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DHA	� Docosahexaenoic acid
EPA	�E icosapentaenoic acid
AD	� Alzheimer’s disease
PD	� Parkinson’s disease
MS	� Multiple sclerosis
RLS	� Restless leg syndrome
ALS	� Amyotrophic lateral sclerosis
SZ	� Schizophrenia
ADHD	� Attention deficit hyperactivity disorder

Introduction

The human brain changes dynamically throughout life, and 
profound changes occur from childhood to old age, and, 
in particular, with the progression of disease. The struc-
tural integrity of the living brain may be evaluated with 
brain scans obtained through a range of neuroimaging 
techniques. These brain scans include, among others, high-
resolution magnetic resonance imaging (MRI) and diffu-
sion-based MRI. Standard anatomical MRI has been the 
mainstay of clinical neuroradiology for over two decades, 
and has helped reveal signs of brain aging, such as corti-
cal atrophy, vascular changes, and changes over time in the 
gray and white matter. More recently, “diffusion-based” 
MRI has been embraced by neuroscientists and clinical 
researchers alike, as it can assess microstructural properties 
of the white matter fibers and the breadth of their connec-
tions. This technology is offering new insights into how the 
brain is organized, how it changes as we age, and what fac-
tors affect the changing brain.

Clearly, a wide range of neuroanatomical variation is 
expected in patients diagnosed with neurological or psy-
chiatric illness. However, even in groups of healthy indi-
viduals, brain structure and integrity vary widely. For 
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many measures of human brain morphometry and integrity, 
around half of the normal variance is due to the genetic 
variations among us. Even so, environmental factors also 
affect the brain—both structurally and functionally. Among 
these factors are education, diet, and stress.

One of the most basic—and to some extent controlla-
ble—influences on brain structure and function is a per-
son’s diet and nutritional intake. In addition to proteins (and 
certain fats, vitamins, and other important minerals such as 
zinc, copper, iodine, selenium), iron is a nutrient with pro-
found effects on the brain throughout life [1]. Iron’s effects 
on the brain have been a topic of interest for many years. 
Iron is critical for healthy brain development, and abnormal 
iron accumulation in the brain can promote neurodegen-
erative diseases [2]. In the past few decades, medical and 
public opinion has changed from favoring iron supplemen-
tation in healthy people as they age, to being more circum-
spect about its potential negative consequences [3].

Many nutrients, including iron, are not metabolized, 
transported, or processed identically in all individu-
als. They are regulated by a variety of genes, proteins, 
and their interactions. In most cases, iron enters the body 
solely through our diet, and exists as heme and non-heme 
iron in the body. Specific genes and regulatory proteins are 
involved in iron metabolism and are responsible for stor-
ing iron locally (ferritin) and transporting it (transferrin) 
throughout the body. The uptake and storage of iron in the 
brain differs across the brain structures and the distribution 
patterns also change with aging. It is perhaps not surprising 
then that genes involved in iron processing and transport 
are critical in shaping the human brain. However, the spe-
cific mechanisms of these effects are only just beginning to 
be understood.

Genetic diversity and the brain

In recent years, the field of “imaging genetics” [4] has 
matured significantly. Imaging genetics aims to corre-
late brain imaging measures from large groups of people 
to commonly carried variants in their DNA, in an effort to 
understand how genetic variation affects the brain and our 
risk for disease. Initial studies have offered a deeper under-
standing of how “disease risk” genes may affect the brain, 
and how they affect brain function and behavior [5].

Carriers of certain common genetic variants—or single-
nucleotide polymorphisms (SNPs)—tend to have character-
istic differences in brain structure that can be identified, at 
least at the group level, on MRI scans. These differences in 
brain integrity suggest how these genes may act to change 
neural circuitry and neural pathways, affecting a person’s 
aggregate risk for diseases such as Alzheimer’s disease, 
schizophrenia, and even autism. Some genetic variants are 

very common—and have substantial effects on the brain. 
These include commonly carried variants in the Alzhei-
mer’s disease risk genes, ApoE [6], CLU [7], and MTHFR 
[8]. Brain variations have also been associated with carry-
ing risk genes for psychiatric illness such as DISC1 [9] and 
neuregulin [10, 11], and risk genes for developmental dis-
orders such as autism, including CNTNAP2 and MET [12, 
13], among others. The flood of brain imaging and genetic 
data, available now on a large scale, has also made it pos-
sible to search the entire genome to identify new genetic 
variants that affect the volume of distinct parts of the brain 
[14–17].

In this review, we discuss the role of population-based 
neuroimaging studies in linking iron and other dietary fac-
tors to variations in brain integrity. We focus on iron, but 
briefly review other neuroimaging studies of diet and the 
brain. We also point out confounds and caveats to be aware 
of when interpreting these studies. Despite possible cave-
ates,  there has been progress in understanding molecular 
pathways that mediate dietary effects on the brain. Sev-
eral genetic variants are associated with differences in iron 
metabolism, including its storage and transport; in fact, 
the most common genetic disorder in the world—hemo-
chromatosis—is a disorder of iron metabolism, and affects 
1 % of the population in some countries (e.g., Ireland). We 
describe current evidence relating iron levels to cognitive 
function, and new connections between brain integrity and 
genes that affect iron transport [18]. As brain databases 
expand to include  ever-larger populations, neuroimaging 
can help to identify dietary factors and related genetic vari-
ants that consistently affect the brain, sometimes reveal-
ing mechanisms at the molecular level that mediate these 
effects.

Brain imaging and diet

Magnetic resonance imaging (MRI) and its extensions allow 
us to observe, measure, and quantify neuroanatomical struc-
tures in a non-invasive fashion. When large numbers of indi-
viduals are scanned, it is possible to study patterns of brain 
abnormalities due to disease, and localize subtle anatomical 
differences that relate to variations in cognitive abilities, 
or even to single base pair variations in the genome, as we 
noted earlier [14]. Structures of interest (such as the vol-
ume of the hippocampus—a key structure for learning and 
memory) can be measured, based on individual brain scans. 
The relative size and integrity of anatomical structures can 
be compared across entire populations to identify factors 
that affect them, adversely or positively. Additionally, brain 
mapping studies allow, through careful co-registration, each 
individual subject’s brain scan to be mapped into a common 
3D coordinate space, enabling inter-subject or inter-group 
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comparisons. In this sense, subjects’ brain data can be com-
pared at all 3D points—or voxels—of the image. These rap-
idly developing methods for image analysis have resulted in 
a range of brain-derived measures that can be analyzed sta-
tistically, to determine factors that affect brain structure and 
function, and factors that preserve and promote the integrity 
of the brain.

Measuring brain integrity

Several different methods are used to image the brain. Each 
method is unique and can reveal various anatomical, func-
tional, metabolic, or chemical attributes of the brain. Our 
focus in this review is on recent discoveries made with 
MRI and diffusion-weighted MRI (dMRI)—by far the most 
widely used methods for exploring the physical structure of 
the human brain, and factors that affect it. As noted earlier, 
standard anatomical MRI—the kind employed most widely 
in clinical assessments and research studies—is ideal for 

visualizing patterns and variations in brain structure, espe-
cially in the cortical gray matter. Diffusion MRI is more 
useful for mapping the integrity of white matter fiber tracts 
and their connectivity. Fractional anisotropy (FA) is one 
of the most widely accepted measures to represent white 
matter tissue integrity that is obtainable from DTI. FA, 
measured on a scale of 0–1, reflects how directionally con-
strained the diffusion of water is, along axons in a given 
volume such as a voxel. As a general rule of thumb, higher 
FA values may imply more coherent or intact axons, or 
higher degrees of myelination, while lower FA may reflect 
loss of integrity and white matter injury. Even so, there are 
known exceptions to this rule in highly convoluted regions 
of the white matter, because the FA measure appears to 
be reduced in regions where fibers cross each other, even 
when the integrity of the fibers is high.

Figure 1 shows various MRI-based features that may be 
extracted from standard MRI and dMRI techniques. Once 
these measures are derived, statistical methods from quan-
titative genetics and epidemiology may be used to map out 

Fig. 1   A variety of brain measures and features may be extracted 
from standard MRI and diffusion based MRI. When measured in a 
population of subjects, the observed variation in these brain traits can 
be studied in relation to genetic variation, and environmental influ-
ences such as education or diet, to identify factors that may promote 
or harm the brain. Population-based analyses include mapping out the 
overall degree of genetic influence or heritability for different brain 
measures, and effects of candidate gene or dietary or environmental 

factors. Features analyzed may include, but are not limited to: a vol-
umes of brain structures such as the hippocampus; b cortical thick-
ness or folding patterns; c regional brain volume differences with ten-
sor based-morphometry maps; d maps of white matter integrity based 
on DTI, including measures of fiber coherence, such as fractional 
anisotropy (FA); e shapes and integrity of tracts of the brain; and f 
structural brain networks and the strength of cortical connections via 
white matter fibers, and topological measures based on such networks
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effects of different dietary, genetic or other factors on these 
brain measures. Using a database of brain scans, one can 
study a variety of questions, such as those investigating 

(a)	 the volume of specific structures in the brain, such as 
the hippocampus [14];

(b)	 cortical thickness or folding patterns [19, 20];
(c)	 regional brain volume differences, assessed using “ten-

sor based-morphometry” maps (TBM; [21]);
(d)	 maps of white matter integrity such as diffusion tensor 

imaging (DTI)-based fractional anisotropy (FA) [22];
(e)	 the trajectories, shapes, and integrity of tracts of the 

brain [23]; and
(f)	 the structural human brain network—including the 

strength of cortical connections via  white matter fib-
ers and topological measures based on such networks 
[24–26].

Psychiatric disorders, such as schizophrenia and bipolar 
illness, neurological diseases such as Alzheimer’s disease, 
multiple sclerosis, and even viral infection with the human 
immunodeficiency virus (HIV) [27] lead to identifiable pat-
terns of anatomical abnormalities and loss of tissue integ-
rity, which are clearly seen in imaging studies. Remarka-
bly, even a person’s diet can have a detectable influence on 
brain structure and function [28, 29]. Neuroimaging stud-
ies confirm that brain integrity is harmed by many drugs 
of abuse–ecstasy [30], methamphetamine [31, 32]—and 
excessive alcohol consumption [33]. Perhaps surprisingly, 
neuroimaging studies also have the power to detect the 
more subtle effects of specific daily nutrients. If properly 
designed (see caveats below), they can relate neurological 
changes and differences in brain integrity to specific dietary 
factors.

It has been shown, for example, that a group of pre-
term infants fed a high-nutrient diet had significantly larger 
caudate volumes years later as adolescents [34] than those 
fed a standard diet; males in the high nutrient group of the 
study also had higher verbal IQ. Before describing more 
studies of dietary factors and their effects on the brain, we 
start by noting several major caveats that apply to many 
epidemiological studies of nutrition and diet, whether or 
not they use neuroimaging.

Caveats in studying nutrition and the brain

First, in a purely observational study of any population, 
the intake of any one specific nutrient may be correlated 
with a host of other dietary factors or habits, making it 
difficult to isolate the effects of any one factor. However, 
more perniciously, our intake of any specific food or die-
tary component—such as sufficient iron or vitamins—may 

be statistically associated with better (or poorer) diet over-
all, socio-economic status, or with ethnic or demographic 
factors. The presence of these confounds makes it cru-
cial, where possible, to control for effects of other possi-
ble determinants of brain function that may be driving the 
associations with a dietary factor.

For example, in studies of fish consumption, both geo-
graphical and cultural differences may affect how much fish 
there is in an individual’s diet (e.g., proximity to the coast). 
Economic factors are relevant as well. Household income 
may affect diet, and, depending on the population studied, 
socio-economic status may correlate with other health-
related behaviors, for example with high or low body mass 
index—which is known to relate to brain structure.

Second, people who make healthy dietary choices tend to 
make health-promoting choices in other aspects of life, such 
as increased cardiovascular exercise. They may also avoid 
excessive alcohol intake or drug abuse, which are detrimen-
tal to the brain. Third, there are some associations between 
educational level and dietary choices, making it difficult to 
disentangle the primary effects of education on the brain, 
and effects of education on diet and food choices [35].

As such, it is vital to bear in mind that many studies of 
dietary factors and the brain are cross-sectional and do not 
employ a “double-blind” interventional design that intro-
duces a nutritional factor in a randomized way. Such a 
design would be needed in a clinical trial to make causal 
statements about specific effects of the nutrient. As such, 
associations seen cross-sectionally need to be assessed 
critically. As we will see later, some genetic studies can get 
around this issue using the concept of “Mendelian rand-
omization” [36]. First, however, we will review a number 
of studies tracking associations between dietary habits and 
measurable characteristics of the brain (Table 1). We note 
that a study not controlling for confounders is not necessar-
ily invalid, as it may report a correlation that truly is pre-
sent. Care is often needed in critically assessing what may 
be driving the association, what is the most likely cause, 
and how likely it is to generalize to new studies or individu-
als considering dietary changes.

Several studies focus on the consumption of fish, which 
varies widely across the world. Greater fish consumption is 
linked to better preservation of neuroanatomical integrity, 
including reduced white matter abnormalities in an elderly 
population [37, 38]. Specifically, levels of docosahexae-
noic acid (DHA), a form of omega-3 fatty acid, measured 
from red blood cells, may preserve brain integrity. DHA 
levels have been associated with greater brain volumes and 
reduced white matter lesion burden in older, dementia-free 
adults [39].

Folate and B-vitamins, also sold widely as dietary supple-
ments, show associations with cognitive performance in the 
elderly, in some but not all studies, as well as to differences 
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in brain structure; vitamin B12 levels have been associated 
with differences in shapes of brain structures including the 
hippocampus and caudate [40] as well as gray matter vol-
ume in general [41], and white matter lesions [42].

Studies of healthy populations tend to be the best con-
trolled for confounds, but unmodeled factors may drive 
some of the detected associations. As noted earlier, some 
cohorts include people who are depressed, or even mildly 
cognitively impaired, and run the risk of picking up an 
effect of illness on diet, as being ill may affect overall 
appetite and dietary choices. Chronic illness can affect 
body mass index and the ability to exercise or engage in 
any physical activity, and both affect brain structure and 
function [35]. People who are becoming ill may also 
change their diet in an effort to improve it. This can lead 
to paradoxical effects, whereby beneficial dietary changes 
may even appear to be associated with poor health or worse 
outcomes, if people are more inclined to pay attention to 
their diet when they are ill. Studies of vitamin intake in par-
ticular can be confounded by this illness effect.

Small amounts of choline, a nutrient also in the 
B-vitamin family, are created in our bodies, but the major 
contributor to our choline levels is our diet. Greater cho-
line intake is associated with better cognitive outcomes 
in elderly and a reduced overall burden of white mat-
ter hyperintensities on MRI [43]. Elevated levels of the 
amino acid, homocysteine, which depend in turn on our 
intake of folate and B vitamins, can also  affect brain 
integrity on MRI [44]. People with high homocysteine 
levels have an increased risk for stroke, Alzheimer’s dis-
ease and age-related memory impairment [45] through 
facilitated build-up of toxic beta–amyloid and tau in the 
brain [46, 47]. As those with high homocysteine lev-
els have a profile of greater atrophy, early interventions 
through homocysteine lowering diets and drugs may be 
considered as means to resist brain atrophy in the elderly. 
In fact, recently, dietary supplements of B-vitamins, such 
as folic acid, have been reported to lower the risk for 
cognitive decline and AD, and they may work by lower-
ing homocysteine levels [48]. 

Table 1   Nutrients that 
have been shown through 
neuroimaging techniques 
to be related to the integrity 
of the living human brain 
are listed, along with the 
specific associated structure 
from imaging. This list is 
not exhaustive, and several 
other studies not listed exist, 
particularly for iron measures. 
Despite these reported 
associations, the caveats 
listed in the main text apply 
to interpreting any causal 
connection between nutrition 
and the brain

Nutrient Imaging modality Specific structures Study

Choline MRI White matter hyperintensity [43]

Omega-3 MRI ACC, hippocampus, amygdala [49]

-DHA MRI Brain volume and white matter lesions [39]

-EPA MRI Medial temporal lobe [50]

Calcium MRI Brain lesion volume [51]

Vitamin D MRI Brain lesion volume [51]

Vitamin D MRI Brain parenchymal fraction [52]

Vitamin D MRI White matter hyperintensity [53]

Vitamin B6 MRI Gray matter volume along the medial  
wall, anterior cingulate cortex, medial  
parietal cortex, middle temporal gyrus,  
and superior frontal gyrus

[41]

Vitamin B12 MRI White matter lesions [42]

Vitamin B12 MRI Gray matter volume in superior parietal 
sulcus

[41]

Vitamin B12 MRI Hippocampus and caudate [40]

Brain iron MRI T2* Thalamus and basal ganglia–pallidum,  
putamen, and caudate nucleus

Brain iron MRI T2* Thalamus [54]

Brain iron MRI-field-dependent  
R2 increase (FDRI)

Basal ganglia [55]

Brain iron MRI-susceptibility- 
weighted imaging

Putamen [56]

Serum iron MRI R2 Caudate nucleus, globus pallidus, corpus 
callosum

[57]

Serum transferrin  
(iron transport)

MRI and DTI Ventricles, hippocampus, basal ganglia,  
external capsule, superior longitudinal 
fasciculus, cingulum

[58]

Serum transferrin MRI R2 Caudate nucleus, globus pallidus, putamen, 
corpus callosum

[18], see 
Fig. 2

Choline MRI White matter hyperintensity [58]
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By far the most common nutritional disorder in the 
world is iron deficiency [59], which can adversely affect 
the developing brain (reviewed in [60]). Elevated iron lev-
els can also promote degenerative disorders in the elderly 
[61]. The key need for iron homeostasis in the brain and 
body, and the serious adverse effects when iron levels 
depart from the normal range, have made it an interesting 
target of study.

Iron, transferrin, and the human brain

Metal ions1 are increasingly important in helping to under-
stand the development and progression of neurological dis-
eases. As mentioned previously, copper, zinc and iron are all 
particularly critical for brain development. As with iron, inad-
equate concentrations of copper can cause anemia and devel-
opmental delays, while excess amounts of copper have been 
associated with neurodegenerative diseases such as Parkin-
son’s and Alzheimer’s diseases [64]. Additionally, zinc also 
plays a crucial role in neurodegeneration [65]. However, 
among the group of metal modifiers, the association of iron to 
the brain is the one of the most well studied, particularly in 
the context of additional genetic modifiers. Here, we briefly 
summarize known associations between brain measures and 
iron levels in the body (see also reviews by [2, 66–68]).

Iron-deficient diets are associated with poorer cognitive 
achievement in school-aged children [69]. In regions of the 
world where iron deficiency anemia is prevalent, such as 
East Africa, iron supplements can increase motor and lan-
guage capabilities in children [70]. In children with ADHD, 
brain iron levels differ in thalamic regions [55]. While sev-
eral of these studies use T2* imaging, exact quantification 
of iron content in the brain tissue is not readily possible in 
vivo. Indirect measurements and conclusions regarding iron 
content are obtained from of transverse relaxation times: 
these measure the decay of the magnetic signal due to per-
turbations in the magnetic field due to nearby “spins”; this 
rate of decay is generally different for various types of tis-
sues. The “spin” is a property of the proton, which is used 
to create the nuclear magnetic resonance signal that we 
generate and measure with MRI. The decay of the MRI 
signal can be measured and modeled mathematically using 

1   At the physiological concentrations present in the brain, copper 
levels do not appear to influence the signal on standard brain MRI. 
However, paramagnetic materials such as copper (II) can be and are 
often used as contrast agents in MRI scans. A newer MRI imaging 
method, susceptibility-weighted imaging, takes advantage of the dis-
tortions in the magnetic field from susceptibility differences in tissue 
types due to paramagnetic or diamagnetic compounds, to map out cer-
ebrovascular changes in the brain. While this is out of the scope of 
our current review, we point the reader to the following reference for 
more information [62, 63].

a variety of “relaxation times”, which include T2*, T2, and 
T2’ [71]. These are all related by the following formula: 
(T2∗)−1

= (T2)
−1

+
(

T
′

2

)−1
. The relaxation time T2 is 

tissue-specific, whereas T2’ is associated with external field 
effects and includes all individual contributions from macro-
scopic and microscopic magnetic field inhomogeneities [72]. 
Therefore, the T2* relaxation time depends on the intrinsic 
T2 relaxation time as well as all individual macroscopic and 
microscopic magnetic field inhomogeneities. This measure 
is therefore affected by disturbances in the global and local 
magnetic field (i.e., inhomogeneities) as well as water dif-
fusion in tissues, and in the presence of paramagnetic sub-
stances; these physical and biological considerations must be 
taken into account when interpreting results.

Iron deficiency can impair cognitive development, but 
iron overload also damages the brain. However, this dam-
age is usually evident only later in life. Brain iron regula-
tion is disrupted in several neurodegenerative diseases 
including Alzheimer’s disease [73], Parkinson’s disease 
[74], and Huntington’s disease [75], all of which involve 
abnormally high brain iron concentrations in neuroimaging 
studies. These high iron concentrations may cause neuronal 
death [76, 77].

Iron transport into the brain must be carefully regulated, 
as insufficient or excess iron can have devastating neuro-
cognitive effects. Iron is transported into the brain, and 
throughout the rest of the body, by the iron-binding protein, 
transferrin, which regulates iron transport along with spe-
cialized transferrin receptors [78].

Transferrin levels can increase in iron-deficient states: 
when iron levels are low, the liver compensates by produc-
ing more transferrin [79], and less transferrin in cases of 
iron overload [80]. This iron level-dependent fluctuation in 
transferrin levels means that transferrin itself can serve as a 
good proxy measure of iron availability to the body. In fact, 
serum levels of iron fluctuate greatly [81] and depend on 
dietary factors such as vitamin C intake [82] and the time 
of blood collection [83]. The gold standard for measur-
ing iron levels in the body is an invasive bone marrow or 
liver test, but these are not practical to use on volunteers in 
research studies. On the other hand, transferrin levels are 
easily measured with a blood test. This gives a reliable and 
reproducible index of the long-term availability of iron to 
the brain [84, 85].

Most of the brain’s iron is found in microglia and oligo-
dendrocytes, where it supports myelination [67] and where 
iron homeostasis is maintained in the brain. Recently, we 
found that in healthy young adults, fractional anisotropy 
(FA), the most common measure of white matter integrity 
computed from DTI scans of the brain, is directly related to 
serum transferrin levels taken during adolescence [18]. 
Lower transferrin levels (indicating adequate to higher iron 
levels) reflected higher FA, or greater brain integrity 
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(Fig. 2). This strong correlation suggests the importance of 
iron levels in the developing brain, and the ability for non-
invasive brain imaging2 to trace these effects even in 
healthy young people. 

2   Non-invasive imaging procedures using MRI have also been devel-
oped to map iron concentrations in the brain. T2* contrast imaging [86] 
may be used to measure the degree of iron in living tissue. T2*, and 
its inverse, R2, are decay constants that measure of how fast the MRI 
signal decays, due to magnetic resonance relaxation phenomena. The 
physics of this process is quite well understood, and iron disrupts the 
process. As a result, the R2 relaxation parameter is increased by elevated 
iron levels in brain tissue. As such, R2 offers a relative, but not absolute, 
measure of brain iron levels. Another form of MRI imaging, known as 
field-dependent R2 increase (FDRI), uses field-dependent properties of 
tissues to quantify tissue iron [73]. In vivo evaluation of brain iron in 
Alzheimer's disease and normal subjects is also possible  using MRI. 
This method may involve scanning a person on two different MRI scan-
ners with different field strengths.

Neuroimaging genetics and iron‑related genes

Iron enters the body mainly through the foods we consume. 
Even so, genetic factors affect the way our bodies absorb 
and process many nutrients, including iron, through various 
regulatory proteins involved in its metabolism.

Several genes have been linked to iron homeostasis, 
including: ACO1, CALR, CD163, CP, CUBN, CYBRD1, 
DHCR7, EXOC6, FLVCR, FTH1, FTL, FXN, GAST, 
GSTP1, HAMP, HCP1, HEPH, HEPHL1, HFE, HFE2, 
HMOX1, HMOX2, HP, HPX, IREB2, PGRMC1, PGRMC2, 
SLC11A2, SLC25A37, SLC40A1, STEAP3, TF, TFR2, 
TFRC, TNF [87]. Some of these show associations in mul-
tiple ethnic groups [88]. However, not all have been shown 
to have neurological implications.

Table 2 summarizes some of the genes involved in iron 
homeostasis that have so far been studied with respect 

Fig. 2   Using data presented in 
Jahanshad et al. [18], here we 
show the association of serum 
transferrin with a variations 
in local brain volume, includ-
ing both positive associations 
(blue), and negative associations 
(red/yellow); and b variations in 
regional measures of fiber integ-
rity as measured through diffu-
sion based fractional anisotropy 
(FA). All FA associations were 
negative, such that as serum 
transferrin increased, regional 
integrity was reduced
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to human brain structure, cognition, or neurological 
diseases.

The genes presented in the table include HFE, HFE2, 
HAMP, TFR2, ACO1, FTL, NEO1, TFRC, FPN1, HEPH  
and TF. Approximately 80  % of hereditary hemochro-
matosis (HH) is explained by mutations in the HFE gene 
(or Type 1 HH), but other genes including HFE2, HAMP, 
TFR2 and FPN-related genes are all involved in non-HFE 
HH through their direct or indirect regulation of hepcidin, 
an iron-regulating hormone in the liver [115, 116]. HFE2 is 
associated with Type 2A juvenile hemochromatosis (JH)-a 
rare autosomal recessive form of hemochromatosis that 
causes severe organ damage and premature death before 
age 40. The non-HFE HH gene, HAMP, is also known to 
be associated with Type 2B JH; TFR2, expressed almost 
entirely in the liver, also is involved with hepcidin synthesis 
and can lead to a form of iron overload that is similar to 
HFE HH, also without HFE involvement; this is known as 
Type 3 HH [115]. FPN1, or SLC40A1, codes for the fer-
roportin protein that transports iron from the inside to the 
outside of a cell. It is essential in development, and is asso-
ciated with Type 4 HH, or ferroportin disease, an autoso-
mal dominant disease [115, 116].

ACO1, also known as iron regulatory element binding 
protein 1, binds to ferritin and transferrin mRNA; poly-
morphisms in the gene have also been associated with age-
related macular degeneration [117].

Variants in the FTL, NEO1, TFRC, and HEPH genes 
alone are not causes for HH, but these genes are essential in 
regulating iron homeostasis and transport. FTL is the gene 
encoding the ferritin light polypeptide, one of the two subu-
nits of the ferritin molecule; it is another gene important 
for iron homeostasis. Mutations in the gene were first used 
to describe neuroferritinopathy, evident from iron deposi-
tion in the basal ganglia [107]. NEO1, is closely related to a 
tumor suppressor gene DCC and binds HFE2, and through 
their interaction, regulates iron homeostasis in hepatocytes 
and possible skeletal tissue [118, 119]. TFRC encodes the 
transferrin receptor protein 1 (TfR1)—the protein required 
for the uptake of transferrin-bound iron in human cells 
[120]. HEPH or hephaestin, is necessary for transporting 
iron out of the small intestine’s enterocytes and into the cir-
culation [121].

Some of these studies found no association between the 
specific candidate genes and the disease of interest, lead-
ing to inconsistent evidence, especially for the transferrin 
gene, TF. Commonly-carried variants in TF (in addition to 
variants in HFE) accounted for ~40  % of the variance in 
serum transferrin levels in two normal, healthy populations 
of approximately 400 individuals [122]. Variants in the 
TF gene were associated with schizophrenia in a Chinese 

Table 2   Iron-related genes included in  studies attempting to associ-
ate common variants (SNPs), copy number variants, or expression of 
these genes to neurological diseases and traits including neurodegen-
erative and neuropsychiatric diseases, behavior disorders, brain struc-
ture, and cognitive measures are listed

(AD Alzheimer’s disease, PD Parkinson’s disease, MS Multiple scle-
rosis, RLS Restless leg syndrome, ALS Amyotrophic lateral sclerosis, 
SZ schizophrenia)

Gene Association Study Significant 
association 
found?

HAMP Brain tumors [89] +
ACO1 Brain atrophy [90] +
HFE AD [91] +

AD [92] Some

AD [93] None

AD [94] None

ALS [95] +
ALS [96] +
ALS [97] None

ALS [98] None

Brain integrity  
(DTI-FA)

[18] +

Brain tumors [89] +
MS [99] +
PD [93] +
PD [100] None

RLS [101] None

Autism [102] +
Autism [103] None

In-vivo brain  
iron

[104] +

HFE2 Brain tumors [89] None

HFE + TF Memory [105] +
AD [106] +

FTL Neuroferritinopathy [107] +
NEO1 Brain tumors [89] +
TF AD [108] +

AD [109] +
AD [110] None

AD [111] None

AD [92] None

PD [100] +
PD [112] None

SZ [113] +
SZ [114] None

Brain integrity  
(DTI-FA)

[18] None

TFR2 Brain tumors [89] +
TFRC Brain tumors [89] +
FPN1 MS [99] +
HEPH MS [99] +
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population of approximately 300 cases and 300 controls 
[113] but not in a Japanese population with approximately 
the same number of individuals [114]. Also, comparing 
about 200 cases to 200 controls, [100] found TF polymor-
phism G258S was associated with PD, but this effect was 
not replicated in a Spanish population with roughly the 
same number of patients [112].

Additionally, the HFE or hemochromatosis gene is asso-
ciated with iron metabolism disorders. The rarer C282Y 
mutation in the gene can cause hereditary hemochro-
matosis (a genetic disorder of iron overload), while the 
more common H63D variant has been the repeated focus 
of attention for degenerative brain diseases [123]. Copy 
number variants in the gene may also be over-represented 
in people with autism spectrum disorder [102]. Variants in 
iron-metabolism genes clearly play a role in brain develop-
ment and degeneration, and this has led to efforts to find 
molecular pathways by which these genes affect the brain. 
Brain imaging can facilitate the search for these molecular 
pathways—by measuring the degree to which these genetic 
risk factors are associated with brain differences.

For example, we recently used a study design involving 
twins—called a cross-twin cross-trait study—to show that 
commonly carried genetic variations contribute to the nor-
mal variation in both transferrin levels and brain integrity 
as measured with DTI scans In other words, there is plei-
otropy—the same genes are implicated in both measures. 
When individually evaluating all common genetic vari-
ants in TF and HFE, variants that together explain ~40 % 
of the variation in transferrin levels [122], we found that 
healthy carriers of the H63D polymorphism in the HFE 
gene have characteristic differences in brain structure, 
Fig. 3. 

This HFE variant is commonly associated with neuro-
degeneration later in life, but our study of younger peo-
ple showed higher integrity in healthy carriers of the HFE 
variant, possibly due to better myelination, approximately 
50 years before the average onset age of dementia. How-
ever, when examining the same variant in elderly men, 
Bartzokis et al. [105] found that the presence of the H63D 
HFE variant (and/or C2 allele of the transferrin gene) was 
associated with increased basal ganglia iron concentrations 
compared to noncarriers, suggesting iron overload in the 
brains of these carriers—a potential risk for degeneration 
and dementia. Many studies have addressed the associa-
tion of the H63D variant and the HFE gene on Alzheimer’s 
disease, with mixed findings [123] regarding the direction 
of association, the interaction of genes, and the sex most 
affected. Brain imaging in larger cohorts may help to dis-
entangle the effects of HFE and other iron-related genes on 
brain structure throughout life.

Conclusion

Neuroimaging genetics now offers great power to under-
stand genetic modulators of dietary influences and their 
metabolic pathways. By screening brain databases, we 
may be able to discover nutrients and related genes impact-
ing the brain, deepening our understanding of how cer-
tain genes contribute to cognitive outcomes. Additionally, 
monitoring effects of these mutations with respect to diet 
as we age may reveal critical periods in the human lifespan 
when risk for disease is greatest, or when dietary effects 
are most pronounced. In people at high risk for iron over-
load disorders, for example, simple preventative nutritional 

Fig. 3   Using data presented in 
Jahanshad et al. [18], we show 
the association of the H63D 
polymorphism in the HFE gene 
with variations in localized fiber 
integrity, as measured through 
diffusion-based fractional 
anisotropy. All FA associations 
were positive, so the minor 
allele at H63D showed increases 
in FA in a dose-dependent 
manner
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monitoring can help delay, slow down, or even prevent 
cases of disease.

As we have noted, there are limitations in studies that 
use brain imaging to map nutritional or genetic effects on 
the brain. Despite the promise and growth of the field, rep-
lication in large samples is needed to boost confidence in 
the findings. As most single-site imaging studies are small 
and relatively underpowered to pick up dietary effects 
or genetic associations, large consortium efforts (e.g., 
ENIGMA; http://enigma.loni.ucla.edu) are underway to 
improve power in discovery and replication of subtle effects 
on the brain. Any actionable factor discovered to resist 
brain aging or promote brain integrity could impact the 
lives of hundreds of millions of people  worldwide. Many 
large epidemiological studies now include brain imaging as 
part of our armory of tools to facilitate this quest.
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