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Abstract

Introduction: Extracorporeal life support (ECLS) can temporarily support cardiopulmonary function, and is
occasionally used in resuscitation. Multi-scale entropy (MSE) derived from heart rate variability (HRV) is a powerful
tool in outcome prediction of patients with cardiovascular diseases. Multi-scale symbolic entropy analysis (MSsE), a
new method derived from MSE, mitigates the effect of arrhythmia on analysis. The objective is to evaluate the
prognostic value of MSsE in patients receiving ECLS. The primary outcome is death or urgent transplantation
during the index admission.

Methods: Fifty-seven patients receiving ECLS less than 24 hours and 23 control subjects were enrolled. Digital
24-hour Holter electrocardiograms were recorded and three MSsE parameters (slope 5, Area 6–20, Area 6–40) associated
with the multiscale correlation and complexity of heart beat fluctuation were calculated.

Results: Patients receiving ECLS had significantly lower value of slope 5, area 6 to 20, and area 6 to 40 than control
subjects. During the follow-up period, 29 patients met primary outcome. Age, slope 5, Area 6 to 20, Area 6 to 40, acute
physiology and chronic health evaluation II score, multiple organ dysfunction score (MODS), logistic organ dysfunction
score (LODS), and myocardial infarction history were significantly associated with primary outcome. Slope 5 showed the
greatest discriminatory power. In a net reclassification improvement model, slope 5 significantly improved the predictive
power of LODS; Area 6 to 20 and Area 6 to 40 significantly improved the predictive power in MODS. In an integrated
discrimination improvement model, slope 5 added significantly to the prediction power of each clinical parameter.
Area 6 to 20 and Area 6 to 40 significantly improved the predictive power in sequential organ failure assessment.

Conclusions: MSsE provides additional prognostic information in patients receiving ECLS.
Introduction
In recent years, extracorporeal life support (ECLS) has been
increasingly used as a life-saving intervention for a variety
of critically ill patients [1]. Thus, ECLS has been used as
cardiac and/or pulmonary support in various clinical set-
tings, such as fulminant myocarditis, bridge-to-heart trans-
plantation, severe respiratory failure, cardiogenic shock
after cardiac surgery, assistance for cardiopulmonary resus-
citation (CPR), and septic shock [2-6].
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However, the mortality associated with ECLS remains
high, and not all critically ill patients will benefit from it
[2,4]. The outcome for the ECLS recipient is influenced
not only by patient characteristics (disease severity, type
of illness, other organ support) [4,7,8], but also by pro-
cedural complications related to ECLS [9]. Furthermore,
ECLS is a resource-intensive procedure with high cost
[10]. Issues about suitability of patients and, more im-
portantly, when to cease ECLS, are particularly import-
ant. Therefore, it is important to identify patients who are
likely or unlikely to benefit from use of this high-risk, high-
cost treatment. Several commonly used scoring systems in
the ICU, such as the acute physiology and chronic health
evaluation score (APACHE), multiple organ dysfunction
score (MODS), sequential organ failure assessment (SOFA),
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and their successors, have been evaluated in ECLS recipi-
ents [8,11]. However, the predictive power among scoring
systems varies among studies [8,11-13].
Analysis of the variation of heart rate dynamics, also

known as heart rate variability (HRV), is commonly used
to assess autonomic function in human studies [14,15]
due to its simplicity, noninvasive character, and low cost.
Its application to risk stratification of patients with car-
diovascular disease has been documented to be inde-
pendent of conventional clinical parameters [16,17]. In
recent years newer methods of calculating and express-
ing HRV based on nonlinear and non stationary signal
modeling have been developed and successfully applied
[18-21]. Compared to traditional linear HRV parameters,
the nonlinear metrics showed better prediction power for
cardiovascular events in several studies [22,23]. One nonlin-
ear method, multiscale entropy (MSE) analysis, was devel-
oped to quantify heterogeneous complexity. MSE extends
the traditional entropy algorithm to quantify the informa-
tion richness over multiple time scales that operate in
physiological systems [18-20]. In a previous study, MSE pro-
vided the best prognostic prediction in patients with heart
failure [23]. The utility of MSE extends beyond patients with
cardiovascular disease. Thus, MSE also predicts the out-
come of patients with severe trauma requiring ICU admis-
sion across the diverse spectrum of traumatic injury [24].
Unpredictable yet frequent ectopic beats are common in

critical illness. These ectopic beats introduce large artifacts
in the calculation of MSE [19]. The conventional approach
to using MSE and other measures of HRV is to visually
scan, identify and reject those beats, using interpolation
procedures to smooth the time series of interbeat intervals.
As critically ill patients so frequently have such arrhyth-
mias, visual or computational pre-processing to reject and
smooth not only raises the calculation complexity but also
can introduce spurious trends or fluctuations into the
signals that could limit clinical usefulness. In this paper we
introduce a new method, termed multiscale symbolic
entropy analysis (MSsE), which is derived from MSE and
mitigates the effect of arrhythmia on HRV analysis.
In the current study, we hypothesized that MSsE could

yield a prognostic marker in patients receiving ECLS.
The aims of this study were 1) to assess the prognostic
significance of parameters derived from MSsE; 2) to
compare MSsE parameters to conventional clinical pa-
rameters; and 3) to evaluate the effect of combining
MSsE parameters with conventional clinical parameters.

Material and methods
Setting and population
This prospective study was conducted between March
2008 and March 2010 at the National Taiwan University
Hospital, which is an ECLS referral center and performs
approximately 85 extracorporeal life-support procedures
a year [2,6]. Patients were eligible for the present study if
they were 18 years or older and had received ECLS for
circulatory or respiratory failure that required mechan-
ical support [3]. The decision to use ECLS was made by
experienced intensive care specialists or cardiac surgeons.
The subjects were enrolled within the first 24 hours after
ECLS implantation. Demographic, clinical features and
outcomes of patients were recorded. We also recorded the
usage of an intra-aortic balloon pump (IABP) or CPR dur-
ing hospitalization. Catecholamine dose was evaluated by
the inotrope equivalent method, that is, calculated as:

mg=kg=min ¼ dopamine þ dobutamine

þ100 � epinephrineþ 100 � norepinephrine

þ100 � isoproterenol þ 15 �milrinoneÞ

[11,25].
The APACHE II, SOFA, MODS, logistic organ dys-

function sore (LODS) at ICU admission were calculated
according to previous publications [11,26-29]. The pri-
mary endpoint was death or urgent cardiac transplantation
during the index admission. We followed the patients until
discharge or death from the index admission. Healthy
volunteers with normal cardiac function evaluated by
echocardiography and without cardiovascular disease
were enrolled as the control group. The institutional review
board of National Taiwan University Hospital approved the
present study and informed consent was given by each
patient’s family member in the ECLS group due to the
unconsciousness of patients and each subject in the control
group. Informed consent in the ECLS group was obtained
from patients’ family members in the order of spouse,
sons or daughters, parents, grandchildren, grandparents,
siblings, aunts, uncles, nieces, and nephews.

Holter recording
All enrolled subjects were placed on standard ambulatory
(Holter) electrocardiogram (ECG) recorders for 24-hour
recording. The ECG signals were sampled at 250 Hz and
stored on an SD card for subsequent offline analysis.

MSsE calculation
The MSE has proven to be an effective tool in exploring
the characteristics of heart rate dynamics and can predict
important clinical outcomes [18,23,30,31]. The original
MSE comprises two steps: 1) coarse-graining the signals
using different time scales; 2) quantifying the degree of
irregularity in each coarse-grained time series using sample
entropy. However, the major challenge of applying MSE to
severe illness patients is the frequent ectopic beats that can
reduce the reliability of the MSE results [19]. To address
the issue of ectopic beats, we have adopted the intuitive
idea that the coarse grained time sequence will be better



Figure 1 The first operation of MSsE is coarse graining.We divide
the time series {x1, x2 … xM} into non-overlapping boxes of size N (scale
"N"). The median of each local box is taken, thus producing a new time
series yN1 ; y

N
2…yNk

� �
. The second stage in forming the sign time series is

to transform the coarse-grained series into yet another new series by
taking the directions in its change. We measure the change against a

threshold value and acquire the sign series bN1 ; b
N
2…bNk

� �
, where bNi is

either +1 or -1, depending on whether the corresponding yNi is
increasing or decreasing. To quantify the complexity of the sign
sequence, we sort all sequences into categories of sub-sets consist of L
consecutive binary bits (L-bit; L = 8 in this study). The probability
distribution of all patterns of sub-sets is recorded. To avoid over-
counting similar patterns, the data sequence of total length L should
be divided into multiple m-dimensional vectors; each consists of m
consecutive bits {(b1, b2, … bm); (b2, b3, … bm +1); …}. The
conditional probability is determined numerically by the ratio of
number of each paired vectors which are of exactly same binary codes
for dimension "m+1" to the number for the identical vectors of
dimension "m". By identifying the patterns of the same conditional
probability, it allows us to rank the m-bit patterns according to the
information they imply (large rank number means lower conditional
probability). The expectation value of the rank conceptually indicates
the degree of uncertainty.
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reconstructed with the median value rather than mean
value over non-overlapping windows. In addition, a further
step proposed to attenuate the influence from the ectopic
beats is to use the sign of the coarse-grained signal
to measure its entropy. Dynamics of heart rate after
coarse-graining in different scales were therefore denoted
as the increase (+) or decrease (−) sign in forming
coarse-grained binary sequences. Intuitively, by focusing
only on the direction while ignoring the amplitude of
the change, the effect of these outliers could be both
localized and diminished.
In order to compute the entropy of a binary sequence,

the sequence should be divided into subsets consisting
of L consecutive binary bits. The detailed procedure
for calculating the entropy of the coarse-grained
binary sequences can be found in the caption of Figure 1.
We plotted the entropy as a function of scale, which
provided the quantitation of structure richness embedded
in heartbeat fluctuations over different timescales. This
symbolic dynamics approach, now termed multiscale
symbolic entropy analysis (MSsE), can provide similar
information as the original MSE in quantifying the
complexity of the signal while being far less sensitive to the
unpredictable yet frequent appearance of ectopic beats.
According to previous results that applied MSE to the
heartbeat recordings of healthy young subjects [18,19], the
sample entropies of heartbeat fluctuations in individuals
resembles those of Brownian motions over short timescales
(<5 heartbeats) while they behave more like those of
pink (1/f) noise over longer timescales. Such a crossover
phenomenon is believed to be related to different physio-
logical processes influencing cardiac dynamics over different
timescale regions, that is, over short timescales respirations
dominantly entrain heartbeat fluctuations (respiratory sinus
arrhythmia) via its influence on the parasympathetic
nervous system; and over longer timescales (>5 heartbeats),
heartbeat fluctuations are influenced by many different
physiological functions such as baroreflex and circadian
rhythm [32] that lead to complex fluctuation patterns
similar to 1/f noise. These findings suggest that we should
select Slope5 (slope 5), Area6–20 (area 6 to 20), and
Area6–40 (area 6 to 40) as the indices with physiological
meaning to profile the MSsE curve (see Figure 2).
We also accessed slope 5 from a shorter time interval

of the ECG recording: slope 5 for the first hour and the
first 2 hours of ECLS implantation.

Statistical analysis
Categorical variables were analyzed using the chi-square
test or Fisher’s exact test. Continuous variables were rep-
resented as mean value ± SD and the normality of those
variables was evaluated by using Kolmogorov-Smirnov
test. Student’s t-test was applied to the between-group
comparison. The maximal hazards ratio and independent
correlation of variables with event status (mortality or
urgent heart transplantation) was determined by Cox
regression analysis. Harrell’s C-statistics (the probabil-
ity of concordance for any two randomly chosen sub-
jects) were calculated as a measure of a model’s ability to
discriminate between patients meeting and not meeting a
primary outcome [33-36]. More specifically:

C ¼ P Zi > Zj Di ¼ 1; Dj ¼ 0Þ;���

where Zi, Zj are model-based risks (that is, linear predic-
tors) and Di, Dj are event indicators for two subjects
(1 = patients meeting the primary outcome; 0 = patients
not meeting the primary outcome). The receiver-operator



Figure 2 Quantification of multiscale symbolic entropy (MSsE): summation of the entropy over different scales can quantify the
complexity over certain timescales. However, typical profile of MSsE in extracorporeal life support patients showed a crossover phenomenon
around scale 5. Three parameters of the MSsE were assessed: (1) the linear-fitted slope between scales 1 to 5; (2) complexity between intermediate
scales (Area 6-20); and (3) the overall complexity (Area 6-40).

Table 1 Clinical and MSsE parameters of all subjects

Control ECLS P-value

(n = 23) (n = 57)

Baseline characteristics

Age, years 58.78 ± 3.16 54.00 ± 18.26 0.061

Sex, male 14 (60.9%) 44 (77.2%) 0.139

Current smoking 1 (4.3%) 18 (31.6%) 0.010

Pre-existing comorbidity

Diabetes Mellitus 7 (30.4%) 15 (26.3%) 0.709

Hypertension 18 (78.3%) 19 (33.3%) <0.001

Stroke 1 (4.3%) 2 (3.5%) 0.858

Chronic obstructive
pulmonary disease

1 (4.3%) 3 (5.3%) 0.865

End-stage renal disease 0 (0%) 3 (5.3%) 0.262

Coronary artery disease 0 (0%) 13 (22.8%) 0.012

Prior myocardial infarction 0 (0%) 3 (5.3%) 0.262

Heart failure 0 (0%) 17 (29.8%) 0.002

MSsE parameters

Slope 5 0.19 ± 0.10 −0.24 ± 0.27 <0.001

Area 6 to 20 338.40 ± 6.50 192.04 ± 76.71 <0.001

Area 6 to 40 146.05 ± 2.82 80.77 ± 33.65 <0.001

Results presented as mean ± SD or number (%). ECLS, extracorporeal life support;
MSsE, multiscale symbolic entropy.
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characteristic (ROC) curve was determined by the logistic
regression model. We performed C-statistics to describe
discrimination of the baseline model by clinical severity
scores and the model that included selected MSsE param-
eters [34,36,37].
Net reclassification improvement (NRI) and integrated

discrimination improvement (IDI) modeling were per-
formed to assess the improvement of the prediction
using two different logistic regression models [34], with
0.2 and 0.4 used as cutoff points. All statistical analyses
were performed using R software [38], version 2.15.2.
Statistical significance was set at P <0.05.

Results
A total of 57 patients (44 male) who were receiving
ECLS, and 23 control subjects were enrolled in this
study. Of the patients 51 received veno-arterial ECLS
and 6 received veno-venous ECLS. The demographic
data and data on the MSsE parameters are shown in
Table 1. The values of MSsE are also shown in Figure 3.
Patients receiving ECLS had significantly lower value of
slope 5, area 6 to 20, and area 6 to 40.
Among patients receiving ECLS, 35 patients received

ECLS for cardiac indications; including 2 patients with
acute myocarditis, 9 patients with acute myocardial in-
farction, 7 patients with intractable heart failure, 6 patients
with poor hemodynamic status after cardiac surgery,
8 patients with poor hemodynamic status due to fre-
quent or intractable ventricular arrhythmia, 2 patients
with out-of-hospital cardiac arrest and one patient



Figure 3 Multiscale symbolic entropy (MSsE) analysis of heart
rate dynamics from control subjects, patients surviving after
extracorporeal life support (ECLS), and non-surviving ECLS patients.
The values are represented as mean ± standard error. The MSsE
profile of ECLS patients who survived differed from that of non-survivors.
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due to massive pulmonary embolism. A total of 22 patients
received ECLS for non-cardiac indications; including
2 patients with thyroid storm, 9 patients with acute
respiratory distress syndrome, 7 patients with septic
shock, one patient with carbon monoxide intoxication,
one patient with electrical injury, and two patients with
shock due to massive bleeding.
During the index hospitalization, 26 patients died and

3 patients received urgent cardiac transplantation. The
other 28 patients were successfully weaned from ECLS
and discharged from the hospital alive. In an analysis of
baseline characteristics (Table 2), survivors without ur-
gent cardiac transplantation were younger, had longer
period of ECLS implantation, lower APACHE score,
lower LODS, and lower MODS. With respect to the
MSsE parameters (Table 3), survivors without urgent
cardiac transplantation had a significantly higher value
of slope 5, area 6 to 20, and area 6 to 40.
In Cox regression survival analysis (Table 4), the sig-

nificant factors were age, prior myocardial infarct (MI)
history, APACHE score, LODS, MODS, Slope 5, area 6
to 20, and area 6 to 40. Slope 5 had the largest concord-
ance value among MSsE parameters; the LODS had the
largest concordance value among clinical severity scores
(Table 5). After combining MSsE parameters with mea-
sures of clinical severity, concordance values increased.
Among the MSsE parameters, slope 5 added the largest
improvement.
In ROC analyses (Table 5), slope 5 had the largest area

under the curve (AUC) among MSsE parameters; the
LODS had the largest AUC among clinical severity scores.
When combining MSsE parameters with measures of
clinical severity, AUC improved outcome prediction.
Among the MSsE parameters, slope 5 added the largest
improvement. For example (see Figure 4), the AUC for
SOFA was 0.637. After adding slope 5, the AUC for the
new model improved to 0.749.
Although the increase in AUC after adding MSsE pa-

rameters on conventional risk scores was not statistically
significant, that does not answer the question of whether
the addition of MSsE metrics improves the predictive
power of conventional risk scores. To answer this ques-
tion, we considered whether reclassification with the
addition of MSsE improved predictions for the individ-
ual patients. We used two strategies: NRI and IDI. In
general, NRI offers a simple intuitive way of quantifying
improvement offered by new markers. As described by
Pencina and colleagues, ‘The NRI focuses on reclassifica-
tion tables constructed separately for participants with
and without events, and quantifies the correct move-
ment in categories—“upwards” for events and “down-
wards” for non-eventsʼ [37]. In the NRI model, slope 5
significantly improved the predictive power of LODS;
area 6 to 20 and area 6 to 40 significantly improved
the predictive power in MODS. A further improve-
ment on NRI examines all potential cutoff values in
the ROC analysis and examines the integral of sensitiv-
ity verses the integral of one minus specificity. This is
a continuous version of NRI. In IDI model, slope 5 added
significantly to the prediction power of each clinical
parameter. Area 6 to 20 and area 6 to 40 significantly
improved the predictive power in SOFA. The compari-
son among slope 5 from three time intervals (1 hour,
2 hours, 24 hours) of the ECG recording is shown in
Additional file 1.

Discussion
The major findings of this study were: 1) Among the
various clinical and MSsE parameters, slope 5 showed
the greatest power in prognostic prediction. 2) MSE pa-
rameters (especially slope 5) added the prognostic pre-
diction power in clinical parameters.
The increase in number and severity of critically ill pa-

tients worldwide demands that critical care professionals
make prudent and objective decisions about the alloca-
tion of costly and risky treatments. Such treatments in-
clude ECLS, which currently affords survival to only
about half the adult patients in which it is initiated.
However, due to its high cost [10], issues about the tim-
ing to cease ECLS are particularly important. Therefore,
it is important to identify patients who are likely to
benefit from ECLS. Physiology-based risk-classification
tools are therefore needed to support decisions for or
against continuous ECLS usage. Although HRV met-
rics have proved useful in predicting outcomes in
some populations, frequent arrhythmias have limited
their use in patients with acute and severe critical ill-
ness. In this paper, we report the development and



Table 2 Clinical and laboratory parameters of ECLS recipients

Survivors Non-survivors or patients undergoing
heart transplantation

P-value

(n = 28) (n = 29)

Baseline characteristics

Age, years 48.07 ± 20.12 59.72 ± 14.39 0.015

Sex, male 22 (78.6%) 22 (75.9%) 0.807

Current smoking 7 (25.0%) 11 (37.9%) 0.294

Pre-existing comorbidity

Diabetes mellitus 7 (25.0%) 8 (27.6%) 0.825

Hypertension 10 (35.7%) 9 (31.0%) 0.708

Stroke 0 (0%) 2 (6.9%) 0.157

Chronic obstructive pulmonary disease 2 (7.1%) 1 (3.4%) 0.532

End-stage renal disease 2 (7.1%) 1 (3.4%) 0.532

Coronary artery disease 7 (25.0%) 6 (20.7%) 0.698

Prior myocardial infarction 0 (0%) 3 (10.3%) 0.080

Heart failure 6 (21.4%) 11 (37.9%) 0.173

CPR, yes or no 6 (21.4%) 10 (34.5%) 0.273

IABP insertion, yes or no 5 (17.9%) 5 (17.2%) 0.951

Indication of ECLS 0.516

Cardiogenic 16 (57.1%) 19 (65.5%)

Non-cardiogenic 12 (42.9%) 10 (34.5%)

Duration of ECLS, day 38.57 ± 31.34 11.69 ± 14.61 <0.001

Inotropic equivalent, μg/kg per minute 70.46 ± 198.44 29.42 ± 27.09 0.275

Clinical parameters

APACHE score 16.75 ± 7.18 21.83 ± 7.45 0.011

SOFA score 7.71 ± 4.35 9.66 ± 3.42 0.066

LODS 7.61 ± 3.73 10.86 ± 3.59 0.001

MODS 9.61 ± 4.00 12.24 ± 3.59 0.011

Mean arterial pressure, mm Hg 72.38 ± 27.68 63.15 ± 22.10 0.169

Central venous pressure, mmHg 15.17 ± 6.29 16.83 ± 5.93 0.356

Laboratory parameters

pH 7.29 ± 0.17 7.29 ± 0.20 0.895

PaCO2, mmHg 43.76 ± 25.64 47.95 ± 33.32 0.598

HCO3, mmol/L 19.48 ± 6.11 20.95 ± 6.76 0.392

Lactate, mmol/L 7.91 ± 5.96 6.87 ± 6.29 0.579

White blood cell count, /μl 13956.40 ± 6512.84 12597.93 ± 82 0.510

Hematocrit, % 34.72 ± 7.20 35.48 ± 7.62 0.711

Blood urea nitrogen, mg/dl 27.23 ± 20.65 38.33 ± 31.63 0.140

Creatinine, mg/dl 1.98 ± 1.75 2.35 ± 2.58 0.551

Total bilirubin, mg/dl 2.31 ± 3.80 2.09 ± 2.22 0.812

Creatinine phosphokinase, U/L 3656.47 ± 8632.73 1064.45 ± 1732.63 0.270

Creatinine phosphokinase-MB 240.82 ± 634.20 87.86 ± 147.04 0.409

Results presented as mean ± SD or number (%). APACHE, acute physiology and chronic health evaluation; CPR, cardiopulmonary resuscitation; LODS, logistic organ
dysfunction score, ECLS, extracorporeal life support; IABP, intra-aortic balloon pump; MSsE, multi-scale symbolic entropy; MODS, multiple organ dysfunction score;
SOFA, sequential organ failure assessment.
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Table 3 MSsE parameters of ECLS recipients

Survivors Non-survivors or
patients undergoing
heart transplantation

P-value

n = 28 n = 29

Slope 5 −0.12 ± 0.30 −0.35 ± 0.18 0.001

Area 6 to 20 219 ± 85.61 165.69 ± 56.90 0.008

Area 6 to 40 92.41 ± 37.41 69.54 ± 25.48 0.010

ECLS, extracorporeal life support; MSsE, multiscale symbolic entropy.
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application of a new family of HRV metrics based on
symbolic entropies that extend the utility of existing
nonlinear measures and demonstrate that three mem-
bers of this new family (slope 5, area 6–20, area 6–40)
have the potential to improve conventional clinical
risk-stratification tools in determining likelihood of
ECLS success.
Table 4 Cox regression analysis for prediction of the
primary endpoint using a single variable in ECLS
recipients

Variable Exp (B) P-value 95% CI for Exp (B)

Lower Upper

Age, years 1.026 0.029 1.003 1.050

Sex, male 1.004 0.992 0.428 2.359

Slope 5 0.031 0.003 0.003 0.306

Area 6 to 20 0.992 0.004 0.987 0.997

Area 6 to 40 0.982 0.004 0.971 0.994

Inotropic equivalent,
μg/kg per minute

0.998 0.374 0.993 1.003

APACHE score 1.069 0.005 1.020 1.121

SOFA score 1.105 0.054 0.998 1.224

LODS 1.160 0.001 1.060 1.270

MODS 1.176 0.003 1.058 1.307

Diabetes mellitus 1.112 0.799 0.492 2.515

Stroke 3.121 0.124 0.733 13.298

Chronic obstructive
pulmonary disease

0.670 0.695 0.090 4.963

End-stage renal disease 0.441 0.423 0.060 3.256

Coronary artery disease
history

0.981 0.966 0.399 2.411

Prior myocardial infarction 3.922 0.032 1.125 13.667

Heart failure 1.623 0.219 0.750 3.510

Hypertension 0.981 0.962 0.445 2.161

Current smoking 1.704 0.168 0.799 3.634

ECLS indication, cardiogenic
versus non-cardiogenic

1.508 0.301 0.692 3.285

APACHE, acute physiology and chronic health evaluation; CPR,
cardiopulmonary resuscitation; LODS, logistic organ dysfunction score, ECLS,
extracorporeal life support; IABP, intra-aortic balloon pump; MSsE, multi-scale
symbolic entropy; MODS, multiple organ dysfunction score; SOFA, sequential
organ failure assessment.
In our study, the primary outcome rate is quite high
(45.6% for mortality, 50.9% for mortality + urgent trans-
plantation). The reasons are probably due to the high
disease severity in our participants. Sixteen patients re-
ceived CPR before ECLS implantation. In our previous
experience, the 30-day survival rate of ECLS assisted
CPR is 33.9% [2]. Although the mortality rate is still
high, however, the outcome of ECLS assisted CPR is
much better than conventional CPR [2]. Due to the high
mortality and cost of ECLS therapy, effective risk-
classification tools are needed to support decisions for
or against ECLS initiation and continuation. In a study
in Norway, the median estimated cost for the ECMO
procedure was 62,545 USD, and the mean estimated
total hospital costs is 191,436 USD [10]. In that study,
mean duration of an ECLS procedure is 9.5 days (range:
4–23 days). In our study, the average duration of ECLS
procedures is 11.69 days in patients met primary out-
come. Early risk-classification tools may offer clinician
and patient additional insight into their shared decision
to use complicated and costly therapies.
In our study, new HRV metrics based on symbolic en-

tropies appeared to enhance risk-classification. These
MSsE parameters had good performance in outcome
prediction when using alone or combined with clinical
parameters. Among the MSsE parameters, slope 5 added
the largest improvement. In each clinical parameter,
after adding slope 5, the increase of AUC in new model
is around 0.06-0.07. The increase exists in all three clin-
ical parameters. There are advantageous features of this
tool. First, the cost of measuring MSsE parameters is
low and the method can be integrated into ICU data sys-
tems. Second, it is measured at bedside, and therefore
does not require potentially dangerous transport to an
imaging or procedural location. Third, neither radiation
nor pharmaceuticals nor additional devices are required.
There are other studies using MSE analysis for acute

illness. In trauma patients admitted to ICU, reduced
MSE is significantly associated with increasing mortality,
and is independent to clinical parameters [39]. In another
study, decreased approximate entropy is associated with
mortality in trauma patients independent of Glasgow
coma score or injury severity score [40]. In a study of
combat casualties in an emergency department in Iraq,
the MSE index was significantly decreased in patients who
required lifesaving intervention compared to those who
did not [41]. This evidence shows the potentials of
physiology-based risk-classification tools in patients with
acute illness. Furthermore, our study demonstrates the
additive effects of combination of physiology-based risk-
classification tools and clinical parameters.
Interconnectedness of physiological mechanisms is a

crucial feature to the output of a network with feedback
interactions [42] and demonstrates as multiple time



Table 5 Concordance, AUC, NRI, and IDI model among clinical and MSsE parameters

Concordance AUC AUC R
square

NRI NRI IDI IDI

P-value P-value P-value

Slope 5 0.731 0.760 0.216

Area 6 to 20 0.686 0.674 0.151

Area 6 to 40 0.688 0.670 0.154

APACHE 0.678 0.706 0.126

Slope 5 0.740 0.778 0.192 0.258 0.177 0.273 0.133 0.005

Area 6 to 20 0.710 0.741 0.423 0.183 0.143 0.248 0.050 0.094

Area 6 to 40 0.710 0.743 0.429 0.186 0.143 0.248 0.054 0.085

LODS 0.716 0.744 0.168

Slope 5 0.760 0.804 0.106 0.267 0.389 0.007 0.110 0.009

Area 6 to 20 0.730 0.767 0.300 0.198 0.180 0.161 0.025 0.209

Area 6 to 40 0.730 0.767 0.338 0.198 0.180 0.161 0.026 0.209

MODS 0.689 0.693 0.157

Slope 5 0.740 0.778 0.102 0.270 0.285 0.087 0.129 0.005

Area 6 to 20 0.740 0.744 0.240 0.224 0.285 0.044 0.059 0.067

Area 6 to 40 0.740 0.748 0.257 0.222 0.285 0.032 0.062 0.059

SOFA 0.598 0.637 0.066

Slope 5 0.710 0.749 0.086 0.229 0.253 0.101 0.156 0.002

Area 6 to 20 0.690 0.718 0.180 0.173 0.112 0.443 0.089 0.020

Area 6 to 40 0.690 0.720 0.167 0.174 0.181 0.215 0.092 0.018

APACHE, acute physiology and chronic health evaluation; AUC, area under curve; IDI, integrated discrimination improvement; LODS, logistic organ dysfunction
score, MSsE, multi-scale symbolic entropy; MODS, multiple organ dysfunction score; NRI, net reclassification improvement; SOFA, sequential organ
failure assessment.

Figure 4 Receiver-operator characteristic curves for models
with (solid line) and without slope 5 (broken line). The area
under the curve (AUC) for sequential organ failure assessment SOFA
was 0.637. After adding slope 5, the AUC of the new model
improved to 0.749.
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scale correlation for the output fluctuations [43,44].
Multiple time scale correlation traditionally can be
assessed by fractal analysis such as detrended fluctuation
analysis (DFA) [45-47] i.e., the random time series (no
correlation) will exhibit the ~0.5 scaling exponent in the
fluctuations vs. time scales for DFA analysis. On the
other hand, MSE offer an alternative to verify the exist-
ence of multiscale correlation by the slope of the scale
function of entropy. Mathematically, a negative slope of
MSE analysis indicates the trivial correlation (i.e., simple
oscillation, a repetitive pattern of an increase follow by a
decrease) or random fluctuations [19]. Therefore, it can
be a sign of the loss of feedback regulation. The present
study reveals that, in addition to the overall reduction of
entropy at different scales (i.e., area 6–20, area 6–40),
the patients with death or urgent transplantation show
very negative slope (i.e. slope 5) in MSsE analysis. This
finding provides preliminary evidence that loss of feed-
back control could be important features of severe
outcome.
In comparison of the outcome predictive power among

slope 5 collected from three time interval (from first one
hour, from first two hour, and from 24 hours) of ECG re-
cording, generally, the slope 5 from 24 hours have better
performance than slope 5 for shorter time ECG recording.
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However, the slope 5 form one or two hour recording (es-
pecially slope 5 form first two hours) still have the ability
to predict outcome and also add the performance of clin-
ical parameters. Therefore, parameters form short time
ECG recording also have potential for outcome prediction
in ECLS patients. Further larger study is need to compare
to outcome prediction power of MSsE parameters form
short and long time ECG recording in the future.
Our study has several important limitations. It is a

single-center study that focuses on the relatively closed
population of Taiwan. The study is based on a 24 hour
data collection period, an interval that is both long and
arbitrary. Our study lumps patients having primarily car-
diac disease with patients who have a spectrum of other
diseases. This “lumping” convolves and to some extent
confuses expression of primary heart pathology with effects
of extra-cardiac pathologies upon the heart. The particular
entropy metrics that proved useful, while pre-selected for
this study, are still somewhat arbitrary. For all of these rea-
sons, our findings must be considered provisional and this
study requires replication in another venue to test the re-
producibility and consistency of our findings.
These limitations notwithstanding, our study suggests

that the addition of metrics derived from non-linear
symbolic analysis of heart rate variability improves the
ability of conventional risk-stratification tools to create
accurate predictions about the outcomes of individual
patients within a complicated and very sick population.
This is important for two reasons. First, it adds confi-
dence that the “arrhythmia problem in HRV analysis”–
the appearance of confounding ectopic beats in critically
ill patients–can be addressed objectively and automatic-
ally, thus making HRV metrics generally more useful in
critically ill patients. Second, it suggests that a more gen-
eral problem of situation awareness–specifically the abil-
ity to make reliable predictions about the outcome of
different treatment options–may be improved with the
addition of multiscale metrics of physiologic responsive-
ness to more traditional static indices of physiologic
derangement.

Conclusion
Patients receiving ECLS remain high mortality rate.
MSsE offers additional insight into the prognosis of pa-
tients considered for ECLS.

Key messages

� Extracorporeal life support (ECLS) is a resource-
intensive procedure with high cost. Issues about
suitability of patients and, more importantly, when
to cease ECLS are particularly important.

� Multi-scale entropy (MSE) derived from heart rate
variability (HRV) is a powerful tool in outcome
prediction of patients with cardiovascular diseases.
Multi-scale symbolic entropy analysis (MSsE), a new
method derived from MSE, mitigates the effect of
arrhythmia on analysis.

� In this study, we found several MSsE parameters
provide additional prognostic information in
patients receiving ECLS. Slope 5 is the best
parameter.

Additional file

Additional file 1: Comparison among slope 5 from three time
intervals (1 hour, 2 hours, 24 hours).
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