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Abstract Motivated by the work of Yang et al. (Mod. Phys.
Lett. A 26:191, 2011), we report on a study of the new
holographic dark energy (NHDE) model with energy den-

sity given by ρD = 3φ2

4ω
(μH2 + ν Ḣ) in the framework of

chameleon Brans–Dicke cosmology. We have studied the
correspondence between the quintessence, the DBI-essence,
and the tachyon scalar-field models with the NHDE model
in the framework of chameleon Brans–Dicke cosmology.
Deriving an expression of the Hubble parameter H and,
accordingly, ρD in the context of chameleon Brans–Dicke
chameleon cosmology, we have reconstructed the potentials
and dynamics for these scalar-field models. Furthermore, we
have examined the stability for the obtained solutions of the
crossing of the phantom divide under a quantum correction of
massless conformally invariant fields, and we have seen that
the quantum correction could be small when the phantom
crossing occurs and the obtained solutions of the phantom
crossing could be stable under the quantum correction. It has
also been noted that the potential increases as the matter–
chameleon coupling gets stronger with the evolution of the
universe.

1 Introduction

The approaches to account for the late-time cosmic accel-
eration, which is suggested by the two independent obser-
vational signals on distant Type Ia Supernovae (SNeIa) [1–
3], the cosmic microwave background (CMB) temperature
anisotropies measured by the WMAP and Planck satellites
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[4–6] and Baryon Acoustic Oscillations (BAO) [7,8], fall
into two representative categories: in the first, the concept
of “dark energy” is introduced in the right-hand side of the
Einstein equation in the framework of general relativity (for
good reviews see [9–11]), while in the second one the left-
hand side of the Einstein equation is modified, leading to a
modified gravitational theory (which is well reviewed in [12–
15]). In a recent review, Bamba et al. [10] demonstrated that
both dark-energy models and modified gravity theories seem
to be in agreement with data and hence, unless higher preci-
sion probes of the expansion rate and the growth of structure
will be available, these two rival approaches could not be dis-
criminated. The physical origin of dark energy (DE) is one
of the largest mysteries not only in cosmology but also in
fundamental physics [9,16–19]. The cosmological constant
� represents the earliest and the simplest theoretical candi-
date proposed in order to explain the observational evidence
of accelerated expansion. Some tentative deviations from the
�CDM model may eventually rule out an exact cosmological
constant [20,21]. A considerable number of models for DE
have been proposed up to now to explain the late-time cosmic
acceleration without the cosmological constant. Such models
include a canonical scalar field, the so-called quintessence,
a non-canonical scalar field such as phantom, tachyon scalar
field motivated by string theories, and a fluid with a spe-
cial equation of state (EoS) called a Chaplygin gas. Other
well studied candidates for DE are the k-essence, the quin-
tom and the agegraphic dark energy (ADE) models. Stud-
ies on the models previously mentioned include [9,10,22–
29]. There also exists a proposal known as holographic dark
energy (HDE) proposed by Li [30], following the idea that
the short distance cut-off is related to the infrared cut-off and
it was assumed in [30] that the infrared cut-off relevant to the
dark energy is the size of the event horizon. Some notable
works on HDE include [31–34]. Furthermore, there exists
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plethora of literature on HDE in theoretical aspects as well
as observational constraints e.g. [35–37].

The equation of state (EoS) parameter, defined as wDE =
pDE/ρDE (where pDE and ρDE denote the pressure and den-
sity of DE, respectively), is one of the most important quan-
tity used to describe the features of DE models. If we restrict
ourselves to four-dimensional Einstein’s gravity, almost all
DE models can be classified according to the behavior of the
EoS parameter as follows [38]: (i) Cosmological constant:
w� = −1; (ii) Quintessence: wQ � −1; (iii) Phantom:
wP � −1 and (iv) Quintom: its EoS is able to evolve across
the cosmological constant boundary. Scalar field models of
dark energy are among the most promising and best elabo-
rated ones to match observations of the accelerated expan-
sion of the Universe. The phantom-like behavior of wDE may
appear from Brans–Dicke (BD) scalar–tensor gravity, from
non-standard (negative) potentials, from the non-minimal
coupling of a scalar Lagrangian with gravity, or even the
usual matter may appear in phantom-like form [26]. Studies
devoted to phantom cosmology and to quintessence include
[39–44] and [45–47], respectively.

In this contribution, we are concerned with a new holo-
graphic reconstruction of scalar-field dark-energy models
in the framework of chameleon Brans–Dicke cosmology.
In the context of the cosmological reconstruction problem,
some notable contributions are [48–50]. The current work
is primarily motivated by [51] and also got inspiration from
[52,53]. It has already been stated that HDE model is based
on the holographic principle, according to which the number
of degrees of freedom of a physical system scales with the
area of its boundary [31]. Although HDE gives the obser-
vational value of DE in the universe and can drive the uni-
verse to an accelerated expansion phase, an obvious draw-
back concerning causality appears in this proposal [51]. In
view of this limitation Granda and Oliveros [54] proposed
a new infrared cut-off for HDE, which is proportional to
the square of the Hubble parameter squared H2 and to the
time derivative of the Hubble parameter Ḣ , and dubbed this
model the new HDE (NHDE) model. The energy density of
the NHDE model is given by [54]

ρD = 3M2
p(αH2 + β Ḣ), (1)

where α and β are two positive constants. This model could
avoid the problem of causality and could solve the coinci-
dence problem [54]. In a more recent work, Li et al. [55]
confirmed through the action principle that the NHDE model
overcomes the causality and circular problems in the origi-
nal HDE model and, putting constraints on the model from
the Union2.1+BAO+CMB+H0 data [55], got the goodness
of-fit χ2

min = 548.798, which they found comparable with
the results of the original HDE model (549.461) and the
concordant �CDM model (550.354), and this led them to
conclude that NHDE fit well to the data. Viewing scalar-field

dark-energy models as an effective description of the under-
lying theory of dark energy, and considering the holographic
vacuum energy scenario as pointing in the same direction,
Granda and Oliveros [56] demonstrated how the scalar-field
models can be used to describe the holographic energy den-
sity as effective theories; for this purpose they studied the cor-
respondence between the quintessence, tachyon, K-essence,
and dilaton energy densities with this NHDE in a flat FRW
universe. Connecting these scalar-field models with NHDE,
they found the explicit forms of the scalar fields and of
the potentials in this reconstruction approach. Karami and
Fehri [52] extended the work of [56] to non-flat FRW uni-
verse i.e. they studied a correspondence between NHDE
and quintessence, tachyon, K-essence and dilaton scalar-field
models in the presence of a spatial curvature and recon-
structed the scalar field and potential. Sharif and Jawad [57]
established the correspondence between the NHDE model
and the quintessence, the tachyon, the K-essence, and the
dilaton scalar-field models. In a recent work, Jawad et al.
[58] explored holographic reconstruction of modified f (R)

Horava–Lifshitz gravity via a power-law scale factor and dis-
cussed the EoS parameter as well as stability of the recon-
structed model and considered the quintessence era in the
near future with an instability. The dependency of the evolu-
tion of equation of state, deceleration parameter, and cosmo-
logical evolution of the Hubble parameter on the parameters
of the NHDE model were studied in Malekjiani et al. [59].
Considering the interaction between dark matter and NHDE,
Debnath and Chattopadhyay [60] investigated the statefinder
and the Om diagnostics and also checked the validity of the
GSL of thermodynamics with the apparent horizon as the
enveloping horizon of the universe.

Before demonstrating the current contribution in view of
the work mentioned, let us have a brief overview of the the-
ories of modified gravity as the current contribution is going
to explore a cosmological reconstruction in the framework of
a modified gravity theory. Modified gravity has become an
essential part of theoretical cosmology nowadays [10,61,62].
It is proposed as a generalization of general relativity with
the purpose to understand the qualitative change of gravi-
tational interaction in the very early and/or very late uni-
verse. In particular, it is accepted nowadays that modified
gravity may not only describe the early-time inflation and
late-time acceleration but also may propose the unified con-
sistent description of the universe evolution epochs sequence:
inflation, radiation/matter dominance and dark energy [63].
Nojiri and Odintsov [62] summarized the usefulness of mod-
ified gravity as follows:

1. it provides us with a natural gravitational alternative for
dark energy,

2. it presents a very natural unification of the early-time
inflation and late-time acceleration thanks to the different
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role of gravitational terms relevant at small and at large
curvature,

3. it may serve as the basis for a unified explanation of dark
energy and dark matter.

Modified gravity models include f (R) gravity (where R is
the Ricci scalar curvature) [64–66], f (T ) gravity (where
T represents the torsion scalar) [67,68], scalar–tensor theo-
ries [69,70], braneworld models [71], Galileon gravity [72],
Gauss–Bonnet gravity [73] and so on. Bamba et al. [74]
investigated the future evolution of the dark-energy universe
in modified gravities including f (R) gravity, string-inspired
scalar-Gauss–Bonnet and modified Gauss–Bonnet ones, and
an ideal fluid with inhomogeneous equation of state, and
they constructed several examples of the modified gravity
that produces accelerating cosmologies ending at the finite-
time future singularity by applying the reconstruction pro-
gram. Cosmological evolution of the equation of state for
dark energy wDE in the exponential and logarithmic as well
as their combination in the framework of f (T ) theories was
studied in Bamba et al. [68]. A reconstruction scheme for
modified gravity realizing a crossing of the phantom divide
was proposed in Bamba et al. [75]. The appearance of finite-
time future singularities in f (T ) gravity was demonstrated
in Bamba et al. [76]. In another work, Bamba et al. [77]
explored the cosmological evolution in a modified gravity
f (R) = R + c1(1 − e−c2 R) and demonstrated that the late-
time cosmic acceleration following the matter-dominated
stage can be realized in that model. Bamba [78] showed
that the crossing of the phantom divide can be realized in
the combined f (T ) theory constructed with exponential and
logarithmic terms.

Recently, various scalar–tensor theories have been consid-
ered extensively and one important example of the scalar–
tensor theories is the Brans–Dicke (BD) theory of gravity,
which was introduced by Brans and Dicke [79] to incorpo-
rate the Mach principle in Einstein’s theory of gravity. BD
theory is proposed as the natural extension of the Kaluza–
Klein idea of unification [80]. The BD parameter has some
interesting properties as a candidate of DE when it has been
studied in the non-minimally coupled regime [80–85]. The
popularity of BD modified gravity [86,87] lies in the fact
that it naturally arises as the low energy limit of many other
quantum gravity theories, like the Kaluza–Klein one or super-
string theory. In this paper, we decided to consider the NHDE
model in the framework of the chameleon Brans–Dicke mod-
ified gravity theory, in which there is a non-minimal coupling
between the matter field and the scalar field φ, which is usu-
ally known in literature by the name of ‘chameleon field’
[88,89], since its main physical properties strongly depend
on the environment. Waterhouse [90] derived that the devia-
tions from Newtonian gravity due to the chameleon field of
the Earth are suppressed by nine orders of magnitude by the

thin-shell effect. In a recent work, Chattopadhyay [91] stud-
ied the matter–chameleon coupling considering an extended
holographic Ricci Dark Energy model in chameleon Brans–
Dicke cosmology. Instead, Bisbar [92] considered a gener-
alized Brans–Dicke model, in which the scalar field has a
potential function and it can couple non-minimally with the
matter sector. Late-time dynamics of a chameleonic general-
ized Brans–Dicke cosmology with a power-law chameleonic
function has been well studied in a recent paper of El-Nabulsi
[93]. Other important works on chameleon gravity have been
presented in [94–99].

The present contribution is organized as follows: in Sect. 2,
we study the main cosmological properties of the NHDE
model in the framework of Brans–Dicke chameleon cosmol-
ogy. In Sect. 3, we make a correspondence between the recon-
structed NHDE model and three different scalar-field models,
i.e. the quintessence, the DBI-essence and the tachyon scalar-
field models. Finally, in Sect. 4, we present the conclusions
of this paper.

2 NHDE MODEL in chameleon BD cosmology

We begin this section with the description of the main cos-
mological properties of the chameleon Brans–Dicke (BD)
theory.

According to BD theory, the scalar field is coupled non-
minimally to the matter field via the action S given by [92]

S = 1

2

∫
d4x

√−g

×
(

φR − ω

φ
gμν∇μφ∇νφ − 2V + 2 f (φ)Lm

)
(2)

where R indicates the Ricci scalar curvature, φ represents the
Brans–Dicke scalar field with an associate potential V (φ),
ω indicates the dimensionless Brans–Dicke parameter, gμν

represents the metric tensor with determinant given by g, Lm

represents the matter Lagrangian, and, finally, f (φ) repre-
sents an arbitrary function of the scalar field φ. The last term
in the action S given in Eq. (2) represents the term which
gives us information as regards the interaction between the
matter Lagrangian and the arbitrary function f (φ). We must
also emphasize here that, in the limit case corresponding to
f (φ) = 1, we obtain the standard BD cosmology.

Varying the action S given in Eq. (2) with respect to the
metric tensor gμν and φ, we obtain the following field equa-
tions:

φGμν = T φ
μν + f (φ)T m

μν, (3)

(2ω + 3)�φ + 2(2V − V ′φ) = T m f − 2 f ′φm, (4)

where Gμν is the Einstein tensor, �=∇μ∇μ (with ∇μ repre-
senting the covariant derivative) T m =gμνT m

μν and the prime
denoting differentiation with respect to φ. In Eq. (3), we have
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T φ
μν = ω

φ

(
∇μφ∇νφ − 1

2
gμν∇αφ∇αφ

)

+ (∇μ∇νφ − gμν�φ
) − V (φ)gμν (5)

and

T m
μν = −2√−g

δ(
√−gLm)

δgμν
. (6)

Because of the explicit coupling between matter system and
φ, the stress tensor T m

μν is not divergence free. We now apply
the above framework to a homogeneous and isotropic uni-
verse described by the Friedman–Robertson–Walker metric
given by

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2d�2
)

. (7)

The universe is open, closed or flat according to k = −1,

+1 or 0. Moreover, we find that a (t) represents the scale
factor (which gives information as regards the expansion of
the universe), r gives the radial component of the metric, t
indicates the cosmic time and d�2 = r2

(
dθ2 + sin2 θdϕ2

)
denotes the solid angle element (squared). θ and ϕ are the
usual azimuthal and polar angles, with 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π . The coordinates (r, t, θ, ϕ) are known as
comoving coordinates.

In a spatially flat universe (i.e. for k = 0), Eqs. (3) and (6)
yield [92]

3H2 = f

φ
ρ + ω

2

φ̇2

φ2 − 3H
φ̇

φ
+ V

φ
, (8)

3(Ḣ + H2) = − 3ρ

φ(2ω + 3)

×
{
γφ f ′ +

[
ω

(
γ + 1

3

)
+ 1

]
f

}

−ω
φ̇2

φ2 + 3H
φ̇

φ
+ 1

2ω + 3

[
3V ′ + (2ω − 3)

V

φ

]
, (9)

(2ω + 3)(φ̈ + 3H φ̇) − 2(2V − φV ′)
= ρ

[
(1 − 3γ ) f + 2γφ f ′] . (10)

We must underline here that a dot indicates a time derivative
while the prime indicates a derivative with respect to φ.

In this paper, our purpose is to generalize the work of
Karami and Fehri [52] to the NHDE model with energy den-
sity ρD given by [51]

ρD = 3φ2

4ω

(
μH2 + ν Ḣ

)
, (11)

where μ and ν are two constant parameters and the overdot
represents the first time derivative.

We consider the following ansatz for φ, V , and f [51,92]:

φ = φ0aα,

V = V0φ
β,

f = f0φ
γ ,

where α, β and γ are constant parameters and φ0, V0 and
f0 are positive quantities representing the present day val-
ues of the corresponding quantities. One feature of taking
this kind of ansatz is the scale invariance of the power laws.
Given a relation in power-law form, scaling the argument by
a constant factor c causes only a proportional scaling of the
function itself. Issues related to the power-law choice of the
potential are discussed in [100,101].

Using the aforesaid ansatz in Eq. (8) we get the following
differential equation for H2:

dH2

da
+

[
2μ

ν
− 8eαxφ0 (eαxφ0)

−2−ν ω

3 f0ν

]
H2

= −8 (eαxφ0)
−2+β−ν V0ω

3 f0ν
. (12)

Solving Eq. (12), we get the expression of reconstructed H̃2

as a function of the scale factor a as follows:

H̃2(a) =
(

3

8

)η4

aα(−2+β−ν)e−asη6η1η3
(−asη5

)η4

×�
[
η2, asη5

]
, (13)

where

η1 =
( 3

8

)−1+ 2μ
sν − α(2−β+ν)

s

f0sν
, (14)

η2 = 2μ + α(−2 + β − ν)ν

sν
, (15)

η3 = φ
−2+β−ν
0 V0ω, (16)

η4 = −2μ

sν
+ α(2 − β + ν)

s
, (17)

η5 = − 8φ−1−ν
0 ω

3 f0αν(1 + ν)
, (18)

η6 = − 8 (aαφ0)
−ν ω

3 f0φ0αν(1 + ν)
, (19)

s = −α (1 + ν) . (20)

Moreover, we find that in Eq. (13) � represents the Gamma
function.

Subsequently, using the relation Ḣ = a
2

dH2

da , we obtain

the following relation for ˙̃H(a):

˙̃H(a) = −2−1−3η4 3η4aα(−2+β−ν)e−as (η5+η6)η1η3

× (−asη5
)η4

(
s
(
asη5

)η2 − easη5
(
s
(
η4 − asη6

)
+ α(−2 + β − ν)) �

[
η2, asη5

])
. (21)
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Table 1 Values of reconstructed
wD (Eq. (24)) for different
choices of parameter values

Choice of α, β and γ Vales of wD
(μ = 0.55, ν = 0.15)

Values of wD
(μ = 0.65, ν = 0.20)

Values of wD
(μ = 0.60, ν = 0.25)

(α = 5, β = −0.7, γ = −0.9) −1.47265 −1.47040 −1.47797

(α = 4.5, β = −0.6, γ = −1) −1.57145 −1.56864 −1.57484

(α = 4.1, β = −0.8, γ = −1.1) −1.25035 −1.24863 −1.25514

We can use Eqs. (13) and (21) in Eq. (11) to reconstruct the
density of the NHDE in chameleon BD cosmology, obtaining

ρD(a) = −2−3−3η4 31+η4

ω

[
aα(β−ν)e−as (η5+η6)φ2

0η1η3

× (−asη5
)η4

{
s
(
asη5

)η2 ν − easη5 (2μ − ν (−sη4

+ assη6 + α(2 − β + ν)
))

�
[
η2, asη5

] }]
. (22)

Since we are assuming that the universe is filled with NHDE,
the conservation equation for ρD is given by the following
relation:

ρ̇D + 3HρD (1 + wD) = 0, (23)

where wD represents the EoS parameter of DE.
From Eqs. (22) and (23), we derive the reconstructed equa-

tion of state (EoS) parameter wD as a function of the scale
factor a as follows:

wD(a) = −1 − {
s
(
asη5

)η2
( − 2μ + ν

( − s
(
η2 + 2η4

− as(η5 + 2η6)
) + 2α(1 − β + ν)

)) + easη5
(
a2ss2η2

6ν

+ (sη4 + α(β − ν))(2μ + (sη4 + α(−2 + β − ν))ν)

− assη6(2μ + (s + 2sη4 + 2α(−1 + β − ν))ν)
)

×�
[
η2, asη5

]}
× {

3
(
s
(
asη5

)η2ν − easη5
(
2μ − ν

( − sη4 + assη6

+α(2 − β + ν)
))

�
[
η2, asη5

])}−1
. (24)

We now plot the reconstructed cosmological parameters
against the redshift z. In all figures, red, green, and blue lines
correspond to {μ = 0.65, ν = 0.20}, {μ = 0.60, ν = 0.25},
and {μ = 0.55, ν = 0.15}, respectively. For all other fig-
ures, the other parameters present in the equations we derived
are set to α = 5, β = −0.7, γ = −0.9, φ0 = 0.12, ω =
− 3

2 + 10−22, f0 = 1, V0 = 2. The choice of the value of the
BD parameter ω is based on Ref. [102]. Observational results
coming from SNeIa data suggest a range of possible values
for the EoS parameter of −1.67 < w < −0.62 [103]. Using
a set of variations in the values of μ and ν in Eq. (24) we find
that the results are in good agreement with [103]. In Table 1,
we show a set of values of the reconstructed EoS based on
the chosen values of the parameters. It is apparent from this
table that the EoS parameter obeys −1.67 < w < −0.62. In
Fig. 1, we observe the evolution of the reconstructed Hub-
ble parameter H̃ with redshift z = a−1 − 1. We observe a

0.5 0.0 0.5 1.0
0

50

100

150

200

250

z

H

Fig. 1 Plot of the reconstructed Hubble parameter H̃ obtained in
Eq. (13)

0.5 0.0 0.5 1.0
z

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D

Fig. 2 Plot of the reconstructed energy density ρD . See Eq. (22)

decaying pattern of H̃ with evolution of the universe. This in
consistent with the accelerated expansion of the universe. In
Fig. 2, the reconstructed NHDE density is plotted and indi-
cates its dominance with the evolution of the universe. This
is consistent with the current dark-energy dominated era.

We now want to have a deeper look into Eq. (24),
derived by the reconstructed H̃ . In Eq. (24), the expression
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Fig. 3 Plot of the evolution of ρD(1 + 3wD) (strong energy condition
test). See Eqs. (22) and (24)
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Fig. 4 Plot of the evolution of ρD(1+wD) (null energy condition test).
See Eqs. (22) and (24)

3
(
s (asη5)

η2 ν − easη5 (2μ − ν (−sη4 + assη6 + α(2 − β

+ν))) �
[
η2, asη5

]) �= 0. Considering the forms of
ηX (X = 1, 2, . . . , 6) it can be verified that the above
expression is surely positive if α < 0, − 1 < ν < 0 or
α > 0, ν < −1. Since we have taken φ = φ0aα , we have
φ̇ = αφH . If α < 0, then the scalar field decays with the
evolution of the universe.

Since the behavior of the remaining part of the expres-
sion is too complicated to make any inference on its
“quintessence”- or “phantom”-like behavior, we only depend
on the strong and null energy conditions to shed some light
on the behavior of the equation of state parameter. The null
energy condition is satisfied if ρD(1 + wD) ≥ 0, while
the strong energy condition is satisfied if ρD(1 + wD) ≥
0 and ρD(1 + 3wD) ≥ 0. Figures 3 and 4 indicate that

both of the energy conditions are violated. This indicates a
“phantom”-like behavior of the equation of state parameter.

In this section, we reconstructed the NHDE in the frame-
work of chameleon BD cosmology. In the following sec-
tion, our objective is to study the correspondence between
this reconstructed NHDE model and the scalar-field models,
namely (i) Quintessence dark energy, (ii) DBI-essence dark
energy and (iii) Tachyon dark energy.

2.1 Stability under a quantum correction

Following [75,104] we examine the stability for the obtained
solutions of the crossing of the phantom divide under a
quantum correction of massless conformally invariant fields.
Quantum effects produce the conformal anomaly [75]:

TA = b

(
F + 2

3
�R

)
+ b′G + b′′�R, (25)

where

F = 1

3
R2 − 2Ri j Ri j + Ri jkl Ri jkl , (26)

G = R2 − 4Ri j Ri j + Ri jkl Ri jkl . (27)

In the FRW universe, we have

F = 0, (28)

G = 24(Ḣ H2 + H4). (29)

For N real scalar, N1/2 Dirac spinor, N1 vector fields,
N2(= 0 or 1) gravitons and NHD higher derivative conformal
scalars, we have the following expressions for b and b′:

b = N + 6N1/2 + 12N1 + 611N2 − 8NHD

120(4π)2 , (30)

b′ = − N + 11N1/2 + 62N1 + 1411N2 − 28NHD

360(4π)2 , (31)

where b′′ can be arbitrary. If we assume that TA can be given
by the effective energy density ρA and pressure pA from the
conformal anomaly as

ρ̇A + 3H(ρA + pA) = 0, (32)

the following expressions for ρA and pA can be found:

ρA = − 1

a4

∫
dta4 H TA, (33)

pA = − 1

3a4

∫
dta4 H TA + TA

3
. (34)

At phantom crossing, we must have Ḣ = 0. If we assume that
the magnitude of the Hubble rate H could be the order of the
present Hubble constant H0, then for the phantom crossing
we have
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ρD = 3φ2

4ω
H̃2

0 μ (35)

where H̃2
0 = H̃2|(a=1) =

( 3
8

)η4 e−η6η1η3 (−η5)
η4 � [η2, η5].

The results obtained in Eqs. (33) and (34) tell us that we
may assume ρA ∼ pA ∼ TA. Then we find [104]:

ρA ∼ pA ∼ C H̃4
0 (36)

where C represents a dimensionless constant of the order of
∼102∼3. Thus, for the reconstructed model, we obtain

ρD

ρA
= 3φ2μ

4CωH̃2
0

≈ 1019 μ

H̃2
0

; (37)

hence we can conclude that

|ρD| 
 |ρA|. (38)

Therefore, the quantum correction could be small when the
phantom crossing occurs and the solutions of the phantom
crossing obtained in this paper could be stable under the
quantum correction.

3 New holographic reconstruction of scalar-field models
in BD cosmology

Sahni and Starobinsky [17] discussed various aspects of
reconstructing the expansion history of the Universe and to
probe the nature of dark energy. Below, we will study the
correspondence between NHDE model and the quintessence,
the DBI-essence and the tachyon scalar-field models in the
framework of a flat chameleon Brans–Dicke universe. We
will also reconstruct the potentials and the dynamics for
these scalar-field models. We can give the related results
of scalar fields and potentials for the NHDE model in the
flat chameleon Brans–Dicke universe. In order to estab-
lish this correspondence, we compare the energy density of
the NHDE model given in Eq. (22) with the correspond-
ing energy density of the scalar-field model, and we also
equate the EoS for these scalar models with the EoS for
the NHDE model given in Eq. (24). We must also empha-
size here that we indicate the scalar field with ϕ in order
to make it different from the scalar field φ in Brans–Dicke
theory.

3.1 Reconstruction of quintessence dark-energy model

Quintessence is a dynamical, evolving, spatially inhomoge-
neous component with negative pressure. Unlike a cosmolog-
ical constant, the quintessential pressure and energy density
evolve with time, and the EoS parameter may also do so. A
common model of quintessence is the energy density asso-
ciated with a scalar field Q slowly rolling down a potential
V (Q). A detailed discussion of quintessence dark energy is

available in the review [105]. The energy density ρQ and
pressure pQ of the quintessence scalar field ϕ are given,
respectively, by [45–47]:

ρQ = 1

2
ϕ̇2 + V (ϕ), (39)

pQ = 1

2
ϕ̇2 − V (ϕ). (40)

Moreover, the EoS parameter can be written as follows:

wQ = pQ

ρQ
= ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (41)

As we are reconstructing the quintessence model based on
NHDE in the framework of chameleon BD cosmology, we
shall consider ρQ = ρD and wQ = wD . Hence, we have

ϕ̇2 = ρD(1 + wD), (42)

V (ϕ) = ρD

2
(1 − wD), (43)

where ρD and wD are given in Eqs. (22) and (24), respec-
tively. Based on the reconstructed Hubble parameter, we
express ϕ̇2 and V (ϕ) as functions of the scale factor a as
follows:

ϕ̇(a)2 = − 1

ω
3η4 8−1−η4aα(β−ν)e−as (η5+η6)φ2

0η1η3

×( − asη5
)η4

(
s
(
asη5

)η2

×( − 2μ + ν
( − s

(
η2 + 2η4 − as(η5 + 2η6)

)
+α(2 − 2β + 2ν)

)) + easη5
(
α2ν

(
β2 − 2β(1 + ν)

+ν(2 + ν)
) + s

(
sη2

4ν + 2η4
(
μ − assη6ν

)
+asη6

( − 2μ + s
( − 1 + asη6

)
ν
))

+2α
(
β
(
μ + s

(
η4 − asη6

)
ν
)

−ν
(
μ + s

(
η4 − asη6

)
(1 + ν)

)
�

[
η2, asη5

])
, (44)

V (ϕ(a)) = −2−4−3η4 31+η4

ω
aα(β−ν)e−as (η5+η6)φ2

0η1η3

×( − asη5
)η4

(
s
(
asη5

)η2ν

−easη5
(
2μ − ν

( − sη4 + assη6 + α(2 − β + ν)
))

×�
[
η2, asη5

])(
1 − (

s
(
asη5

)η2

×( − 2μ + ν
( − 3 − s

(
η2 + 2η4 − as(η5 + 2η6)

)
+2α(1 − β + ν)

))
+easη5

(
a2ss2η2

6ν + (3 + sη4 + α(β − ν))

×(2μ + (sη4 + α(−2 + β − ν))ν)

−assη6(2μ + (3 + s + 2sη4 + 2α(−1 + β − ν))ν))

×�[η2, asη5
])/(

3
(
s
(
asη5

)η2ν − easη5
(
2μ

−ν
( − sη4 + assη6 + α(2 − β + ν)

))
�

[
η2, asη5

])))
.

(45)
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3.2 Reconstruction of DBI-essence dark-energy model

During the last few years, there have been many works aiming
at connecting string theory with inflation, which is also a
phase of accelerated expansion. Martin and Yamaguchi [106]
introduced a scalar-field model of dark energy with a non-
standard Dirac–Born–Infeld (DBI) kinetic term. This model
is dubbed “DBI-essence dark energy” and the energy density
ρDBI and the pressure pDBI of the DBI-essence model are
given, respectively, by [106]

ρDBI = (η − 1)T (ϕ) + V (ϕ), (46)

pDBI =
(

η − 1

η

)
T (ϕ) − V (ϕ), (47)

where

η = 1√
1 − ϕ̇2

T

. (48)

The EoS parameter for the DBI-essence scalar-field model
can be written as follows:

wDBI = pDBI

ρDBI
= (η − 1) T (ϕ) − V (ϕ)η

η ((η − 1)T (ϕ) + V (ϕ))
. (49)

In the present work, we shall assume that T = nϕ̇2,
where n > 0. Since we are considering the correspondence
between DBI-essence dark energy and the reconstructed
NHDE model, we consider ρDBI = ρD and wDBI = wD .
Based on Eq. (46) we get the reconstructed scalar field ϕ as
a function of the scale factor a as follows:

ϕ̇(a)2 = −3η4 8−1−η4aα(β−ν)

ω

× e−as (η5+η6)

√
1 − 1

n
φ2

0η1η3
(−asη5

)η4
(
s
(
asη5

)η2

× (−2μ + ν
(−s

(
η2 + 2η4 − as(η5 + 2η6)

)
+α(2 − 2β + 2ν))) + easη5

×
(
α2ν

(
β2 − 2β(1 + ν) + ν(2 + ν)

)

+ s
(

sη2
4ν + 2η4

(
μ − assη6ν

)
+ asη6

(−2μ + s
(−1 + asη6

)
ν
))

+ 2α
(
β

(
μ + s

(
η4 − asη6

)
ν
)

− ν
(
μ + s

(
η4 − asη6

)
(1 + ν)

)))
�

[
η2, asη5

])
,

(50)

V (ϕ(a)) = 3η4 8−1−η4

ω
aα(β−ν)e−as (η5+η6)

×φ2
0η1η3

(−asη5
)η4

(
−3

(
s
(
asη5

)η2 ν − easη5

× (
2μ − ν

(−sη4 + assη6 + α(2 − β + ν)
))

× �
[
η2, asη5

])

+
(

−1 +
√

n

n − 1

) √
n − 1

n
n

(
s
(
asη5

)η2

× (−2μ + ν
(−s

(
η2 + 2η4 − as(η5 + 2η6)

)
+ α(2 − 2β + 2ν))) + easη5

×
(
α2ν

(
β2 − 2β(1 + ν) + ν(2 + ν)

)

+ s
(

sη2
4ν + 2η4

(
μ − assη6ν

)
+ asη6

(−2μ + s
(−1 + asη6

)
ν
))

+ 2α
(
β

(
μ + s

(
η4 − asη6

)
ν
)

− ν
(
μ + s

(
η4 − asη6

)
(1 + ν)

)))
�

[
η2, asη5

]))
.

(51)

3.3 Reconstruction of tachyon dark-energy model

A tachyonic condensate in a class of string theories can be
described by an effective scalar field with a Lagrangian of the
form L = −V (φ)(1 − ∂aφ∂aφ)1/2. Since this Lagrangian
has also a potential function V (φ), any form of cosmological
evolution (that is, any a(t)) can be obtained with the tachy-
onic field as the source by choosing V (φ) suitably [107]. The
cosmological effects of homogeneous tachyon matter coex-
isting with non-relativistic matter and radiation have been
studied by [108]. The energy density ρT and the pressure pT

of the tachyon scalar-field model are given, respectively, by
[107]

ρT = V (ϕ)√
1 − ϕ̇2

, (52)

pT = −V (ϕ)
√

1 − ϕ̇2, (53)

while the EoS parameter can be written as follows:

wT = pT

ρT
= ϕ̇2 − 1. (54)

For the correspondence under consideration, we have ρT =
ρD and wD = wT . Using the same procedure as used before,
we reconstruct the scalar field ϕ and the potential V (ϕ) as
follows:

ϕ̇(a)2 = 1 + (
s
(
asη5

)η2
( − 2μ + ν

( − 3 − s
(
η2

+ 2η4 − as(η5 + 2η6)
) + 2α(1 − β + ν)

))
+ easη5

(
a2ss2η2

6ν + (3 + sη4 + α(β − ν))

×(2μ + (sη4 + α(−2 + β − ν))ν) − assη6

×(2μ + (3 + s + 2sη4 + 2α(−1 + β − ν))ν)
)

×�
[
η2, asη5

]) × (
3
(
s
(
asη5

)η2ν − easη5

×(
2μ − ν

( − sη4 + assη6 + α(2 − β + ν)
))

×�
[
η2, asη5

]))−1
, (55)
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Fig. 5 Plot of the evolution of the reconstructed potential V (ϕ) for the
reconstructed quintessence dark energy model. See Eq. (45)
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Fig. 6 Plot of the evolution of the reconstructed potential V (ϕ)

(Eq. (45)) with reconstructed scalar field ϕ (Eq. (44)) of the quintessence
dark energy model

V (ϕ(a)) =
[

− 31+2η4a2α(β−ν)e−2as (η5+η6)φ4
0η2

1η
2
3

ω2

×2−6(1+η4)
( − asη5

)2η4
(
s
(
asη5

)η2

×( − 2μ + ν
( − 3 − s

(
η2 + 2η4 − as(η5 + 2η6)

)
+2α(1 − β + ν)

)) + easη5
(
a2ss2η2

6ν

+(3 + sη4 + α(β − ν))

×(2μ + (sη4 + α(−2 + β − ν))ν)

−assη6(2μ + (3 + s + 2sη4 + 2α(−1 + β − ν))ν)
)
�

×[
η2, asη5

])(
s
(
asη5

)η2ν − easη5
(
2μ − ν

( − sη4 + assη6

+α(2 − β + ν)
))

�
[
η2, asη5

])]1/2
. (56)

0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

z

V

Fig. 7 Plot of the evolution of the reconstructed potential V (ϕ) for the
reconstructed DBI-essence dark-energy model. See Eq. (51). We have
chosen n = 1.5
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Fig. 8 Plot of the evolution of the reconstructed potential V (ϕ)

(Eq. (51)) with reconstructed scalar field ϕ (Eq. (50)) of the DBI-essence
dark-energy model. We have chosen n = 1.5

3.4 Discussion

In this paper, we studied the main cosmological properties
of the new holographic dark energy (HNDE) model in the
framework of Brans–Dicke chameleon cosmology. We con-
sidered a particular ansatz for the parameters φ, V , and f
in which their expressions are given in the power-law form.
We decided to consider different aspects to study. First of
all, we reconstructed the expression of the Hubble param-
eter H and, accordingly, the expression of the density ρD

of the NHDE in the context of chameleon Brans–Dicke
chameleon cosmology. We also tested the Weak Energy con-
dition (WEC) and the Strong Energy Condition (SEC) for the
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Fig. 9 Plot of the evolution of the reconstructed potential V (ϕ) for the
reconstructed tachyon dark-energy model. See Eq. (56)

0 100 200 300 400

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

V

Fig. 10 Plot of the evolution of the reconstructed potential V (ϕ)

(Eq. (56)) with reconstructed scalar field ϕ (Eq. (55)) of the tachyon
dark-energy model

reconstructed model we obtained. Considering three cases,
namely {μ = 0.65, ν = 0.20}, {μ = 0.60, ν = 0.25},
and {μ = 0.55, ν = 0.15} setting the other parameters
to α = 5, β = −0.7, γ = −0.9, φ0 = 0.12, ω =
− 3

2 + 10−22, f0 = 1, V0 = 2, and the BD parameter ω

following [102] we have computed the reconstructed EoS
parameter. Observational results coming from SNeIa data
suggest a limit of the EoS parameter: −1.67 < w < −0.62
[103]. Using the set values of μ and ν in Eq. (24) we found
that the results are in good agreement with the observations
of [103]. Finally, we reconstructed three scalar-field models
of dark energy (namely, the quintessence, the DBI-essence,
and the tachyon ones) based on the NHDE model in the
framework of BD cosmology. For the three scalar-field mod-
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Fig. 11 Plot of the evolution of the reconstructed potential V (ϕ) with
f (ϕ) for the quintessence dark energy model
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Fig. 12 Plot of the evolution of the reconstructed potential V (ϕ) with
f (ϕ) for the DBI-essence dark-energy model

els we considered, we have reconstructed the corresponding
potentials and scalar fields. To further elucidate our recon-
structions, we have plotted the reconstructed potential V (ϕ)

against z and made parametric plots between ϕ and V (ϕ) in
Figs. 5, 6, 7, 8, 9, and 10. It is apparent from the plots that
the potential V (ϕ) is increasing up to redshifts of the order
of z ≈ −0.5; afterwards it starts to decay. In the plots of ϕ–
V (ϕ), it appears that the potential has a decreasing behavior
with the scalar field ϕ.

In order to have a look into the behavior of the recon-
structed potential against coupling function f we discuss
Figs. 11, 12, and 13, where we observe that the reconstructed
potentials are increasing with f . This indicates that the poten-
tial increases as the matter–chameleon coupling is getting
stronger. It is further noted that the rate of increase in the

123



Eur. Phys. J. C (2014) 74:3080 Page 11 of 13 3080

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.150

0.155

0.160

0.165

0.170

V

f

Fig. 13 Plot of the evolution of the reconstructed potential V (ϕ) with
f (ϕ) for the tachyon dark-energy model

potential is much higher in the case of the tachyon than the
cases of quintessence and DBI.

4 Concluding remarks

In the present work we have used a reconstruction scheme
for a new holographic dark-energy model with energy den-

sity given by ρD = 3φ2

4ω

(
μH2 + ν Ḣ

)
in the framework of

Brans–Dicke cosmology taking the ansatz φ = φ0aα, V =
V0φ

β, f = f0φ
γ . The results of the study are:

• Considering ρ = ρD in the first modified field equation
of BD theory leads to a linear differential equation which
could be solved analytically to obtain a solution for the
reconstructed Hubble parameter in terms of scale fac-
tor a; when plotted against the redshift z = a−1 − 1, it
exhibited decaying pattern with the evolution of the uni-
verse (i.e., decreases in z) and this is consistent with the
accelerated expansion of the universe.

• The NHDE energy density, as reconstructed through
Hubble parameter, when plotted against z, is found to
increase with the evolution of the universe and it is con-
sistent with the evolution of the universe from matter to
dark-energy domination.

• The violation of the strong energy condition, as expected
in the framework of Einstein gravity, has also been found
for the reconstructed NHDE model in the framework of
BD gravity.

• The reconstructed equation of state (EoS) parameter has
been found to exhibit a “phantom”-like behavior, i.e.
wD < −1.

• Considering three different combinations of the param-
eters μ and ν, namely {μ = 0.65, ν = 0.20}, {μ =

0.60, ν = 0.25} and {μ = 0.55, ν = 0.15} and set-
ting the other parameters as α = 5, β = −0.7, γ =
−0.9, φ0 = 0.12, ω = − 3

2 + 10−22, f0 = 1, V0 = 2
and the BD parameter ω following [102], we have com-
puted the reconstructed EoS parameter for the recon-
structed NHDE. The observational results coming from
the SNeIa data suggest a limit of the EoS parameter:
−1.67 < w < −0.62 [103]. Using a set of variations
in the values of μ and ν in Eq. (24) we found that the
results are in good agreement with observations of [103]
(see Table 1).

In the following phase of the study, we considered the
correspondence between the reconstructed new holographic
dark energy in the framework of BD gravity and some scalar-
field dark-energy models in a manner under which the two
scenarios can be simultaneously valid. This type of approach
is available in the cosmological literature (e.g., [51–53]). We
have constructed the potentials and the scalar fields of these
models. We observed that dV

dz > 0 for all of the reconstructed
scalar field models up to z ≈ −0.5 and, at very late stage (i.e.,
z < −0.5), we have dV

dz < 0. Moreover, dV
dφ

< 0 for all of
the models.

In summary, by generalizing the previous works [51–53]

to the NHDE model with ρD = 3φ2

4ω
(μH2 + ν Ḣ) in the

framework of chameleon Brans–Dicke cosmology, we have
obtained the evolution of the EoS. Following [51,92] we have
considered V , φ, and f in power-law form and accordingly
reconstructed the Hubble parameter. This approach differs
from [51] in the sense that instead of considering Brans–
Dicke cosmology, we have considered chameleon Brans–
Dicke with the coupling function f . We have tested the SEC
and WEC conditions and interpreted the evolution of the EoS
from them. With some choice of the model parameters we
computed the EoS and found that the computed values of
the EoS are consistent with the observational results coming
from SNeIa data, which suggests a limit of the EoS param-
eter: −1.67 < w < −0.62 [103]. Subsequently we exam-
ined the stability for the obtained solutions of the crossing of
the phantom divide under a quantum correction of massless
conformally invariant fields and we have seen that quantum
correction could be small when the phantom crossing occurs
and the obtained solutions of the phantom crossing could
be stable under the quantum correction. In the subsequent
phase, we have established a correspondence between the
NHDE model and the quintessence, the DBI-essence and the
tachyon scalar-field models in the framework of chameleon
Brans–Dicke cosmology. We reconstruct the potentials and
the dynamics for these three scalar-field models we have con-
sidered. The reconstructed potentials are found to increase
with evolution of the universe and in a very late stage they
are observed to decay. It is also observed through the f (ϕ)–
V (ϕ) plot that the potential is increasing with f , which indi-
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cates that the potential increases as the matter–chameleon
coupling gets stronger with evolution of the universe.
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