambridge University

Press
Mammen E, Tsybakov AB (1999) Smooth discrimination analysis. Ann Stat 27(6):1808–1829
Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4

phage lysozyme. Biochim Biophys Acta, Protein Struct 405(2):442–451. doi:10.1016/0005-
2795(75)90109-9. URL:http://www.sciencedirect.com/science/article/B73GJ-47T22GD-132/2/
b5b0dbd824d44e6edeebf7b8d2613775

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: ICSE ’06:
proceedings of the 28th international conference on software engineering. ACM, New York,
NY, USA, pp 452–461. doi:10.1145/1134285.1134349

Porter AA, Selby RW (1990) Empirically guided software development using metric-based clas-
sification trees. IEEE Softw 7(2):46–54. doi:10.1109/52.50773

Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106. doi:10.1007/BF00116251
Rosqvist T, Koskela M, Harju H (2003) Software quality evaluation based on expert judgement.

Softw Qual J 11:39–55. doi:10.1023/A:1023741528816
Schneidewind NF (1997) Software metrics model for integrating quality control and prediction. In:

ISSRE ’97: proceedings of the eighth international symposium on software reliability engineer-
ing. IEEE Computer Society, Washington, DC, USA, p 402

Schneidewind NF (2000) Software quality control and prediction model for maintenance. Ann Softw
Eng 9(1–4):79–101. doi:10.1023/A:1018920623712

Schölkopf B, Smola AJ (2002) Learning with kernels. MIT Press
Selby RW, Porter AA, Schmidt DC, Berney J (1991) Metric-driven analysis and feedback systems

for enabling empirically guided software development. In: ICSE ’91: proceedings of the 13th
international conference on software engineering. IEEE Computer Society Press, Los Alamitos,
CA, USA, pp 288–298

Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University
Press

Tsybakov AB (2004) Optimal aggregation of classifiers in statistical learning. Ann Stat 32(1):135–
166

Werner E, Grabowski J, Neukirchen H, Rottger N, Waack S, Zeiss B (2007) TTCN-3 quality
engineering: using learning techniques to evaluate metric sets. Lect Notes Comput Sci 4745:54

http://dx.doi.org/http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://dx.doi.org/http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/http://doi.acm.org/10.1145/293347.293351
http://www.jstor.org/stable/2283970
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://www.sciencedirect.com/science/article/B73GJ-47T22GD-13 2/2/b5b0dbd824d44e6edeebf7b8d2613775
http://www.sciencedirect.com/science/article/B73GJ-47T22GD-13 2/2/b5b0dbd824d44e6edeebf7b8d2613775
http://dx.doi.org/http://doi.acm.org/10.1145/1134285.1134349
http://dx.doi.org/http://dx.doi.org/10.1109/52.50773
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1023/A:1023741528816
http://dx.doi.org/http://dx.doi.org/10.1023/A:1018920623712


840 Empir Software Eng (2011) 16:812–841

Steffen Herbold is a doctoral student at the Institute for Computer Science at the Georg-August
University of Göttingen. He received his B.Sc. and M.Sc. degree in Applied Computer Science from
the Georg-August University of Göttingen. He is interested in algorithmic learning methods and
their applications in software quality assurance.

Jens Grabowski is professor at the Institute for Computer Science at the Georg-August University
of Göttingen in Germany, where he is head of the Software Engineering for Distributed Systems
research group. His research interests include software engineering processes, modeling, testing, and
quality engineering.



Empir Software Eng (2011) 16:812–841 841

Stephan Waack is professor and head of the theory group of the Institute for Computer Science
at the Georg-August University of Göttingen. In particular, he is interested in applying algorithmic
methods and learning techniques to software quality management and software testing as well as to
problems from bioinformatics and business informatics.


	Calculation and optimization of thresholds for sets of software metrics
	Abstract
	Introduction
	Software Metrics
	Metric Sets Under Study
	Thresholds for Software Metrics

	Foundations of Machine Learning
	Concept Learning in the Presence of Noise
	A Rectangle Learning Algorithm

	Optimization of Metric Sets and Thresholds
	Calculation of Thresholds Using Rectangle Learning
	Threshold and Metric Set Optimization Algorithm
	Optimization of the Efficiency of Metric Sets with Thresholds
	Reduction of the Classification Complexity
	Learning of Environment Specific Thresholds

	Case Studies
	Methodology
	Case Study 1: Optimization of Metric Sets for Methods
	Case Study 2: Optimization of Metric Sets for Classes
	Case Study 3: Reduction of the Classification Complexity for Methods
	Case Study 4: Reduction of the Classification Complexity for Classes

	Discussion
	Discussion of Research Questions
	Comparison to Other Methods
	Limitations

	Related Work
	Conclusion
	Appendix: Glossary
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


