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Abstract

Background: Various approaches to calling single-nucleotide variants (SNVs) or insertion-or-deletion (indel)
mutations have been developed based on next-generation sequencing (NGS). However, most of them are dedicated
to a particular type of mutation, e.g. germline SNVs in normal cells, somatic SNVs in cancer/tumor cells, or indels only.
In the literature, efficient and integrated callers for both germline and somatic SNVs/indels have not yet been
extensively investigated.

Results: We present SNVSniffer, an efficient and integrated caller identifying both germline and somatic SNVs/indels
from NGS data. In this algorithm, we propose the use of Bayesian probabilistic models to identify SNVs and investigate
a multiple ungapped alignment approach to call indels. For germline variant calling, we model allele counts per site
to follow a multinomial conditional distribution. For somatic variant calling, we rely on paired tumor-normal pairs from
identical individuals and introduce a hybrid subtraction and joint sample analysis approach by modeling
tumor-normal allele counts per site to follow a joint multinomial conditional distribution. A comprehensive
performance evaluation has been conducted using a diversity of variant calling benchmarks. For germline variant
calling, SNVSniffer demonstrates highly competitive accuracy with superior speed in comparison with the
state-of-the-art FaSD, GATK and SAMtools. For somatic variant calling, our algorithm achieves comparable or even
better accuracy, at fast speed, than the leading VarScan2, SomaticSniper, JointSNVMix2 and MuTect.

Conclusions: SNVSniffers demonstrates the feasibility to develop integrated solutions to fast and efficient
identification of germline and somatic variants. Nonetheless, accurate discovery of genetic variations is critical yet
challenging, and still requires substantially more research efforts being devoted. SNVSniffer and synthetic samples are
publicly available at http://snvsniffer.sourceforge.net.
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Background
Next generation sequencing (NGS) technologies provide
affordable, reliable and high-throughput sequencing of
DNA, and make it possible to comprehensively catalog
genetic variations in human genomes. Single-nucleotide
variation is one of the most common genetic variations
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in human individuals. The single-nucleotide variants can
be further interpreted as germline SNVs, i.e. single-
nucleotide polymorphisms (SNPs), in normal cells or
somatic SNVs in cancer/tumor cells. Up to date, a vari-
ety of computational methods have been developed to
call germline or somatic SNVs from NGS read data and
a typical pileline based on NGS comprises: (i) sequence
read quality control (e.g. read error correction and dupli-
cate removal); (ii) align sequence reads from one or more
samples to the genome using leading aligners (e.g. [1–4]);
(iii) realign reads around indels to facilitate indel calling;
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(iv) call variants using probabilistic methods (e.g. Bayesian
model); and (v) assess the statistical significance of the
called variants and report the results. Note that some
methods also call indels along with SNVs.

A number of single-sample SNV callers have been devel-
oped for NGS, and representative callers include MAQ
[5], SOAPsnp [6], SAMtools [7], SNVMix [8], GATK
[9], and FaSD [10]. MAQ, SOAPsnp and FaSD model
allele counts at each site as a binomial distribution, while
SNVMix uses a mixed binomial distribution. All of the
four callers identify SNVs by computing Bayesian-based
posterior probabilities. Both SAMtools and GATK employ
Bayesian likelihood and provide support for the process-
ing of pooled data. It should be noted that these SNV
callers actually can be applied to identify any single-
nucleotide genetic variation in an individual, including
both germline and somatic variants, albeit originally tar-
geting SNPs. In addition, some of these tools do not call
indels. Refer to [11] for more details about the state-of-
the-art research on genotyping and single-sample SNV
calling.

Compared to germline SNV calling, somatic SNV call-
ing is more challenging since its objective is to identify
alleles that appear in the tumor, but do not occur in the
host’s germ line. In other words, we have to addition-
ally distinguish germline polymorphisms from somatic
ones at the sites containing variants. One approach
[8] is to first call SNVs in the tumor using conven-
tional SNP callers and then screen the predicted SNVs
against public SNP databases, e.g. dbSNP [12]. Unfortu-
nately, this approach is challenged by the considerable
number of novel SNVs found in individuals, e.g. [13]
reported that 10∼50 % of SNVs per individual are novel
events. In this case, germline mutations uncatalogued in
public databases would be falsely identified as somatic
mutations.

A more reliable approach to detecting somatic muta-
tions is to call variants in both a tumor sample and its
matched normal sample. Approaches used by existing
somatic SNV callers can be classified into two categories:
simple subtraction and joint sample analysis. The sim-
ple subtraction approach separately genotypes the normal
and tumor samples at each site and then classifies the
site as somatic if the genotype in the normal is homozy-
gous reference and the genotype in the tumor contains
alternative alleles to the reference base. This also sug-
gests that callers based on simple subtraction can directly
use well-established single-sample SNV callers such as
SAMtools and GATK. This simple subtraction approach
may provide reasonable prediction for sample pairs with
high somatic allele frequency and data purity. However,
it has been observed that somatic mutations are preva-
lent at a low frequency in clinical samples [14]. In this
case, any tendency to mistake germline mutations for

somatic ones may potentially contaminate the discovery
of somatic SNVs. On the other hand, there are variations
in somatic allele frequencies from site to site or sample
to sample, which are often caused by substantial admix-
ture of normal cells in the tumor sample, copy number
variations and tumor heterogeneity. In this regard, a joint
analysis of both samples is expected to be capable of fur-
ther improving performance, by facilitating simultaneous
tests for alleles in both samples and enabling more com-
prehensive representation of tumor impurity and noisy
data. Several somatic SNV callers have been developed
based on joint sample analysis, including VarScan2 [15],
SomaticSniper [16], JointSNVMix2 (JSM2) [17], Strelka
[18], MuTect [19] and FaSD-somatic [20]. Albeit employ-
ing a simple subtraction approach at the core, VarScan2
pioneered to jointly evaluate the statistical significance
of allele frequency information in tumor-normal samples.
SomaticSniper, JSM2, Strelka, MuTect and FaSD-somatic
all employ Bayesian models to jointly analyze the tumor-
normal pair, while adopting diverse specific procedures
or formulas. In addition, unlike other somatic callers that
only focus on SNV calling, VarScan2 provides additional
support for somatic indel calling.

In this paper, we present SNVSniffer, an integrated solu-
tion to fast and efficient identification of both germline
and somatic SNVs/indels. This algorithm relies on geno-
type inference using Bayesian probabilistic models to
identify SNVs, and investigated a multiple ungapped
alignment (MUA) approach to call indels. For germline
variant calling, at each site we model its allele count vec-
tor to follow a multinomial conditional distribution, and
then single out the most likely genotype by computing
Bayesian posterior probabilities. For somatic variant call-
ing, we use paired tumor-normal samples from identical
individuals, and at each matched site we consider the
allele count vector in the normal to be a mixture of ref-
erence bases, diploid germline variants or artificial bases
(e.g. from sequencing cycles or alignment process), and
the allele count vector in the tumor to be a mixture of
bases from normal cells and somatic variants besides arti-
ficial bases. Moreover, we investigate a hybrid somatic
SNV calling approach by combing a subtraction analysis
with a joint sample analysis, where joint sample analysis
models the joint allele count vector from the tumor-
normal pair to follow a joint multinormal distribution.
For performance comparison, we have used the SMASH
[21] and GCAT [22] benchmarks for germline variant
calling, and have used synthetic tumors from simulated
data, virtual tumors [19] from real sequencing data, and
real mouse and human tumors for somatic variant call-
ing. Through our evaluations, in terms of germline vari-
ant calling, SNVSniffer demonstrates highly competitive
accuracy and faster speed than the top-performing FaSD,
GATK and SAMtools algorithms. Meanwhile, in terms
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of somatic variant calling, our algorithm achieves com-
parable or even better accuracy compared to the leading
VarScan2, SomaticSniper, JSM2 and MuTect algorithms,
while demonstrating highly competitive speed.

Results and discussion
The assessment of SNVSniffer (v2.0.4) is conducted from
two aspects: single-sample germline variant calling and
somatic variant calling from tumor-normal pairs. For
germline variant calling, we have used SMASH [21], a
benchmarking toolkit for human genome variant call-
ing and GCAT [22], a genome comparison and analytic
testing platform for optimizing variant discovery from
personal genomes. For somatic variant calling, we have
generated synthetic tumors from simulated and real data,
respectively, and also used real tumors acquired from
the Cancer Genome Atlas (TCGA) and TrON Mainz
(Germany) [23]. For synthetic data, recall, precision and
F-score are used to measure performance, because of the
known ground truth. Recall is defined as TP

TP+FN , pre-
cision as TP

TP+FP and F-score as 2×Recall×Precision
Recall+Precision , where

TP is the number of true positives, FP is the number of
false positives and FN is the number of false negatives.
For real datasets, sensitivity and specificity are used. Sen-
sitivity and specificity is defined as TP

TP+FN and TN
TN+FP ,

respectively, where TN is the number of true negatives.
In this paper, unless otherwise specified, all tests are

conducted on a workstation with two Intel Xeon X5650
2.67 GHz hex-core CPUs and 96 GB RAM, running
the Linux operating system (Ubuntu 14.04). Likewise,
the runtime is measured in wall clock time by default
and every caller runs in sequential. Both VarScan2 and
FaSD take mpileup-formatted input files, while other
callers all use BAM-formatted inputs. For SNVSniffer, we
have implemented three execution modes. The first mode
(M1) directly applies our calling engine to BAM-formatted
inputs. The second mode (M2) realigns the reads, whose
alignments have indels or soft clipped ends, to calcu-
late per-base alignment quality (BAQ) scores [24] and
then inputs the new alignments to our calling engine.
The third mode (M3) re-aligns all reads to calculate BAQ
scores as SAMtools does. This realignment procedure
could improve overall calling quality, but at the cost of
lower speed and the potential loss of sensitivity, as per
our experiences. In addition, GATK used the accurate
“HaplotypeCaller” subprogram for variant calling.

It needs to be stressed that the FaSD executable binary
(source code is not publicly available) encountered an Ille-
gal Instruction error on the aforementioned workstation.
Fortunately, we managed to execute FaSD in another per-
sonal computer (PC) with an Intel i7-4770 quad-core 3.4
GHz CPU and 16 GB memory, running the Ubuntu 14.04
operating system. Since FaSD was executed sequentially,

its speed could be considered directly proportional to the
core frequency of the CPU used. In other words, it is rea-
sonable to estimate the actual runtime of FaSD on the
workstation by multiplying its runtime on the PC by a
constant factor 1.273 (i.e. 3.40 GHz ÷ 2.67 GHz).

Germline variant calling
SMASH benchmarks
We first evaluated our caller using the SMASH bench-
mark toolkit and then compared it to three leading
germline variant callers including SAMtools (v1.3), GATK
(v3.5) and FaSD (latest version). In this evaluation, two
types of benchmarks in SMASH are used, namely the syn-
thetic benchmark and the sampled human benchmark.
The synthetic benchmark comprises two read datasets:
Venter and Contaminated Venter, both of which are
derived from the Craig Venter’s genome (HuRef) with the
variants provided by [25]. The sampled human bench-
mark consists of four read datasets: NA12878, contami-
nated NA12878 (denoted as NA12878+ in our context),
NA18507 and NA19240. The NA12878 dataset is derived
from a European female (NA12878), the NA18507 dataset
from a Nigerian male (NA18507) and the NA19240
dataset from a Nigerian female (NA19240). Moreover,
the NA12878+ dataset is obtained by contaminating the
NA12878 dataset with reads from the NA12878 indi-
vidual’s husband (NA12877). For these benchmarking
datasets, SMASH released the alignments files in addition
to raw sequence reads. In this regard, we did not realign
the reads in each benchmarking dataset, and instead
directly used the ready-to-use alignments. In addition, in
the consideration of speed, our study merely used the
reads all aligned to the human chromosome 20. Tables 1
and 2 show the performance comparison using the syn-
thetic benchmark and the sampled human benchmark,
respectively.

On Venter synthetic dataset For SNP calling, the recall
is 98.5 % for SNVSniffer(M1), 98.3 % for SNVSniffer(M2)
and 97.9 % for SNVSniffer(M3), suggesting that more
broad application of BAQ score [24] to reads could
result in decreased recall. On the contrary, precision gets
improved as the execution mode moves from M1 (preci-
sion 97.1 %) via M2 (precision 97.4 %) to M3 (precision
98.5 %). These two observations are consistent with our
expectations as mentioned above. F-score has a roughly
consistent trend with precision, where the value is 97.8 %
for M0, 97.8 % for M2 and 98.2 % for M3. In terms of
recall, SNVSniffer(M1) performs best, while SNVSnif-
fer(M2) and SAMtools are jointly second best. In terms
of precision, GATK is best with 99.1 % precision and
is immediately followed by SNVSniffer(M3) with 98.5 %
precision. Both SNVSniffer(M1) and SAMtools yield the
worst precision. In terms of F-score, GATK is best and
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Table 1 Performance and runtimes on SMASH synthetic benchmark

Caller
SNP calling (%) Indel calling (%)

Time(s)
Recall Precision F-score Recall Precision F-score

Venter

SNVSniffer(M1) 98.5 97.1 97.8 68.9 83.0 75.3 133

SNVSniffer(M2) 98.3 97.4 97.8 69.0 83.7 75.6 320

SNVSniffer(M3) 97.9 98.5 98.2 70.4 83.6 76.4 1331

SAMtools 98.3 97.1 97.7 63.7 69.5 66.5 2046

GATK 98.1 99.1 98.6 76.2 86.2 80.9 2538

FaSD 98.0 97.5 97.7 − − − 2005

Contaminated venter

SNVSniffer(M1) 98.0 97.4 97.7 69.0 84.0 75.8 119

SNVSniffer(M2) 97.8 97.8 97.8 68.7 84.5 75.8 336

SNVSniffer(M3) 97.3 98.7 98.0 69.7 84.3 76.3 1387

SAMtools 98.1 97.3 97.7 62.7 72.1 67.1 2046

GATK 97.9 96.8 97.3 75.8 86.4 80.8 2803

FaSD 97.4 97.5 97.4 − − − 2070

Best results are highlighted in boldface

SNVSniffer(M3) second best. Meanwhile, both SAMtools
and FaSD perform worst. For indel calling, GATK per-
forms best with respect to all measures and SAMtools
the worst. The recall is 76.2 % for GATK and 63.7 % for
SAMtools; the precision is 86.2 % for GATK and 69.5 %
for SAMtools; and the F-score is 80.9 % for GATK and
66.5 % for SAMtools. SNVSniffer(M3) yields the second
best recall of 70.4 % and the second best F-score of 76.4 %,

Table 2 Performance and runtimes on SMASH sampled human
benchmark

Caller NA12878 NA12878+ NA18507 NA19240

Sensitivity (%)

SNVSniffer(M1) 98.9 98.9 99.0 99.1

SNVSniffer(M2) 98.9 98.9 98.9 99.0

SNVSniffer(M3) 98.8 98.8 98.9 99.0

SAMtools 99.2 99.2 99.3 99.4

GATK 99.1 99.1 99.3 99.5

FaSD 98.9 98.9 99.1 99.2

Time(s)

SNVSniffer(M1) 226 203 190 206

SNVSniffer(M2) 560 541 474 1065

SNVSniffer(M3) 2550 2543 2093 3379

SAMtools 3730 3694 3147 3379

GATK 6541 6249 6321 5936

FaSD 2132 2054 1979 2068

Best results are highlighted in boldface

while SNVSniffer(M2) gave the second best precision of
83.6 %.

On Contaminated Venter synthetic dataset Due to the
contaminated nature of this dataset, the performance
ranking between callers becomes different compared to
the Venter dataset. For SNP calling, similar to the Ven-
ter dataset, SNVSniffer yields decreasing recall, increasing
precision and increasing F-score as the execution mode
moves from M1 via M2 to M3. More specifically, the recall
is 98.0 % for M1, 97.8 % for M2 and 97.3 % for M3; the pre-
cision is 97.4 % for M1, 97.8 % for M2 and 98.7 % for M3;
and the F-score is 97.7 % for M1, 97.8 % for M2 and 98.0 %
for M3. SAMtools achieves the best recall of 98.1 %, while
SNVSniffer(M1) performs second best. SNVSniffer(M3)
yields the best precision and F-score, whereas GATK has
the worst precision of 96.8 % and F-score of 97.3 %. For
indel calling, GATK achieves the best recall of 95.8 %, the
best precision of 86.4 % an the best F-score of 80.8 %. In
addition, SAMtools performs worst for each measure.

On sampled human datasets In this evaluation, we
used sensitivity to measure the performance of a caller.
SNVSniffer(M1) and SNVSniffer(M2) achieve ≥ 89.9 %
sensitivity for each dataset. The average sensitivity is
99.0 % for M1, 98.9 % for M2 and 98.9 % for M3. SAM-
tools achieves the best sensitivity for the NA12878 and
NA12878+ datasets, while GATK performs best for the
rest. On average, the sensitivity is 99.3 % for SAMtools,
99.3 % for GATK and 99.0 % for FaSD.
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Speed comparison For each benchmarking dataset,
SNVSniffer(M1) is undoubtedly the fastest caller. On the
Venter dataset, this caller achieves a speedup of 15.3 over
SAMtools, a speedup of 19.0 over GATK and a speedup of
15.0 over FaSD (estimated actual speedup of 19.1). On the
Contaminated Venter data, it achieves higher speedups
over each of the other callers. Concretely, the speedup is
17.2 over SAMtools, 23.5 over GATK and 17.4 over FaSD
(estimated actual speedup of 22.2). On the sample human
benchmark, SNVSniffer(M1) runs up to 18.2× faster than
SAMtools, up to 33.3× faster than GATK and up to 10.4×
faster than FaSD (estimated actual speedup of 13.2). Even
though SNVSniffer(M2) and SNVSniffer(M3) are slower
than SNVSniffer(M1), they are still considerably faster
than SAMtools, GATK and FaSD for each benchmarking
dataset.

GCAT benchmark
The GCAT platform provides a variant calling test, which
uses the sequencing data from the NA12878 human indi-
vidual to evaluate germline variant callers. An Illumina
paired-end read datatset is used in this study. This dataset
is generated from the exome capture of NA12878 and has
150× coverage. All reads in this dataset are aligned using
BWA (v0.7.5a) to get the initial alignments. For the sake of
indel calling, the initial alignments are further processed
by the IndelRealigner subprogram in GATK (v3.5)
which locally realigns the reads around indels. As per our
experiences, this realignment procedure does facilitate
performance improvement for variant calling. To assess
variant calling quality, GCAT uses the Genome in a Bot-
tle (GIAB) [26] high-confidence calls as the gold standard.
GIAB targets the well-studied NA12878 individual and is
produced by integrating different sequencing platforms,
read aligners and variant callers [22]. Note that in this test,
FaSD continued to be executed in the PC as mentioned
above.

Table 3 shows the performance comparison using the
GCAT benchmark. For SNP calling, SAMtools achieves
the best sensitivity of 97.57 % and the best specificity of

99.9989 %. As for Ti/Tv (the ratio of transition to transver-
sion in SNP), its value is expected to be around 2.8 for
whole human exome sequencing [22]. Hence, for Ti/Tv
in whole human exome sequencing, the closer to 2.8
the better calling quality. This is because the presence
of false positive mutations will drop the overall mean
closer to 0.5 (the theoretical value if there is no molec-
ular bias). In this regard, SNVSniffer(M3) performs best
with Ti/Tv = 2.251, while SNVSniffer(M1) and SNVS-
niffer(M2) are second best and third best, respectively.
GATK is superior to SAMtools, while FaSD is the worst.
For indel calling, GATK performs best by yielding a sensi-
tivity of 95.28 % and a specificity of 99.9997 %. SAMtools
performs worst in terms of sensitivity and SNVSniffer
worst in terms of specificity. As for speed, SNVSnif-
fer(M1) is fastest and achieves a speedup of 16.7 over
SAMtools, a speedup of 21.6 over GATK and a speedup
of 23.5 over FaSD (estimated actual speedup of 29.9). For
modes M2 and M3, albeit not as fast as mode M1, their
speed is still significantly superior to SAMtools, GATK
and FaSD.

Somatic variant calling
We evaluated the somatic variant calling performance of
SNVSniffer using synthetic tumors from simulated data,
virtual tumors from real data and real tumors. This per-
formance was further compared to four selected leading
somatic variant callers, i.e. VarScan2 (v2.3.7), Somat-
icSniffer (v1.0.4), JSM2 (v0.8-b2) and MuTect (v1.1.4).
Among these callers, JSM2 outputs the probabilities of
joint genotypes rather than explicitly report somatic
mutations as other callers do. In this regard, as sug-
gested by the authors [17], the probability of a site being a
somatic location is computed as P(AA, AB) + P(AA, BB).
In our evaluations, a somatic site is deemed to be valid
as long as its probability is ≥ 0.9 for JSM2. Moreover,
as shown in germline variant calling, SNVSniffer(M1)
demonstrates highly competitive calling quality compared
to the leading callers including SAMtools, GATK and
FaSD, while achieving superior speed. In this regard, we

Table 3 Performance and runtimes on GCAT Illumina 150× exome sequencing data

Caller
SNP calling (%) Indel calling (%)

Time(s)
Sensitivity Specificity Ti/Tv Sensitivity Specificity

SNVSniffer(M1) 94.86 99.9982 2.223 50.48 99.9981 766

SNVSniffer(M2) 94.86 99.9983 2.235 50.94 99.9981 931

SNVSniffer(M3) 94.69 99.9982 2.251 50.94 99.9981 7597

SAMtools 97.57 99.9989 1.450 43.08 99.9987 12825

GATK 97.31 99.9982 1.920 95.28 99.9997 16568

FaSD 79.83 99.9922 1.123 − − 17986

Best results are highlighted in boldface
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will merely use SNVSniffer(M1) for somatic variant call-
ing performance comparison in the following. In addition,
for somatic variant calling, the runtime of SNVSniffer
counts in the execution time spent on the estimation of
tumor purity, where tumor purity represents the expected
percentage of reads coming from tumor cells. The tumor
purity estimation procedure is input-dependent and can
take half of the overall runtime at maximum. If the value
of tumor purity is specified at start-up, the tumor purity
estimation procedure will not be conducted, thus signif-
icantly improving speed. Details about our tumor purity
estimation approach can be obtained from [27].

On synthetic tumors from simulated data
We have simulated three tumor-normal sample pairs from
the human chromosome 21 (UCSC hg38) with uniform
base sequencing error rate 1.0 %, 1.5 % and 2.0 % respec-
tively (refer to [27] for more details about the simulation).
Each sample is comprised of 100-bp Illumina-like paired-
end reads with a mean insert size of 500 and 30× cover-
age over the reference. For each tumor, we have set the
expected tumor purity to 0.9, the fraction of indels among
mutations to 0.15 and the probability of indel extension
to 0.3 for the simulation. For each sample, we aligned all
reads using BWA (v0.7.5a) to get the initial alignments and
employed the GATK IndelRealigner subprogram to
further process them, considering the existence of indel
mutations.

Table 4 shows the performance comparison. In terms of
recall, SNVSniffer(M1) outperforms any other caller for
each dataset, by achieving a recall of 94.86 % for error rate
1.0 %, 94.49 % for error rate 1.5 % and 94.00 % for error rate
2.0 %. MuTect performs second best and is immediately
followed by JSM2 and SomaticSniper in decedent order of

ranking. VarScan2 is inferior to any other caller. In terms
of precision, SNVSniffer(M1) outperforms both VarScan2
and MuTect for all datasets, by producing a precision of
95.87 %, 95.86 % and 95.85 % for error rate 1.0 %, 1.5 % and
2.0 %, respectively. SomaticSniper performs best, while
MuTect is worst. In terms of F-score, SNVSniffer(M1)
performs best for error rate 1.0 % and JSM2 second best.
In contrast, for the remaining two error rates, JSM2
takes the first place and our caller the second place. For
each dataset, VarScan2 performs worst while Somatic-
Sniper outperforms VarScan2 and MuTect. In terms of
speed, our caller does not outrun SomaticSniper for each
dataset, because of tumor purity estimation embedded
in our caller. Nevertheless, our caller demonstrates sig-
nificantly faster speed than VarScan2, JSM2 and MuTect.
On average, our caller runs 7.0× faster than VarScan2,
5.0× faster than JSM2 and 13.4× faster than MuTect.
MuTect is the slowest caller, while JSM2 runs faster than
VanScan2.

Since only our caller and VarScan2 support indel call-
ing, we have further compared both callers in terms of
indel calling (see Table 5). From the table, it can be seen
that the recall, precision and F-score is relatively low for
either caller. SNVSniffer(M1) is superior to VarScan2 for
each dataset with respect to every metric. Concretely, our
caller yields 30.20 % recall, 24.35 % precision and 26.96 %
F-score for error rate 1.0 %, 30.20$ recall, 24.35 % preci-
sion and 26.96 % F-score for error rate 1.5 % and 30.20 %
recall, 24.36 % precision and 26.97 % F-score for error rate
2.0 %.

On virtual tumors from real data
We have used virtual tumors [19] to assess the perfor-
mance of somatic SNV callers. Virtual tumors only con-
tain somatic SNVs and are produced from real sequence

Table 4 Somatic SNV calling performance comparison

Metric Error SNVSniffer(M1) SomaticSniper VarScan2 JSM2 MuTect

Recall 1.0 % 94.86 86.62 77.43 91.26 93.47

1.5 % 94.49 86.62 80.67 91.24 93.47

2.0 % 94.00 86.62 80.50 91.23 93.47

Precision 1.0 % 95.87 99.77 95.02 99.68 84.76

1.5 % 95.86 99.77 95.29 99.68 84.76

2.0 % 95.85 99.78 95.36 99.68 84.76

F-score 1.0 % 95.36 92.73 85.33 95.28 88.90

1.5 % 95.17 92.73 87.37 95.27 88.90

2.0 % 94.92 92.74 87.30 95.27 88.90

Time(s) 1.0 % 275 183 1828 1364 3677

1.5 % 273 180 1947 1361 3644

2.0 % 271 179 1990 1368 3658

Best results are highlighted in boldface
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Table 5 Somatic indel calling performance comparison

Error Caller Recall Precision F-score

1.0 % SNVSniffer(M1) 30.20 24.35 26.96

VarScan2 14.91 17.71 16.19

1.5 % SNVSniffer(M1) 30.20 24.35 26.96

VarScan2 15.26 17.53 16.32

2.0 % SNVSniffer(M1) 30.20 24.36 26.97

VarScan2 14.83 17.22 15.94

Best results are highlighted in boldface

reads of two human individuals by following the pro-
cedure described in [19]. We have generated 10 virtual
tumors with tumor purity uniformly ranging from 0.1 to
1.0, and implanted 4,436 somatic SNV mutations. At each
somatic mutation site, the normal genotype is homozy-
gous reference while the tumor genotype is heterozygous
reference accordingly.

Figures 1, 2 and 3 show the recall, precision and F-score
as a function of tumor purity, respectively. For each vir-
tual tumor, our caller yields the best F-score and MuTect
the best recall. In terms of recall, our caller always outper-
forms VarScan2 and JSM2. In comparison with Somatic-
Sniper, our caller is superior for the virtual tumors with
purity ≤ 0.5, while the former performs better for the rest.
It should be noted that MuTect managed to identify all
somatic sites for the virtual tumors with purity ≥ 0.7, but
none of all other callers is able to make it. In terms of pre-
cision, VarScan2 is best for the two virtual tumors with
purity 0.1 and 0.2, respectively. SNVSniffer is best for the
virtual tumor with purity 0.3 and JSM2 best for the rest.
Meanwhile, both SomaticSniper and MuTect are inferior
to our caller. In terms of F-score, JSM2 always yields the
worst performance. SomaticSniper outperforms VarScan2
for the two virtual tumors with purity 0.4 and 0.5, while
the latter is superior for the rest.

Fig. 1 Recall on virtual tumors in the function of tumor purity

Fig. 2 Precision on virtual tumors in the function of tumor purity

On real tumors
Sensitivity assessment To measure sensitivity, we have
used 5 whole genome sequencing tumor-normal pairs for
the Ovarian serous cystadenocarcinoma disease, all of
which are obtained from the TCGA project. The acces-
sion identifiers are TCGA-13-0885-01A-02W-0421-09
(T1), TCGA-13-1481-01A-01W-0549-09 (T2), TCGA-13-
1488-01A-01W-0549-09 (T3), TCGA-24-1417-01A-01W-
0549-09 (T4), and TCGA-24-1424-01A-01W-0549-09
(T5), respectively. The gold-standard somatic variants
used here are in part based on the data generated by the
TCGA Research network (http://cancergenome.nih.gov).
In this test, we have executed each caller on a supercom-
puter with each node equipped with 4 AMD Opteron
6272 CPUs of 2.1 GHz frequency and 16 cores. More-
over, we have measured the runtime in CPU time, instead
of wall clock time as used before, in order to evade the
impact of job scheduling on the supercomputer.

Table 6 shows the sensitivity and runtime compari-
son. For each tumor, MuTect achieves the best sensitivity
(> 90 % each). SNVSniffer(M1) yields the second best
sensitivity (> 66 % each) for all tumors with an excep-
tion that on tumor T3, SomaticSniper outperforms ours
by a small margin. SNVSniffer(M1) and SomaticSniper
(> 61 % sensitivity each) are always superior to VarScan2

Fig. 3 F-score on virtual tumors in the function of tumor purity

http://cancergenome.nih.gov
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Table 6 Sensitivity and runtimes comparison using real tumors

Dataset SNVSniffer(M1) VarScan2 SomaticSniper JSM2 MuTect

Sensitivity (%)

T1 66.86 38.29 61.148 0.001 91.43

T2 82.35 35.29 63.73 0.00 93.14

T3 72.36 59.35 75.61 0.00 95.93

T4 93.55 83.87 87.10 0.00 96.77

T5 75.00 43.75 68.75 0.00 97.92

Time (h)

T1 2.67 5.75 1.58 10.41 22.87

T2 2.56 4.73 1.33 9.48 19.37

T3 2.41 4.30 1.34 7.39 19.27

T4 2.91 5.26 1.39 10.00 24.16

T5 2.87 4.75 1.55 8.11 20.50

Best results are highlighted in boldface

(> 35 % sensitivity each). Interestingly, JSM2 does not
succeed in identifying any true variant for each case. In
terms of speed, SomaticSniper runs fastest and SNVSnif-
fer(M1) second fastest (note that tumor purity estimation
took about half of the runtimes for our caller). Never-
theless, our algorithm is still considerably faster than all
other callers and achieves an average speedup of 1.85 over
VarScan2, 3.39 over JSM2 and 7.91 over MuTect.

Specificity assessment Assuming alignments are cor-
rect, we can identify any site with at least one non-
reference read as a mutation candidate. Obviously, this
very aggressive approach can lead to the development of
an extremely sensitive variant caller, but will also result
in enormous false positives [19]. Therefore, given a vari-
ant caller, characterizing its specificity becomes critical in
evaluating its calling accuracy using real tumors. Since we
are not aware of the ground truth of somatic variants in
real tumors, one approach to measuring specificity is (i)
first producing two read datasets from an identical tumor
sample by two separate sequencing experiments and (ii)
then considering both datasets as a tumor-normal pair
and input them to somatic variant callers. In this way, the
ideal number of true positives is zero and all mutations
identified are necessarily false positives.

In this test, we have used two real exome sequencing
datasets generated from two separate sequencing exper-
iments of an identical epithelial mouse tumor, i.e. the
CT26 colon carcinoma cell line studied in TrON Mainz
(Germany) [23]. Both datasets are sequenced using an
Illumia HiSeq 2000 sequencer and are also publicly avail-
able at European Nucleotide Archive (ENA) under the
accession numbers ERR424934 and ERR424935, respec-
tively. The alignments are gained by exactly following

the data processing procedure described in [23]. Given a
caller, we input the ERR424934 alignments as the normal
and the ERR424935 alignments as the tumor, and then
execute the caller on the workstation mentioned above.
Table 7 shows the specificity (only SNVs are taken into
account) and runtime comparison for all callers. From
the table, none of the evaluated callers achieves zero false
positive, suggesting the difficulty in accurate somatic vari-
ant calling in some sense. Concretely, VarScan2 yields
4507 false positives and therefore achieves the best speci-
ficity of 99.9998 %. SNVSniffer(M1) produces 12,387 false
positives and therefore performs second best with a speci-
ficity of 99.9995 %. MuTect performs worst with the most
2,463,700 false positives and the smallest specificity of
99.9096 %. JSM2 is superior to SomaticSniper, where the
specificity is 99.9986 % for the former and 99.9923 % for
the latter. As for speed, SomaticSniper runs fastest and
SNVSniffer(M1) second best. Nonetheless, in comparison
with all others our caller demonstrates considerably faster
speed with a speedup of 1.6 over VarScan2, 2.8 over JSM2
and 4.8 over MuTect.

Conclusion
Advances in NGS technologies have enabled us to conduct
genome-wide identification and cataloging of genetic vari-
ations in a cost-effective manner. In this paper, we have
presented SNVSniffer to provide a fast, efficient and inte-
grated calling algorithm for both germline and somatic
single-nucleotide and indel mutations. For SNV calling,
Bayesian models are the core of our algorithm. Although
Bayesian models are frequently used in variant calling, an
integrated solution to both germline and somatic variant
discovery has not yet been extensively investigated in the
literature. Technically, in terms of germline SNV calling
we model allele counts per site to follow a multinomial dis-
tribution and employ a Bayesian model to infer the most
likely genotypes per site and then determine variants via
genotype interpretation. On the other hand, in terms of
somatic SNV calling we model the paired tumor-normal
allele count to follow a joint multinomial distribution,
and then investigate a hybrid approach that combines
subtraction analysis with a joint sample analysis to infer
genotypes for both samples.

We have conducted a comprehensive study to evalu-
ate the performance of our algorithm and then compare

Table 7 Specificity and runtime comparison using real tumors

Caller FP Specificity (%) Time (h)

SNVSniffer(M1) 12387 99.9995 1.8

SomaticSniper 209530 99.9923 1.2
VarScan2 4507 99.9998 2.9

JSM2 38550 99.9986 5.0

MuTect 2463700 99.9096 8.7

Best results are highlighted in boldface
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this performance to existing state-of-the-art callers. For
germline variant calling, SNVSniffer achieves highly com-
petitive accuracy at superior speed, compared to the lead-
ing SAMtoosl, GATK and FaSD algorithms. For somatic
variant calling, SNVSniffer achieves comparable or better
accuracy than the selected top-performing SomaticSniper,
VarScan2, JSM2 and MuTect algorithms, while demon-
strating highly competitive speed. In particular, firstly,
performance evaluation using synthetic tumors showed
that SNVSniffer performs best in terms of recall, associ-
ated with relatively high precision and F-score for each
tumor. In contrast, MuTect performs worst in terms of
both precision and F-score. Secondly, performance evalu-
ation using virtual tumors demonstrated that SNVSniffer
always achieves the best F-score, while holding rela-
tively high precision. In contrast, MuTect has the best
recall but along with the worst precision. Thirdly, perfor-
mance evaluation on real tumors exposed that MuTect
and SNVSniffer yield the best and second best sensi-
tivity, respectively, while VarScan2 and SNVSniffer per-
forms best and second best with respect to specificity.
Finally, SNVSniffer has superior speed to VarScan2, JSM2
and MuTect, albeit slightly slower than SomaticSniper.
Nonetheless, for somatic variant calling, there are still
some limitations and challenges. Firstly, the normal sam-
ple is assumed to be an admixture of germline mutations
and noise. This assumption does not always hold since
contamination may occur in normal cells. Secondly, the
accuracy of somatic indel calling is still relatively low
based on our evaluations. Thirdly, our caller does not take

into account some more complex genomic variations in
cancer such as copy number variations and sub-clonal
populations. How to address such limitations and chal-
lenges is part of our future work. As the sequencing of
matched tumor-normal samples is becoming a popular
routine in cancer research, we still demand more accu-
rate yet efficient calling algorithms for somatic variants at
practical levels of tumor purity.

Methods
SNVSniffers supports for the discovery of SNVs and
indels. For SNVs, our algorithm identifies them based on
genotype inference from Bayesian posterior probabilities.
For indels, our algorithm relies on accurate alignment of
indels to the reference and employs a MUA approach to
derive consensus sequences for indels called. Moreover,
our algorithm accepts three file formats: pileup (from
MAQ), mpileup (from SAMtools) and BAM [7] (default
setting). In our previous study [27], we used SNVSnif-
fer version 1.0 and this version does not natively sup-
port BAM. In this case, in order to use BMA-formatted
inputs, we need to launch a separate SAMtools child
process at start-up to perform conversion from BAM to
mpileup at the runtime. In this study, however, we used
the enhanced SNVSniffer version 2.0, and this version
has enabled native support for BAM. Therefore, we do
not need SAMtools to perform on-the-fly format con-
version any more. Figure 4 illustrates the program dia-
gram of SNVSniffer for germline and somatic variant
calling.

Genotype calling using 
a Bayesian model

Compute variant 
confidence score

Determine variants 
from genotypes

Multiple ungapped
alignment

Compute PSWM and 
likelihood score

Draw the consensus 
sequence

Output SNVs and Indels in VCF format

Mutation candidate discrimination

Call SNVs Call Indels

Input

(a) germline variant calling (b) somatic variant calling

Subtraction analysis

Got a high-
confidence 

somatic 
variant?

Joint analysis 
of the tumor-
normal pair

Y

N

Tumor-normal pair input

Somatic SNV 
candidate

Separate genotype inference 
for normal and tumor

Somatic Indel
candidate

Multiple alignment 
(normal or tumor)

Compute PSWM and 
likelihood score

Draw the consensus 
sequence

Output somatic SNVs and Indels in VCF format

Fig. 4 Program diagram of SNVSniffer for variant calling
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Germline variant calling
SNV calling
We model allele counts at each site of the genome as
a multinomial distribution conditioned on genotypes. At
site i, we define Xi to denote the allele count vector, Xi,j to
denote the aligned allele over �={A, C, G, T} from read j,
γ to denote the reference base, and Gk = G1

kG2
k ∈ {AA,

CC, GG, TT, AC, AG, AT, CG, CT, GT} to denote a geno-
type for diploid genomes (1 ≤ k ≤ K and K is the total
number of genotypes, i.e. 10 in our case). In our caller, the
probability P(Xi|Gk) of observing allele count vector Xi at
site i is defined as

P(Xi|Gk) ∝
N∏

j=1

∏
c∈�

P(Xi,j|Gk)
I(Xi,j=c) (1)

where N is the number of alleles covering the site and
I(Xj = x) is an indicator function whose value is 1 if Xi,j
equals x and 0 otherwise. For each aligned allele Xi,j, the
probability P(Xi,j|Gk) of observing this allele at the site is
defined as

P(Xi,j|Gk) = αP(Xi,j|G1
k) + (1 − α)P

(
Xi,j|G2

k
)

(2)

by taking into account a few factors such as sequencing
bias between distinct haploid chromosomes, base-calling
errors and alignment quality.

In Eq. (2), α denotes the proportion of reads sequenced
from the G1

k haploid chromosome, and is set to 0.5 in
our implementation based on the assumption that the two
haploid chromosomes are impartially sequenced. In prac-
tice, this assumption may not always be the case since
we have observed the existence of strand distribution
bias in real sequencing data. In this regard, we have ever
attempted a sliding-window-based approach to compute
site-specific α values. Given a site and a sliding window
size (e.g. 1000), the value of α at the site is computed by
averaging the per-site percentage of bases aligned to the
forward strand of the reference in the sliding window cen-
tering at the site. Considering that it cannot differentiate
which strand G1

k corresponds to in Eq. (2), we re-formulate
Eq. (2) as

P
(
Xi,j|Gk

) = max
{

αP
(
Xi,j|G1

k
) + (1 − α) P

(
Xi,j|G2

k
)

(1 − α) P
(
Xi,j|G1

k
) + αP

(
Xi,j|G2

k
)

(3)

Unfortunately, we did not notice obvious performance
change after using this equation in comparison with
Eq. (2) through our limited evaluations (results are not
reported here). Therefore, we have continued to use
Eq. (2) in our caller. Nevertheless, it may be interesting to
investigate the possibility of employing site-specific strand
distribution information to improve calling quality.

In Eq. (2), P
(

Xi,j|Gb
k

)
means the probability of observ-

ing Xi,j at the Gb
k haploid chromosome (b = 1 or 2), and is

defined as

P
(

Xi,j|Gb
k

)
=

{
ωi,j if Xi,j = Gb

k(
1 − ωi,j

)
�

(
Xi,j, Gb

k

)
otherwise

(4)

where �(·) is a 2-dimensional probability table, with
�(Xi,j, Gb

k) representing the probability of Gb
k being the

true chromosomal base given that Xi,j is miscalled or mis-
aligned, and ωi,j is the accuracy (or weight) of Xi,j. This
equation is inspired by [9], but has two major differ-
ences. On one hand, [9] classifies alleles covering each
site as whether reference base or non-reference variant,
and thereby partitions the full set of genotypes over three
genotype categories: homozygous reference, heterozy-
gous reference and homozygous variant. On the contrary,
SNVSniffer does not perform such allele classifications.
Instead, we consider the total of K possible genotypes,
which can also be further classified into four categories:
homozygous reference, heterozygous reference, homozy-
gous variant and heterozygous variant. On the other hand,
mapping quality scores are additionally introduced to our
computation. In SNVSniffer, ωi,j is calculated as

ωi,j = 1 − 2 × 10−0.1(Bq+Mq)

10−0.1Bq + 10−0.1Mq
(5)

where Bq is the base quality score and Mq is the mapping
quality score.

As for �
(

Xi,j, Gb
k

)
, a naïve approach is to use non-

informative prior, i.e. set �
(

Xi,j, Gb
k

)
to 1/(|�| − 1) for

each allele Xi,j that is not equal to Gb
k . Alternatively, we

can also inspect the error profiles of different sequencing
technologies and then derive �(·) for use. In SNVSnif-
fer, we have used the probabilities for Illumina sequencing
given in [9].

Genotype inference Having gained P(Xi|Gk) for each
genotype Gk , we compute the posterior probability
P(Gk|Xi) of the true genotype being Gk given Xi, based on
the Bayes’ theorem, where P(Gk|Xi) is computed as

P(Gk|Xi) = P(Xi|Gk)P(Gk)
K∑

l=1
P(Xi|Gl)P(Gl)

∝ P(Xi|Gk)P(Gk) (6)

Subsequently, we single out the genotype with the
largest posterior probability as the "true" genotype at the
site. In general, we need to show that the larger proba-
bility of the selected genotype is statistically significant
compared to the others. You et al. [28] proposed the use
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of Dixon’s Q test [29] which originally targets the detec-
tion of outliers. The Q test examines the ratio of the
absolute difference between the largest and the second
largest numbers, to the range of evaluated numbers, and
then compute a P-value at a specific confidence level to
guide whether to reject or accept the hypothesis. In our
algorithm, we have attempted to use the Q test to evalu-
ate the statistical significance of the most likely genotype.
However, through our evaluations we did not find any
significant differences in the performance of genotype
calling, when compared to the case without using the Q
test. Considering the computational overhead of this Q
test, we have disabled this test, and instead directly select
the genotype with the largest probability.

Genotype priors computation In Eq. (6), we require
a prior probability for each genotype Gk . In our algo-
rithm, we have considered three implementations of prior
probabilities: non-informative priors, priors derived from
heterozygous mutation rate θ [16], and priors derived
from both θ and transition/transversion (Ti/Tv) ratio
[20]. Specifically, θ means the expected rate of heterozy-
gous point mutations in the population of interest and
its estimated value is close to 10−3 between two distinct
human haploid chromosomes [6]. Ti/Tv ratio is around
2.0∼2.1 for whole human genome sequencing as shown in
the recent human genome studies, particularly the 1000
genomes project [13]. For non-informative priors, each
genotype is assumed to have the same prior probability 1

K .
For the θ-only priors, they are defined as

P(Gk)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ if Gk is heterozygous reference
θ2 if Gk is heteozygous variant
θ/2 if Gk is homozygous variant

1−
K∑

l=1
P(Gl)I(Gl) if Gk is homozygous reference

(7)

where I(Gl) returns 0 if Gl is homozygous reference, and
1, otherwise.

For the Ti/Tv-based priors, they are similarly defined
to Eq. (7), but additionally check whether the genotype
Gk has a transition or transversion mutation relative to
the reference base at each site. Intuitively, more accurate
results can be yielded if the priors used are consistent with
the ground truth, and otherwise, misleading results may
be caused by the use of unrealistic priors. Through our
evaluations, it is interesting to find that none of the three
priors is able to consistently show superior performance.
In this regard, we have chosen the θ-only priors as the
default setting, since it has been more often observed to
have better performance in our limited number of tests.
In addition, we have pre-computed the priors for every

combination of reference bases with genotypes in order to
improve speed.

Variant confidence score To trade off sensitivity and
specificity, we have introduced a variant confidence score
(VCOS) to measure our confidence of the correctness
of the variants called. VCOS is only computed for the
inferred genotypes that are not homozygous reference, i.e.
genotypes must have ≥ 1 alternative allele to γ .

VCOS =
−

N∑
j=1

I(Xi,j ∈ Gk) · log(P(Xi,j|γ ))

N∑
j=1

I(Xi,j ∈ Gk)

(8)

where I(Xi,j ∈ Gk) equals 1 if Xi,j is an allele in the inferred
genotype Gk , and 0, otherwise. P(Xi,j|γ ) means the prob-
ability of substituting the reference base γ for the aligned
allele Xi,j, and is computed as

P(Xi,j|γ ) =
⎧⎨
⎩

Sti if Xi,j is a transition of γ

Stv if Xi,j is a transversion of γ

1 − θ if Xi,j = γ

(9)

by incorporating heterozygous mutation rate θ and the
Ti/Tv ratio δ in the population of interest. In Eq. (9),
Sti = δθ/(1 + δ) and Stv = 0.5θ/(1 + δ). We have set δ to
2.0 for human samples.

Based on VCOS, our caller classifies the variants called
into three categories: high-confidence, low-confidence
and false positives, depending on how many alternative
alleles to γ are there in the corresponding genotypes.
A variant is deemed as high-confidence if its VCOS
is ≥ HC(Gk), as low-confidence if its VCOS is < HC(Gk)
but ≥ LC(Gk), and as false positives, otherwise. The score
threshold HC(Gk) is computed as

HC(Gk) =
{ − 1

2 log((1 − θ) × Sti) Case 1
− log(Sti) Case 2 (10)

and LC(Gk) computed as

LC(Gk)=
{
1 −φ log(1−θ) − 1

2 (1−φ) log(Sti×Stv) Case 1
− 1

2ψ log(Sti × Stv)−(1−ψ) log(1−θ) Case 2
(11)

where Case 1 means that Gk is heterozygous reference
and Case 2 means that Gk does not contain γ . Note that
we have constrained the values of φ and ψ to ensure that
HC(Gk) is always ≥ LC(Gk).

Indel calling
Compared to SNV calling, indel calling based on NGS
read alignment is more challenging, thus having moti-
vated the development of a few dedicated indel callers
(e.g. [30–33]). In general, these challenges comes from the
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following aspects. On one hand, the existence of indels
will interfere with alignment quality, though state-of-the-
art aligners yield fully gapped alignments. On the other
hand, due to local similarity nature between reads and
the reference, dynamic-programming-based semi-global
and local alignment are widely used for NGS read align-
ment, rather than global alignment. In this case, indels
may result in (i) alignments with soft clipping at the ends
and (ii) multiple optimal alignment paths per read to the
same reference region (implementation dependent). The
former would cause indels to be out of our sight in the
alignment map. The latter may result in wrong selection
of correct alignment path for a given read, thus causing
to miss the correct indel location and even incur artifi-
cial presence of indels. This is because these alignment
paths may have distinct distributions of point insertions
or deletions. In [32], it is believed that an approach that
combines de novo genome assembly and genome-genome
alignment is most powerful. However, this approach is
expected to have prohibitive and daunting computational
cost and also subject to assembly and alignment quality of
available state-of-the-art tools to some extent.

Lightweight indel candidate identification In this
paper, we propose a lightweight indel candidate identifi-
cation approach by assuming alignments are correct. In
this case, realignment of reads around indels becomes an
important procedure before applying our approach to call
indels. In our approach, we assume that if a site is an indel
candidate, there is at least one indel operation on this site
relative to the reference. After finding such a site, we con-
duct two statistical examinations using Fisher’s exact test
in order to remove bias caused by sequencing and align-
ment in practice. The first test computes if the number of
variant alleles is statistically significant compared to the
number of references bases at this site under a certain
mutation rate. If significant, this site will not be consid-
ered as an indel candidate; otherwise, we continue to the
second test. The second test computes if the number of
indel operations is statistically significant compared to the
number of references bases at this site. If significant, this
site is deemed as an indel candidate and otherwise, we
discard this site. In practice, this lightweight approach
not only leads to fast speed, but also demonstrates highly
competitive indel calling accuracy compared to the lead-
ing SAMtools and GATK through our limited evaluations
(refer to the “Results and discussion” section).

Multiple ungapped alignment Given an indel mutation
candidate, a set of sequences S={S0, S1, . . . , Sn−1} (defined
over the alphabet �) will be observed from the align-
ment map and each sequence represents the inserted or
deleted consecutive bases relative to the reference. More-
over, these sequences may contain different consecutive

bases, due to reasons such as sequencing errors and align-
ment bias. In practice, this is usually the case based on
our observations from real data. In this regard, we have
investigated a MUA approach with the intention to find
the most significant consensus representation of a set of
sequences of varied lengths possibly.

Our MUA approach is inspired by the starting point
search procedure of the MEME motif discovery algorithm
[34, 35]. Define lmin and lmax to denote the minimum and
maximum sequence length in S, respectively, and Si,j,l to
denote the substring of Si that starts at position j and con-
tains l characters. Our MUA approach can be described as
follows. Given a specific l (lmin ≤ l ≤ lmax), any l-length
substring in S is deemed as a seed. Starting from a seed
Si,j,l, we align it by not allowing gaps to every sequence
Su (0 ≤ u < |S|) and subsequently single out the sub-
string Su,v,l with the largest alignment score for each Su.
This set of highest-scoring substrings forms a MUA and is
subsequently used to calculate a position-specific weight
matrix (PSWM) of size |�| × l. Having got the PSWM,
we compute a likelihood score for the MUA and then use
this score to select the best consensus representation of S.
Algorithm 1 shows the pseudocode of our MUA approach.

Given a MUA, its PSWM is computed by associating it
with a background frequency specification for each char-
acter in �. For the convenience of discussion, we assume
that characters in � have already been encoded to distinct
integers in the range [0, |�|). For a PSWM W, its element
Wi,j (0 ≤ i < |�| and 0 ≤ j < l) is defined as

Wi,j = log2

(pi,j

qi

)
(12)

In this equation, pi,j denotes the site-specific frequency
of character i at column j and is computed by dividing the
number of occurrences of character i at column j by |S|. qi
represents the background frequency of character i and is
computed as 1

|�| in our caller by default.

Likelihood score computation Given a MUA of length
l columns, we can draw a consensus sequence S′ from
the alignment by first computing a PSWM using Eq. (12)
and then deriving S′ from the PSWM by selecting the
character with the largest weight within each column. To
measure the significance of S′, we compute a likelihood
score to indicate the probability of observing S′. Letting
S′[i] denote the i-th character of S′ (0 ≤ i < |S′|), the
likelihood score for S′ is calculated as

L = 1
l

log2

⎛
⎝ l−1∑

j=0
WS′[j],j

⎞
⎠ (13)

In this case, given an indel mutation candidate, we single
out the MUA with the largest likelihood score and then
draw a consensus sequence to represent the inserted or
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Algorithm 1 Pseudocode for the MUA approach
1: function MUA(S)
2: compute lmin and lmax from S.
3: initialize best_pswm representing the best alignment � Iterate each l
4: for (l = lmin; l ≤ lmax; l++) do � Iterate each Si
5: for (i = 0; i < |S|; i++) do � Iterate each Si,j,l
6: for (j = 0; j ≤ |Si| − l; j++) do
7: For each Su (0 ≤ u < |S|), compute Su,v,l with the largest
8: alignment score to Si,j,l and save it to vector peaks.
9: Build a position-specific weight matrix (PSWM) from vector peaks

10: Compute the likelihood score from the PSWM
11: Compare with best_pswm and then save the better to best_pswm.
12: end for
13: end for
14: end for

return best_pswm
15: end function

deleted consecutive bases. It should be noted that if two
MUAs have an identical likelihood score, we consider the
one with the more columns (i.e. the larger l) to have higher
significance.

Somatic variant calling
We call somatic variants from paired tumor-normal sam-
ples sequenced from tumor and normal tissues of the
same individual, respectively. In this scenario, normal
sample can act as a control in order to better distinguish
variants that are unique to the tumor (somatic variants)
from those present in the matched normal (germline
polymorphisms).

Somatic SNV calling
In our algorithm, we have adopted a hybrid approach ben-
efiting from the combination of an independent subtrac-
tion analysis and a joint sample analysis, with genotype
inference as the core. Based on the genotypes inferred for
both samples, SNVs detected in the tumor are classified
into four mutation types: Somatic, LOH (loss of het-
erozygosity), Germline, and Unknown. Table 8 shows
the type classification, where GN

k and GT
k (1 ≤ k ≤ K)

denote the genotypes from the normal and tumor, A and
B denote the reference base γ and the non-reference
variant (	= γ ) in the diploid genotypes, respectively.
Moreover, the SNVs are reported in the well-established
VCF format [36].

Table 8 Type classification of somatic SNVs

GN
k \GT

k AA AB BB

AA Wild Somatic Somatic

AB LOH Germline LOH

BB Unknown Unknown Germline

Subtraction analysis Our subtraction analysis first calls
mutations from the normal and tumor samples separately
using the aforementioned Bayesian probabilistic models
and then contrasts the results like a simple subtraction.
This approach can provide reasonable predictions if there
exists little noise and variant alleles have large enough fre-
quencies (e.g. exceeding the expected) to be detected. In
SNVSniffer, given a site, the subtraction analysis works as
follows : (i) call the genotype GN

k from the normal. If GN
k

is not homozygous reference, the VCOS is computed for
the genotype. GT

K is processed in the same way; and (ii) if
GN

k is homozygous reference and GT
k has high-confidence

variants, a Somatic-type SNV is reported for this site,
and otherwise, leave it to the subsequent joint sample
analysis.

Joint sample analysis As mentioned above, somatic
allele frequencies in the tumor may have considerable
variability, often caused by the presence of normal cells in
the tumor sample, copy number variations and tumor het-
erogeneity. In such cases, the simple subtraction analysis
may become less effective since variant alleles might have
considerably low frequencies compared to the expected
frequencies. In this regard, a joint model to simultane-
ously analyze both samples will likely lead to an increased
ability to detect shared signals, which arise from germline
polymorphisms or sequencing cycles, as well as weakly
observed real somatic variants. In SNVSniffer, this joint
analysis is applied after the preceding subtraction analysis.

At each site i of the genome, we model allele counts of
the tumor-normal pair as a joint multinomial conditional
distribution, given a joint genotype GN

k and GT
t , where

1 ≤ k < K and 1 ≤ t < K . Assume that Xi represents
the allele count vector observed in the normal and Yi the
allele count vector observed in the tumor. The posterior
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probability P(GN
k , GT

t |Xi, Yi) of the joint genotype GN
k and

GT
t , given Xi and Yi, is computed as

P
(

GN
k , GT

t |Xi, Yi
)

∝ P
(

Xi|Yi, GN
k , GT

t

)
×P

(
Yi|GN

k , GT
t

)
P

(
GN

k , GT
t

) (14)

As mentioned above, the normal sample is assumed not
to contain any read sequenced from tumor cells. This indi-
cates that in our algorithm, Xi is independent of both
Yi and GT

t . Hence, P
(
Xi|Yi, GN

k , GT
t
)

can be re-written as
P

(
Xi|GN

k
)

and Eq. (14) can therefore be simplified as

P
(

GN
k , GT

t |Xi, Yi
)

∝ P
(
Xi|GN

k
)

×P
(

Yi|GN
k , GT

t

)
P

(
GN

k , GT
t

) (15)

where P
(
Xi|GN

k
)

is computed using Eq. (1). As for
P

(
Yi|GN

k , GT
t
)
, it is equal to P

(
Yi|GT

t
)

if the tumor sample
contains no normal cell (meaning that Yi is indepen-
dent of GN

k ), and thereby can be computed using Eq. (1).
However, in practice, the tumor sample has a probabil-
ity of incorporating normal cells and it would be more
realistic to taken into account the tumor purity, which
represents the expected percentage of alleles from tumor
cells at each site, in our computation. For simplicity, our
algorithm assumes P

(
Yi|GN

k , GT
t
)

equals P
(
Yi|GT

t
)
, but

employs the tumor purity as an indicator to trade off
sensitivity and specificity, especially at the sites with low
variant fractions.

In Eq. (14), P(GN
k , GT

t ) can be re-written as
P(GN

k , GT
t ) = P(GT

t |GN
k )P(GN

k ). To compute P(GN
k , GT

t ),
one approach is treating the genotypes of the two samples
as completely independent events, where P

(
GN

k , GT
t
)

can be computed as P
(
GN

k
)

P
(
GT

t
)
. Another approach is

assuming that the genotypes of both samples are depen-
dent. The latter is more realistic since the two samples
are sequenced from the same individual and tend to share
germline polymorphisms. In this regard, we have used
the conditional probability P

(
GT

t |GN
k

)
proposed in [16]

by assuming that the genotypes of the two samples are
dependent.

Post-processing procedure Having calculated the most
likely genotypes GN

k and GT
t using Eq. (14), our post-

processing procedure consists of four steps: (i) if the
new GN

k is not identical to the one called by the previ-
ous subtraction analysis, compute its VCOS if it is not
homozygous reference. If the new GN

k has high-confidence
variants, it is retained to replace the old one computed by
the subtraction approach, and otherwise, GN

k is deemed
as homozygous reference because of the lack of confi-
dence. GT

t is processed in the same way; (ii) if the new GN
k

is identical to the one called by the previous subtraction
analysis, compute its VCOS with a relaxed constraint if
it is not homozygous reference. This relaxed computation
considers a genotype as non-false-positive if the number
of variants in the genotype exceeds a minimum threshold
conditioned on the read depth at the site. The new GT

t is
also processed likewisely; (iii) if both GN

k and GT
t are clas-

sified as false positives, the called variant will be discarded
and otherwise, retained; and (iv) classify the variant and
report the result in VCF.

Somatic indel calling
For indel calling, our algorithm separately call mutations
from the normal and tumor samples. At a given site, our
algorithm will make an attempt to call a somatic indel if
only one of the two samples is deemed as an indel can-
didate at the site. The consensus sequence of a somatic
indel is determined using the MUA approach mentioned
above.
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