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1 Introduction

Parton distribution functions (PDFs) are fundamental properties of hadrons. They de-

scribe the distributions of quarks and gluons inside hadrons. Their usefulness in collider

phenomenology resides in the factorization theorems, in which short range interactions are

separated from long range effects. The short range interactions result in perturbatively cal-

culable hard scattering kernels or hard functions, while the long range effects are encoded

in non-perturbative or semi-perturbative objects such as soft functions, parton distribution

functions and fragmentation functions. From these, it is possible to make predictions for

collider observables based on perturbative calculations and experimental determination of

the non-perturbative functions. This procedure has proven highly successful in the last

thirty years.
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For most applications, the relevant factorization theorems are “collinear factorization”

developed in [1–3]. The corresponding non-perturbative functions are so-called “collinear

PDFs” or “integrated PDFs”, in which only the partonic momentum component along the

direction of the colliding hadron is kept, while all other components are integrated over.

The collinear PDFs have gauge-invariant definitions in terms of matrix elements of non-

local bilinear operators [4, 5]. While the collinear PDFs are non-perturbative functions,

their scale-dependence can be calculated perturbatively in terms of the DGLAP splitting

kernels. These calculations have been performed up to 3 loops [6–12].

In many circumstances, in addition to the partonic momentum component collinear

to the hadron, other momentum components and possibly also the polarization of the

parton can be important. Therefore, it is necessary to generalize the collinear factor-

ization to incorporate these degrees of freedom, which leads to generalized factorization

theorems in terms of generalized PDFs and fragmentation functions. Popular examples

are virtuality dependent factorization [13–15], transverse momentum dependent (TMD)

factorization [4, 5, 16–27], as well as virtuality and transverse momentum dependent fac-

torization [28–30].

In this work, we will consider TMD factorization, where transverse parton distribution

functions (TPDFs) and transverse fragmentation functions are introduced. Historically,

TMD factorization frameworks were developed in three different kinds of kinematics: e+e−

to hadrons, semi-inclusive deep-inelastic-scattering (SIDIS), and Drell-Yan type processes.

In this work, we will mainly be concerned with hadron collider physics, and will therefore

discuss TMD factorization and TPDFs for (unpolarized) Drell-Yan type processes in detail.

Consider the production of a vector boson in hadron-hadron collisions with its invari-

ant mass Q and transverse momentum qT observed. If Q ∼ qT � ΛQCD, one expects

that collinear factorization is valid and the differential cross section can be factorized as

(schematically)

d2σ

dQdqT
∼ φi/N1

(x1, µ)⊗ φj/N2
(x2, µ)⊗ Cij(z,Q, qT , µ) . (1.1)

In the above, φi/N (x, µ) are the collinear PDFs with the longitudinal momentum fraction

x. They are non-perturbative functions describing physics at the hadronic scale ΛQCD.

Cij(z,Q, qT , µ) are hard scattering kernels describing physics at the hard scale Q ∼ qT .

The symbol ⊗ denotes convolution.

Consider now another phenomenologically important region Q � qT ,ΛQCD. In this

region, even if qT is in the perturbative domain, use of the collinear factorization for-

mula (1.1) will lead to problems with the perturbation series due to the appearance of

large logarithms of Q/qT . Therefore, one would like to factorize the two scales and re-

sum the large logarithms to all orders in perturbation theory. Ideally, one might expect a

factorization formula similar to eq. (1.1):

d2σ

dQdqT
∼ B̃i/N1

(x1, k1T , µ)⊗ B̃j/N2
(x2, k2T , µ)⊗Hij(z,Q, µ) , (1.2)

where the hard functions Hij(z,Q, µ) describe physics at the hard scale Q, and the TPDFs

B̃i/N (x, kT , µ) describe physics at the low scales qT and ΛQCD. However, things are not so
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simple. It turned out that the B̃ functions necessarily depend on the hard scale Q through

some unphysical parameter, denoted here by ξ. Moreover, depending on the regulator used

and the process under consideration, an additional soft function may appear. Therefore,

the correct formula looks like

d2σ

dQdqT
∼ B̃i/N1

(x1, k1T , µ; ξ1)⊗B̃j/N2
(x2, k2T , µ; ξ2)⊗S̃ij(kT , µ; ξ1, ξ2)⊗Hij(z,Q, µ) . (1.3)

Note that while the individual functions depend on the unphysical parameters ξ1 and ξ2,

in physical cross sections these parameters are combined in a way that only the physical

scale Q remains. Eq. (1.3) is not a true factorization since the B̃ and S̃ functions still

involve the two widely separated scales Q and qT . To achieve a proper factorization of

the two scales, one needs to extract the Q dependence from the B̃ and S̃ functions by

studying their dependence on the unphysical parameters ξ1 and ξ2. This procedure has

various names in the literature: Collins-Soper equation in the pioneering works [16–21],

rapidity renormalization group in [24, 26], and refactorization in [22, 27]. After this, the

Q dependence can be exponentiated and one can obtain the true TPDFs.

The anomalous Q dependence of the naive TPDFs B̃ arises as follows. Similar to the

collinear PDFs, the naive TPDFs can be defined as matrix elements of non-local operators.

This was given in axial gauge in [4] and was rendered gauge-invariant in [5, 19, 20] by in-

troducing Wilson lines. In these works, it was pointed out that by taking the gauge-fixing

vectors to the light cone, or equivalently putting the Wilson lines on the light cone, one

encounters singularities not regularized in dimensional regularization in the perturbative

calculations. Therefore, to perform the calculations, one has to introduce an extra regu-

lator. In [4, 19, 20], this was achieved by taking the gauge-fixing vectors or the Wilson

lines off the light cone. Other choices of regulator are possible. For example, variations of

the analytic regulator were used in [22–24, 26]. In [25], finite imaginary parts in certain

propagators were used to regulate the light-cone divergences. No matter which regulator is

used, the anomalous Q dependence inevitably arises which, in the language of soft-collinear

effective theory (SCET) [31–33], is due to the breaking of the rescaling invariance of the

Lagrangian [22]. In the Collins-Soper approach [17], the explicit appearance of those sin-

gularities is circumvented by always considering the product of two TPDFs. Very recently,

this approach was worked out in full generality to describe arbitrary color-singlet final

states in hadronic collisions in [34].

Depending on the relative size of the two scales qT and ΛQCD, different aspects of

TPDFs can be described in perturbative QCD. If qT ∼ ΛQCD, the TPDFs are fully non-

perturbative and only their scale-dependence can be calculated perturbatively. In the

situation qT � ΛQCD, the TPDFs are semi-perturbative objects and one can further fac-

torize the two scales. In this region, the TPDFs can be expressed as convolutions of the

collinear PDFs with perturbatively calculable matching coefficient functions. These coeffi-

cient functions can be obtained via two approaches. The first is assuming the factorization

formula (1.3), and extracting the coefficient functions by studying the small qT behavior of

the differential cross section. This is the approach taken by [35, 36], which is generalized

to any color-singlet process in [34]. The second approach is starting from a gauge-invariant
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operator definition of the TPDFs, and straightforwardly computing the operator matrix

elements. This approach is much more challenging since one directly encounters the light-

cone divergences. However, the second approach, once accomplished, serves as an explicit

verification of the TMD factorization framework. In [37], we derived the next-to-next-to-

leading order (NNLO) coefficient function for quark-to-quark transitions. Results at this

order are for example relevant for a next-to-next-to-next-to-leading logarithmic (N3LL)

transverse momentum resummation. This paper extends the calculation of the NNLO

coefficient functions to all partonic channels and describes technical and methodological

details. We also present several consistency checks on our results. In particular, we re-

produce the process specific H(2) coefficients of [35, 36] for Drell-Yan process and Higgs

production, as well as the order α2
s contributions to the DGLAP splitting kernels.

This paper is organized as follows. In section 2 we introduce our calculational frame-

work. We provide the operator definitions of the TPDFs and the regularization of the

light-cone singularities. We outline the procedure of the NNLO calculations in section 3,

with some detailed expressions collected in appendix A and B. The main results are pre-

sented in section 4, while several additional relations are collected in appendix C and D.

We conclude in section 5.

2 Framework

We consider the collision of two hadrons N1 and N2 with momenta p and p̄ producing some

color-neutral final state F of momentum q and additional unresolved remnants X

N1(p) +N2(p̄)→ F (q) +X . (2.1)

Along the directions of the hadrons we specify two light-like vectors n and n̄ with n · n̄ = 2.

In terms of them any 4-vector can be decomposed as

qµ =
nµ

2
n̄ · q +

n̄µ

2
n · q + qµ⊥ , (2.2)

where qµ⊥ is perpendicular to both n and n̄. We define q2
T = −q2

⊥.

We consider the differential cross section for the production of the final state F with

respect to its squared invariant mass q2, transverse momentum qT , and rapidity y. We are

especially interested in the region where the transverse momentum is much smaller than the

invariant mass q2 � q2
T . For this multi-scale problem we need to achieve the factorization

of disparate scales and the resummation of the corresponding logarithms. This was done

for the Drell-Yan process in the pioneering work [17]. In this paper, we will mainly follow

the SCET based language in [22, 27], in which the factorization formula for the Drell-Yan

process can be written as

d3σ

dq2dq2
Tdy

=
4πα2

3Ncq2s

∣∣CV (−q2 − iε)
∣∣2 1

4π

∫
d2x⊥ e

−iq⊥·x⊥

×
∑
q

e2
q

[
Sqq̄(x2

T )Bq/N1
(z1, x

2
T ) B̄q̄/N2

(z2, x
2
T ) + (q ↔ q̄)

]
, (2.3)
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where the first factor corresponds to the Born level cross section, CV is the Wilson coeffi-

cient obtained from matching the quark form factor to the effective theory. Together they

form the process specific hard function. The transverse position (impact parameter) x⊥
is the Fourier conjugate variable to q⊥, and x2

T = −x2
⊥. The position-space soft function

S is a correlator of soft Wilson lines, and B and B̄ are the two position-space TPDFs. In

terms of x2
T they depend on the transverse variable. Other functional dependences related

to the regularization are implicit in the above expression and the −iε prescription for the

Wilson coefficient defining the sign of its imaginary part will be suppressed from now on.

The factorization theorem holds up to power corrections in q2
T /q

2.

2.1 Definition of transverse PDFs

The bare quark TPDF collinear to the n direction is represented by the gauge invariant

operator matrix element [22]

Bq/N (z, x2
T ) =

1

2π

∫
dt e−iztn̄·p

∑
X

6 n̄αβ
2
〈N(p)|χ̄nα(tn̄+ x⊥)|X〉 〈X|χnβ(0)|N(p)〉 , (2.4)

where the sum is over all intermediate states X and the summation over the spinor in-

dices α, β of the gauge invariant collinear quark field χn in SCET is understood. The

corresponding anti-quark TPDF is given by a similar equation with the role of the fields

χn and χ̄n interchanged. The TPDFs along the opposite direction, to which we refer as

anti-collinear, are given by the same expressions, but with p ∼ n and p̄ ∼ n̄ interchanged.

The regularization of the rapidity divergences which we will outline in section 2.2 actually

leads to a breaking of this relation. To mark this difference the anti-collinear TPDF will

be denoted as B̄. In most aspects the discussion of these two different TPDFs is, however,

completely analogous and for simplicity we therefore usually formulate it below only in

terms of the collinear function.

For processes initiated by gluon-gluon fusion, factorization theorems similar to eq. (2.3)

hold in which gluon TPDFs are encountered. Along the n direction the latter is represented

by the operator matrix element [27, 38]

Bµνg/N (z, x⊥) =
−zn̄·p

2π

∫
dt e−iztn̄·p

∑
X

〈N(p)|Aµan,⊥(tn̄+ x⊥)|X〉〈X|Aνan,⊥(0)|N(p)〉 , (2.5)

where Aµan,⊥ is the gauge invariant collinear gluon field in SCET and the sum over the color

index a is understood. Note that the gluon TPDF is a Lorentz tensor [27, 29, 38, 39] in the

space perpendicular to n and n̄. It can be decomposed into two independent components as

Bµνg/N (z, x⊥) =
gµν⊥
d− 2

Bg/N (z, x2
T ) +

[
gµν⊥
d− 2

+
xµ⊥x

ν
⊥

x2
T

]
B′g/N (z, x2

T ) , (2.6)

where d is the number of space-time dimensions, gµν⊥ is the metric tensor in the transverse

space and the projection onto the two components are given by

Bg/N (z, x2
T ) = g⊥µν Bµνg/N (z, x⊥) ,

B′g/N (z, x2
T ) =

1

d− 3

[
g⊥µν + (d− 2)

x⊥µx⊥ν
x2
T

]
Bµνg/N (z, x⊥) . (2.7)
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If the transverse scale is in the perturbative region, xT � 1/ΛQCD, the physics of

these two scales can be factorized and the TPDFs can be matched onto the collinear PDFs

defined as

φq/N (z) =
1

2π

∫
dt e−iztn̄·p

∑
X

6 n̄αβ
2
〈N(p)|χ̄nα(tn̄)|X〉 〈X|χnβ(0)|N(p)〉 ,

φg/N (z) = −g⊥µν
zn̄ · p

2π

∫
dt e−iztn̄·p

∑
X

〈N(p)|Aµan,⊥(tn̄)|X〉 〈X|Aνan,⊥(0)|N(p)〉 . (2.8)

These can be obtained from the TPDFs (2.4) and (2.5) by setting x⊥ = 0, corresponding

to integrating over the transverse momentum. The matching takes the form [13, 22, 27]

Bi/N (z, x2
T ) =

∑
j

Ii/j(z, x2
T )⊗ φj/N (z) ,

B′g/N (z, x2
T ) =

∑
j

I ′g/j(z, x
2
T )⊗ φj/N (z) , (2.9)

where the sum is over all partons j. This holds up to power corrections in x2
TΛ2

QCD and

we introduced the symbol ⊗ to denote the convolution of two functions as

f(z, · · · )⊗ g(z, · · · ) ≡
∫ 1

z

dξ

ξ
f(ξ, · · · ) g(z/ξ, · · · ) . (2.10)

The matching kernels Ii/j and I ′g/j are perturbative functions. They can be extracted

from eq. (2.9) and the perturbative parton-to-parton (T)PDFs Bi/j , B′g/j and φi/j given by

eqs. (2.4), (2.5), (2.8) with a parton j in place of the hadron N .

With the results of the matching kernels and eq. (2.9), the semi-perturbative hadron-

to-parton TPDFs can be obtained from the collinear PDFs as long as xT is a perturbative

scale. The collinear PDFs have been extracted with high precision from experimental data

by several groups. The knowledge of the matching kernels therefore provides an accurate

determination of the TPDFs in the semi-perturbative domain. This not only has many

phenomenological applications on its own right, but also provides necessary information

for the determination of the fully non-perturbative TPDFs.

While Ii/j starts at α0
s , I ′g/j only starts at α1

s. In many gluon-gluon initiated processes

of interest, for example the production of a Higgs boson, the hard tensor contracting the

Lorentz indices of two gluon TPDFs does not mix their two tensor structures. Then for

the same level of accuracy for physical observables, the perturbative expansion of I ′g/j
is required to one order less in αs than the expansion of Ig/j . In these cases the NLO

expression of I ′g/j which was derived previously in [27] suffices for N3LL precision. For this

reason, the main goal of this article is to determine the NNLO corrections to the matching

kernels Ii/j from those of the parton-to-parton (T)PDFs, while I ′g/j at this order will be

discussed in a forthcoming article.

2.2 Treatment of singularities

In the calculation of Bi/j we have to deal with several kinds of singularities. On the one

hand there are the usual ultraviolet (UV) and infrared (IR) singularities, which we regulate

– 6 –
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by dimensional regularization in d = 4 − 2ε dimensions. On the other hand the functions

contain extra light-cone singularities which require additional regularization. As mentioned

in the introduction, there are several proposals of regulators. In our calculation, we use

the analytic regulator as suggested in [23]. This amounts to introducing in the phase space

integrals a factor (ν/n · li)α for each unresolved final-state parton with momentum li. Here

α is the analytic regulator and ν is an unphysical mass scale associated with the regulator

— in a similar way as the renormalization scale µ is related to the dimensional regulator ε.

Note that the regulating factor has to contain the same light-cone component n · li for both

the collinear and the anti-collinear region. As such, it breaks the symmetry p ∼ n↔ p̄ ∼ n̄
between the two regions and the rescaling invariance of SCET, a fact called “collinear

anomaly” in [22]. These symmetries will be restored at the end of the calculation when all

divergences are removed and the limit α → 0 is taken. One good property of this scheme

is that the soft function S (for Drell-Yan like processes) automatically reduces to a trivial

factor of unity. For other regulators where this is not the case, one may always absorb the

soft function into the two TPDFs by a redefinition (see, e.g., [5]).

The analytic regulator combined with the dimensional one suffices to regulate all sin-

gularities in the operator matrix elements. The singularities manifest themselves in the

TPDFs as poles in the regulators. While the individual factors S, B and B̄ are scheme

dependent, their product is well defined and especially all poles in the regulator α cancel

therein, along with the dependence on the unphysical scale ν after the limit α→ 0 is taken.

However, a dependence on the hard scale q2 remains even after the regulator is dropped.

The generation of the hard scale q2 ∼ (n̄ · p)(n · p̄) through the analytic regulator can be

understood from the scale ratio (ν/n · li) appearing along with it. For the anti-collinear

region this ratio can be expressed in terms of (ν/n · p̄), while for the collinear region it can

be expressed in terms of (ν n̄ · p x2
T ). In the combination of the two factors, the scale ν

drops out, while the mass ratio q2x2
T is left over.

Extending these arguments, using the existence of the α → 0 limit of the product of

two corresponding TPDFs and its independence on the scale ν, it was shown in [22] that

the product can be refactorized into the form

lim
α→0

[
S(x2

T )Bi/j(z1, x
2
T )B̄ı̄/k(z2, x

2
T )
]
q2 =(

x2
T q

2

4e−2γE

)−F biı̄(x2
T )

Bb
i/j(z1, x

2
T )Bb

ı̄/k(z2, x
2
T ) , (2.11)

where after the cancellation of all poles in α on the left hand side the analytic regulator

is set to zero and the right hand side is free of both α and ν. This defines the anomaly

coefficient F and the true TPDFs Bi/j which are universal process-independent functions

and have the same form for the collinear and anti-collinear region.

These functions still contain poles in ε as indicated by the label b for bare. By the

operator renormalization

Bb
i/j(z, x

2
T ) = ZBi (x2

T , µ)Bi/j(z, x
2
T , µ) , (2.12)

F bīı(x
2
T ) = Fīı(x

2
T , µ) + ZFi (µ) , (2.13)
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the UV poles are absorbed into the renormalization factors Z, such that the renormalized

functions Bi/j(z, x
2
T , µ) and Fīı(x

2
T , µ) are free of these singularities. Upon renormalization

a dependence on the renormalization scale µ is introduced which is described by the renor-

malization group equations (RGEs) and will be discussed further below. We work in the

MS scheme, which amounts to expressing the bare coupling constant as

αbs =

(
µ2eγE

4π

)ε
Zα(µ)αs(µ) , (2.14)

and requiring that the renormalization factors contain only poles in ε. After renormal-

ization, F is free of any poles, while Bi/j can still contain IR poles. This signals the

non-perturbative nature of the TPDFs. These IR poles are exactly the same as those in

the collinear PDFs, whose renormalization takes the form

φbi/j(z) =
∑
k

Zφi/k(z, µ)⊗ φk/j(z, µ) . (2.15)

Just as the functions Bi/j and φbi/j are related by eq. (2.9), the transverse and collinear

PDFs are related by matching kernels via

Bi/j(z, x
2
T , µ) =

∑
k

Ii/k(z, x
2
T , µ)⊗ φk/j(z, µ) , (2.16)

in both their renormalized and bare versions. This relation, the renormalization of B and

φ as well as the result

φbi/j(z) = δijδ(1− z) , (2.17)

to all orders in dimensional regularization imply the renormalization of the matching ker-

nels as

Ibi/j(z, x
2
T ) = ZBi (x2

T , µ)
∑
k

Ii/k(z, x
2
T , µ)⊗ φk/j(z, µ) . (2.18)

In this equation the UV poles are contained in ZBi and the IR poles in φk/j , while Ii/k is

free of any poles. In fact even though we do not explicitly distinguish IR and UV poles

in our calculation, this equation allows us not only to extract the renormalized matching

kernel, but also separately the renormalization factor ZBi and the renormalized PDFs. The

separation of the last two functions can be achieved by fixing the endpoint contributions

of the renormalized PDFs φj/j from constraints on their integrals implied from momentum

and quark number conservation.

2.3 Resummation

The differential cross section (2.3) can now be written as [22]

d3σ

dq2dq2
Tdy

=
α2

3Ncq2s

∑
i,j

∑
q

e2
q

[
Cqq̄←ij(z1, z2, q

2
T , q

2, µ) + (q ↔ q̄)
]

⊗ φi/N1
(z1, µ)⊗ φj/N2

(z2, µ) , (2.19)
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which holds up to power corrections in q2
T /M

2 and x2
TΛ2

QCD with the perturbative function

Cqq̄←ij(z1, z2, q
2
T , q

2, µ) =
∣∣CV (−q2, µ)

∣∣2∫ d2x⊥ e
−iq⊥·x⊥

(
x2
T q

2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq/i(z1, x
2
T , µ)Iq̄/j(z2, x

2
T , µ) . (2.20)

The functions appearing here can be related to the quantities A, B and Cij as defined

in [17]. These relations are given in eqs. (71), (72) of [22].

In eq. (2.20) each function depends only on a single physical mass scale and can be

determined consistently in fixed order perturbation theory by choosing the scale µ in the

vicinity of that scale such that no large logarithms are present. In a subsequent step, all

functions have to be matched at the same scale µ. This is achieved by solving the RGEs

for each of them, which automatically resums all large logarithms.

In terms of the logarithm

L⊥ = log
x2
Tµ

2

4e−2γE
, (2.21)

the DGLAP splitting kernels Pjk(z), the cusp anomalous dimension in the fundamental

(adjoint) representation Γqcusp (Γgcusp) and the quark (gluon) anomalous dimension γq (γg),

which are all listed in appendix C, the RGEs can be written as

d

d logµ
CV (−q2, µ) =

[
Γqcusp(αs) log

−q2

µ2
+ 2γq(αs)

]
CV (−q2, µ) , (2.22)

d

d logµ
Fīı(x

2
T , µ) = 2 Γicusp(αs) , (2.23)

d

d logµ
Ii/j(z, x

2
T , µ) =

[
Γicusp(αs)L⊥ − 2γi(αs)

]
Ii/j(z, x

2
T , µ)

− 2
∑
k

Ii/k(z, x
2
T , µ)⊗ Pkj(z, µ) . (2.24)

The last equation follows from the RGEs of the (T)PDFs

d

d logµ
Bi/N (z, x2

⊥, µ) =
[
Γicusp(αs)L⊥ − 2γi(αs)

]
Bi/N (z, x2

⊥, µ) , (2.25)

d

d logµ
φj/N (z, µ) = 2

∑
k

Pjk(z, µ)⊗ φk/N (z, µ) , (2.26)

and eq. (2.16). Eq. (2.22) takes a corresponding form for other processes; for gluon initiated

processes with the anomalous dimensions Γgcusp and γg. This equation and the independence

of the cross section on µ imply eqs. (2.23), (2.25). Also note the appearance of the hard

scale q2 in eq. (2.22) already implied a compensating dependence on this scale for the other

factors. This has been found in terms of the collinear anomaly, eq. (2.11).

Since the bare functions do not depend on µ, each renormalization constant in

eqs. (2.12)–(2.15) obeys a RGE which exactly compensates the µ dependence of the corre-

sponding renormalized function. Solving these equations and enforcing the MS condition,
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which is most conveniently done using the d dimensional coupling constant, allows us to

express the renormalization constants in terms of the corresponding anomalous dimensions

and the QCD β function. The results for φi/j , Z
B
i and ZFi are listed in appendix D.1.

Comparing these expectations with the findings in our calculation serves as a check on

our results.

Provided that all coefficients in eqs. (2.20)–(2.26) and the QCD β function are deter-

mined to sufficient order, any logarithmic precision goal for the differential cross section

can be achieved. To obtain e.g. N3LL precision, the Wilson coefficient and Ii/j have to be

known to α2
s, while Fīı, Pkj and γi are needed to α3

s. Moreover, Γcusp and β are needed to

α4
s. Only some of them are known to this accuracy, which are β in [40], Pkj in [11, 12], γi

in [41] and for several processes also the Wilson coefficients.

The derivation of the α2
s contributions to Ii/j , as required for the N3LL transverse

momentum resummation, is the main objective of this paper. These and Fīı up to α2
s can

be obtained in the way outlined in this section from a perturbative calculation of Bi/j , B̄i/j
and φbi/j up to NNLO in αs, i.e. the expansion of

f(αs, . . .) =

∞∑
n=0

(αs
4π

)n
f (n)(. . .) (2.27)

up to n = 2. This calculation is discussed below. The main results, the NNLO matching

kernels I
(2)
i/j , are presented in section 4. For completeness we also list further relevant

perturbative results in appendix D.

3 Perturbative calculation

Once the perturbative results for the parton-to-parton (T)PDFs to sufficient order in the

strong coupling and the two regulators are determined, the extraction of the final results

according to eqs. (2.11)–(2.18) is straightforward. We therefore only discuss the former in

more detail. We begin with the collinear case.

Since the relevant matrix elements (2.4), (2.5), (2.8) contain solely collinear fields and

the purely collinear SCET Lagrangian has the same form as the full QCD Lagrangian,

we can use QCD Feynman rules to evaluate them. In a general gauge, any number of

gluons can couple to the Wilson lines contained in the gauge invariant fields (χ, A) and

the associated vertices lead to denominators with momentum components projected to the

n̄ direction. A special gauge is the light cone gauge with n̄ chosen as the light cone vector.

In this gauge the Wilson lines reduce to factors of unity, but one still finds the n̄ dependent

denominators — this time introduced through the gluon propagators. We will focus our

discussion to this gauge, although we also performed the calculation in Feynman gauge as

a cross check.

In our regularization scheme, the perturbative corrections to the bare collinear PDFs

lead to scaleless integrals vanishing in dimensional regularization, such that their all order

results are given by eq. (2.17).

For the transverse PDFs the additional scale x⊥ is present. The corresponding expres-

sions essentially correspond to the square of matrix elements as in figures 1 and 2 where
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the momentum p − k of the parton coupling to the gauge invariant field can be off-shell.

Calling the momenta of the emitted partons li, i = 1, . . . nr, and their sum k =
∑

i li, the

phase space factor takes the form∫
dΠTD

nr =

[∏
i

∫
ddli

(2π)d−1
δ+
(
l2i
)( ν

n · li

)α]∫
ddk δd

(
k −

∑
i

li

)
e−ik⊥·x⊥δ

(
k̂z
)
, (3.1)

where k̂z = n̄·[k − (1 − z)p]. The last factor arose from the t integral in eqs. (2.4), (2.5),

the exponential from the x⊥ dependence of the gauge invariant fields and the α dependent

factors arise from the analytic regularization. It is essentially these factors which lead

to difficult integrals, where many standard calculational methods become inapplicable.

Another complication is the presence of light-cone propagators due to the use of light-cone

gauge (or alternatively the presence of Wilson lines).

For the anti-collinear case, the arguments are completely analogous. Relabeling p ∼
n↔ p̄ ∼ n̄, one finds the same expressions as for the collinear cases, the only change is the

appearance of the analytic regulator which now enters in eq. (3.1) as (ν/n̄ · li)α. Using this

relabeling, in the following we can discuss the collinear and anti-collinear cases in parallel.

Discussing the individual contributions up to NNLO, we first observe that for nr = 0

emitted partons, k = 0 and the x⊥ dependence is lost. Setting α = 0, no scale dependence

remains in these cases and dimensionless integrals are found. Hence, the bare TPDFs

receive no contributions from purely virtual corrections. Then to obtain the corrections up

to α2
s to the trivial LO results B(0)

i/j(z, x
2
T ), B̄(0)

i/j(z, x
2
T ) = δijδ(1− z), the only cases we have

to consider are the real NLO corrections as well as the double real and the virtual real

NNLO corrections. Their amplitudes correspond to the diagrams in figures 1 and 2 with

appropriate placement of partons as well as diagrams obtained from shrinking individual

lines to points. The full contributions are obtained from appropriate combinations of

these amplitudes with their Hermitian conjugates. Sums and averages over color and

spin of external partons are understood. Therein the factors in eqs. (2.4), (2.5), (2.7)

contracting the two gauge invariant fields lead to the factor n̄αβ/2 if they are (anti)-quarks,

and −zn̄·p g⊥µν if they are gluons.

In this sense, the NLO contributions correspond to the square of diagram 1(a). The two

different 1-loop amplitude topologies with unspecified partons are depicted in figure 1(b,c).

For the virtual-real contribution, these diagrams or their versions with a shrinked propaga-

tor are combined with the NLO diagram of figure 1(a). The double real diagrams without

specified partons are given in figure 2. For all three amplitude topologies one propagator

carries momentum p − k. The other momentum is either p − l, p − k + l or k depending

on the amplitude topology. By shrinking the propagator with the second momentum, we

receive the same additional amplitude subtopology from all of them. For the double real

NNLO contribution, these diagrams are combined with each other. We use QGRAF [42]

to generate the amplitudes and FORM [43] to manipulate them.

The NLO contributions can be solved in closed form. Having used the δ distributions,

the only integral required is

µ2ε+2δ

π1−ε

∫
d2−2εkT

k2+2δ
T

eikT ·xT = e−2(ε+δ)γE
Γ(−ε− δ)
Γ(1 + δ)

(
x2
Tµ

2

4e−2γE

)ε+δ
. (3.2)
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(a) (b) (c)

Figure 1. Amplitude topologies for real (a) and virtual-real (b,c) case.

The corresponding results are given in eq. (D.12). Using appropriate parametrizations, we

will identify this integral as subset of the integrals of the two NNLO cases — the virtual-real

and double real corrections, which we discuss in the following two subsections.

Expressing the bare coupling constant via eq. (2.14) by the renormalized one, intro-

duces powers of the MS factor and an additional NNLO contribution stemming from the

NLO contribution multiplied by the α1
s term in the renormalization factor

Zα = 1 +
αs
4π

(
−β0

ε

)
+ · · · . (3.3)

3.1 Virtual-real contribution

The calculation of the virtual-real diagrams is straightforward. We first perform the inte-

grals over the loop momenta. Using partial fraction decomposition and shift of momentum,

we can reduce the scalar loops integrals to two generic types:

IVR
1 (a1, a2, a3, a4) =

∫
ddl

(2π)d
[
−l2
]−a1

[
−(l + q)2

]−a2
[
−(l + p)2

]−a3 [n̄ · l]−a4 ,

IVR
2 (a1, a2, a3, a4) =

∫
ddl

(2π)d
[
−l2
]−a1

[
−(l + q)2

]−a2
[
−(l − k)2

]−a3 [n̄ · l]−a4 , (3.4)

where q = p − k and in all the propagators an imaginary part of −iδ is implicit. These

integrals can be calculated using standard techniques. Taking IVR
1 as an example, we first

use a Feynman parameterization to combine the propagators and perform the integration

over the loop momentum. We are then left with a multi-dimensional integral over the

Feynman parameters:

IVR
1 (a1, a2, a3, a4) =

i

24−2επ2−ε ·
Γ(a1 + a2 + a3 + a4 − 2 + ε)

Γ(a1) Γ(a2) Γ(a3) Γ(a4)

×
∫ 1

0
[dx]

∫ ∞
0
dλxa1−1

1 xa2−1
2 xa3−1

3 λa4−1(x1+x2+x3)a1+a2+a3+a4−4+2ε

×
[
−q2x1x2 − n̄ · (x2q + x3p)λ

]2−ε−a1−a2−a3−a4 , (3.5)
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(a) (b) (c)

Figure 2. Amplitude topologies for double real case.

where [dx] = dx1 dx2 dx3 δ(x1 + x2 + x3 − 1). The remaining integrals are not difficult

to carry out and the results can be written in closed form in terms of hypergeometric

functions. The final forms of the two integrals are

IVR
1 (a1, a2, a3, a4) =

i

24−2επ2−ε
(
−q2

)2−ε−a1−a2−a3 (−n̄·p− iδ)−a4

× Γ(a1 + a2 + a3 − 2 + ε) Γ(2− ε− a1 − a3) Γ(2− ε− a2 − a3) Γ(2− ε− a1 − a4)

Γ(a1) Γ(a2) Γ(2− ε− a1) Γ(4− 2ε− a1 − a2 − a3 − a4)

× 2F1 (a4, 2− ε− a1 − a3; 2− ε− a1; 1− z) , (3.6)

IVR
2 (a1, a2, a3, a4) =

i

24−2επ2−ε
(
−q2

)2−ε−a1−a2−a3 (n̄·k)−a4

× Γ(a1 + a2 + a3 − 2 + ε) Γ(2− ε− a1 − a3) Γ(2− ε− a2 − a3) Γ(2− ε− a1 − a4)

Γ(a1) Γ(a2) Γ(2− ε− a1) Γ(4− 2ε− a1 − a2 − a3 − a4)

× 2F1

(
a4, 2− ε− a1 − a3; 2− ε− a1;

1

1− z

)
. (3.7)

Having performed the loop integrals, the remaining integrals over k are similar to those at

NLO and can be readily evaluated using eq. (3.2).

3.2 Double real contribution

For the combined double real emission diagrams we find integrals of the form∫
d2−2εkT e

ikT ·xT
∫ ∞
k2
T /n̄·k

d(n·k)

∫
ddl δ+(l2) δ+((k − l)2) (3.8)

× |M |2
(
n̄ · l, n · l, n̄ · (k − l), n · (k − l), k2,−(p− k)2, n̄ · (p− l), n̄ · (p− k + l)

)
,

where the n̄·k integral has already been performed using δ(k̂z) such that n̄·k = (1− z)n̄·p .

In the argument of the squared amplitude |M |2 we have listed all possible scalar products

that can appear.

We introduce a variable change y = k2
T /(n·k n̄·k), and the n·k integral becomes∫ ∞

k2
T /n̄·k

d(n · k) =
k2
T

n̄·k

∫ 1

0

dy

y2
. (3.9)
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To evaluate the l integral, we boost into the rest frame of k, such that the vectors can be

parameterized as

kµ = kT

√
1− y
y

(1, · · · , 0, 0, 0) ,

n̄µ =
n̄·k
kT

√
y

1− y
(1, · · · , 0, 0, 1) ,

nµ =
kT
n̄·k

1√
y(1− y)

(
1, · · · ,−2

√
y(1− y), 2y − 1

)
,

lµ =
kT
2

√
1− y
y

(1, · · · , sin θ1 sin θ2, sin θ1 cos θ2, cos θ1) , (3.10)

and the scalar products are given by

n̄ · l =
n̄·k
2

(1− cos θ1) ≡ n̄·kD1 ,

n · l =
k2
T

2y n̄·k

[
1 + 2

√
y(1− y) sin θ1 cos θ2 − (2y − 1) cos θ1

]
≡

k2
T

y n̄·k
D2 ,

n̄ · (k − l) = n̄·k (1−D1) ≡ n̄·kD3 ,

n · (k − l) =
k2
T

y n̄·k
(1−D2) ≡

k2
T

y n̄·k
D4 ,

k2 = k2
T

1− y
y

,

−(p− k)2 =
k2
T

y(1− z)
[1− (1− y)(1− z)] ≡

k2
T

y(1− z)
D7 ,

n̄ · (p− l) = n̄·p [1− (1− z)D1] ≡ n̄·pD8 ,

n̄ · (p− k + l) = n̄·p [1− (1− z)D3] ≡ n̄·pD9 . (3.11)

We also define D5 = y and D6 = 1 − y. From the above equations, we see that whenever

D8 and D9 both appear, we can use a partial fraction decomposition to get rid of one of

them. We can also use partial fraction decompositions for the pairs {D1, D3} and {D2, D4}.
However, it is not always possible to get rid of these due to the analytic regulator.

Inserting the above parameterizations into eq. (3.8), we see that the kT dependence is

power-like, and the kT integral can be easily performed using eq. (3.2). Performing also

the l0 and |~l| integrals using the delta functions, we finally arrive at integrals of the form

IRR({ai}) =
1

2π

Γ2(1− ε)
Γ(1− 2ε)

∫ 1

0
dy

∫ π

0
dθ1 sin1−2εθ1

∫ π

0
dθ2 sin−2εθ2D

ε
5D
−ε
6

∏
i

D−aii , (3.12)

where {ai} = {a1, a2, a3, a4, a5, a6, a7, a8, a9} is the collection of the powers of denominators.

Either {a1, a3} or {a2, a4, a5} will contain the analytic regulator α, and in general we will

calculate the integrals as a power series in α and ε.

There are two situations where we need to keep the α regulator in the integrals. One

is if the integral itself is divergent for α→ 0. Another is if the integral is multiplied by the
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first term in the expansion of

(1− z)−1+α =
1

α
δ(1− z) +

1

(1− z)+
+ α

[
ln(1− z)

1− z

]
+

+O(α2) . (3.13)

In the latter case the expansion of the integral at z = 1 is needed to α1. It proves useful

to distinguish the two cases a8,9 = 0 and a8,9 6= 0. For all integrals with a8,9 6= 0 that we

encountered, neither of the two conditions above apply, and therefore we can always drop

the α regulator in them. For integrals with a8,9 = 0, we can use the freedom of parame-

terizing n and n̄ to exchange a1 ↔ a2 and a3 ↔ a4, and always bring the α dependence

to a1 and a3. For both cases, we can then use a partial fraction decomposition and the

symmetry between l and k − l to reduce a4 to 0. In the end, what we need to calculate

are: IRR(a1, a2, a3, 0, a5, a6, a7, 0, 0) with α in a1, a3 and possibly also in a5 as well as

IRR(a1, a2, a3, 0, a5, a6, a7, a8, 0) and IRR(a1, a2, a3, 0, a5, a6, a7, 0, a9) without α regulator.

The corresponding calculations are further outlined in appendix A. The solutions to

most of the relevant integrals can then be obtained straightforwardly, while the remaining

solutions are listed in appendix B.

4 Results

Combining the contributions to the NNLO result (D.14) expanded up to the finite terms

in the regulators α and ε, carrying out the refactorization (2.11), identifying the matching

kernels (2.16) and renormalizing them and the anomaly coefficients (2.18), (2.13), we obtain

the final results. In the FORM module [44] associated with this article, we provide the

full set of results in digital form. Here, we present only the parts which are free of scale

logarithms and obtained for µ = µx ≡ 2e−γE
xT

. These are F
(2)
īı (L⊥ = 0) and I

(2)
i/j (z, L⊥ = 0).

The corresponding expressions at µ 6= µx, containing powers of L⊥, can straightforwardly

be obtained from these expressions as explained in section D.2.

The NNLO anomaly coefficients result in accordance to [22] into

F
(2)
qq̄ (0)

CF
=
F

(2)
gg (0)

CA
=CA

[
808

27
− 28ζ3

]
− TFNf

224

27 . (4.1)

The NNLO matching kernels are expressed in terms of harmonic polylogarithms H~an ≡
H~an(z) introduced in [45], ζ values and functions p̃ij related to the lowest order DGLAP

splitting kernels P
(0)
ij by eqs. (C.6), (C.7).

The gluon-to-gluon kernel is given by

I
(2)
g/g(z, 0) = C2

A

{
δ(1−z)

[
25

4
ζ4 −

77

9
ζ3 −

67

6
ζ2 +

1214

81

]
+ p̃gg(z)

[
− 4H0,0,0 + 8H0,1,0 + 8H0,1,1

− 8H1,0,0 + 8H1,0,1 + 8H1,1,0 + 52ζ3 −
808

27

]
+ p̃gg(−z)

[
− 16H−1,−1,0 + 8H−1,0,0 + 16H0,−1,0

− 4H0,0,0 − 8H0,1,0 − 8H−1ζ2 + 4ζ3

]
+

[
− 16(1 + z)H0,0,0 +

8(1− z)(11− z + 11z2)

3z

(
H1,0 + ζ2

)
+

2(25−11z + 44z2)

3
H0,0 −

2z

3
H1 −

(701+149z+536z2)

9
H0 +

4(−196+174z−186z2+211z3)

9z

]}
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+ CATFNf

{
δ(1−z)

[
28

9
ζ3 +

10

3
ζ2 −

328

81

]
+

224

27
p̃gg(z) +

[
8(1+z)

3
H0,0 +

4z

3
H1 +

4(13+10z)

9
H0

− 4(−65 + 54z − 54z2 + 83z3)

27z

]}
+ CFTFNf

{
8(1 + z)H0,0,0 + 4(3 + z)H0,0 + 24(1 + z)H0 −

8(1− z)(1− 23z + z2)

3z

}
.

The quark-to-gluon kernel reads

I
(2)
g/q(z, 0) = CFCA

{
p̃gq(z)

[
4H1,1,1+4H0,1,1+4H1,0,1+4H1,1,0 + 8H0,1,0 − 4H1,0,0 +

44

3

(
H1,0 + ζ2

)
− 22

3
H1,1 +

152

9
H1 + 24ζ3 −

1580

27

]
+ p̃gq(−z)

[
− 8H−1,−1,0 + 4H−1,0,0 + 8H0,−1,0 − 4H−1ζ2

]
+

[
− 4(2 + z)H0,0,0 + 16H0,1,0 + 4zH−1,0 + 4zH0,1 + 4zH1,1 −

8(1 + z + 2z2)

3
H1,0 −

22z

3
H1

+
2(36+9z+8z2)

3
H0,0 −

2(249−6z + 88z2)

9
H0 − 8ζ3 −

2(4+13z+8z2)

3
ζ2 +

4(1+127z+152z2)

27

]}
+ C2

F

{
p̃gq(z)

[
− 4H1,1,1 + 6H1,1 − 16H1

]
+
[
2(2− z)H0,0,0 − (4 + 3z)H0,0 − 4zH1,1 + 6zH1

− 5(3− z)H0 + (10− z)
]}

+ CFTFNf

{
p̃gq(z)

[
8

3
H1,1 −

40

9
H1 +

224

27

]
+

[
8z

3
H1 −

40z

9

]}
,

while the gluon-to-quark kernel is obtained as

I
(2)
q/g(z, 0) = CATF

{
p̃qg(z)

[
4H1,0,1 + 4H1,1,0 − 4H1,1,1 + 4H1,1−

44

3
H0,0+

44

3

(
H1,0 + ζ2

)
+

136

9
H0

+ 4H1 −
298

27

]
+ p̃qg(−z)

[
− 8H−1,−1,0 + 4H−1,0,0 + 8H0,−1,0 + 4H−1,0 − 4H−1ζ2

]
+

[
4(1+2z)H0,0,0 − 16zH0,1,0 +

2(19− 32z)

3
H0,0 − 4H−1,0 − 4H1,1 −

4(4+5z + 2z2)

3z

(
H1,0 + ζ2

)
+ 2(−2 + z)H1 −

4(13− 38z)

9
H0 + 8z(ζ3 + ζ2) +

2(172− 166z + 89z2)

27z

]}
+ CFTF

{
p̃qg(z)

[
4H1,1,1 − 4H1,0,0 + 4H0,1,1 − 4H0,0,0 − 4H1,1 − 4H1,0 − 4H0,1 − 4H0,0 − 4H1

− 4H0 + 28ζ3 + 6ζ2 − 36
]

+
[
2(1− 2z)H0,0,0 + (5 + 4z)H0,0 + 4H0,1 + 4H1,0 + 4H1,1

+ 2(2− z)H1 + (12 + 7z)H0 − 6ζ2 + (23 + 3z)
]}

.

The matching kernel of a quark evolving to a quark of the same flavor is given by

I
(2)
q/q(z, 0) = CFCA

{
δ(1−z)

[
5ζ4 −

77

9
ζ3 −

67

6
ζ2 +

1214

81

]
+ p̃qq(z)

[
− 2H0,0,0 − 4H0,1,0 − 4H1,0,1

− 4H1,1,0 −
11

3
H0,0 −

76

9
H0 + 2ζ3 −

404

27

]
+

[
− 4(1− z)H1,0 − 4zH0,0 − 2zH1 + 2(1 + 5z)H0

− 6(1− z)ζ2 +
44

3
(1− z)

]}
+ C2

F

{
5

4
ζ4 δ(1−z) + p̃qq(z)

[
8H0,1,0 + 4H0,1,1 − 4H1,0,0 + 8H1,0,1

+ 8H1,1,0 + 3H0,0 + 8H0 + 24ζ3

]
+
[
2(1 + z)H0,0,0 + (3 + 7z)H0,0 + 4(1− z)H0,1
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+ 12(1− z)H1,0 + 2zH1 + 2(1− 12z)H0 + 6(1− z)ζ2 − 22(1− z)
]}

+ CFTFNf

{
δ(1−z)

[
28

9
ζ3 +

10

3
ζ2 −

328

81

]
+ p̃qq(z)

[
4

3
H0,0 +

20

9
H0 +

112

27

]
− 4

3
(1− z)

}
.

For a quark evolving to a quark (or anti-quark) of different flavor, it reads instead

I
(2)
q′/q(z, 0) = CFTF

{
4(1 + z)H0,0,0 −

2(3 + 3z + 8z2)

3
H0,0 −

8(1− z)(2− z + 2z2)

3z

(
H1,0 + ζ2

)
+

4(21− 30z + 32z2)

9
H0 +

2(1− z)(172− 143z + 136z2)

27z

}
,

while for a quark evolving to an anti-quark of the same flavor it is obtained as

I
(2)
q̄/q(z, 0) =

(
CFCA − 2C2

F

){
p̃qq(−z)

[
8H−1,−1,0 − 4H−1,0,0 − 8H0,−1,0 + 4H0,1,0 + 2H0,0,0

+ 4H−1ζ2 − 2ζ3

]
+
[
4(1− z)H1,0 + 4(1 + z)H−1,0 − (3 + 11z)H0 + 2(3− z)ζ2 − 15(1− z)

]}
+ I

(2)
q′/q(z, 0) .

In a slightly different notation, we reported these results already in [37, 46]. All other

splitting kernels I
(2)
i/j are related by charge conjugation or flavor symmetry to these results.

The charge conjugation symmetry implies the equality Iı̄/̄ = Ii/j and to respect the flavor

symmetry we introduced above only a quark q of unspecified flavor and a quark q′ of

different flavor. Moreover, the relation Iq̄′/q = Iq′/q holds up to NNLO. As a check of our

results, we also considered other combinations of partons and found agreement.

4.1 Relation to qT -resummation in the Collins-Soper framework

In [35, 36] the hard-collinear coefficient functions for Drell-Yan and Higgs production were

calculated within the framework established in [18, 21] up to NNLO+NNLL. A process-

independent formulation of this framework for qT -resummation is derived in detail in [34].

The same framework is also used as construction principle for a subtraction scheme [47]

for fixed-order NNLO calculations.

Our results are obtained in a completely different approach to qT -resummation, based

on a different factorization into individual contributions. Consequently, the building blocks

of the resummed cross section can not be compared one-by-one between the approaches,

since they are scheme-dependent. Both approaches must agree on the scheme-independent

expression for the resummed cross section, as we will verify explicitly below.

In eq. (6) of [34], the differential cross section is expressed in a factorized and resummed

form, which contains the hard factor [HFC1C2]. For qq̄ initiated processes the latter is

given by the product [
HFC1C2

]
qq̄;a1a2

= HF
q Cqa1(z1)Cq̄a2(z2) , (4.2)

for gg initiated processes it is given by the following contraction of tensors [39][
HFC1C2

]
gg;a1a2

= HF
g, µ1ν1µ2ν2

Cµ1ν1
ga1

(z1)Cµ2ν2
ga2

(z2) , (4.3)
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where the dependence on Laplace-space variables and coupling constants has been omitted

for clarity.

In our language, HF corresponds to the square of the Wilson coefficient CF , which

arises on matching QCD on the effective field theory. The process-independent factors C

correspond to the matching kernels I. However, there is no one-to-one correspondence,

since these expressions are scheme-dependent.

Nevertheless, their product related to the physical cross section by eq. (6) of [34] and

our eqs. (2.19), (2.20) is well defined after carrying out the convolution in the momentum

fractions z1 and z2. In [35, 36] this is given by

HFab←jk(z, αs) =

∫ 1

0
dz1

∫ 1

0
dz2 δ(z − z1z2)

[
HFC1C2

]
, (4.4)

for Drell-Yan and Higgs production respectively. From the process-dependent Wilson co-

efficients and our results on the process-independent matching kernels, we can determine

these H functions as

HDYqq̄←jk(z, αs) =
∣∣CV (−q2,

√
q2)
∣∣2Iq/j(z, x2

T , µx)⊗ Iq̄/k(z, x2
T , µx) , (4.5)

HHgg←jk
(
z, αs, log

m2
t

m2
h

)
= HH

µ1ν1, µ2ν2
(m2

t ,m
2
h,mh) Iµ1ν1

g/j (z, x⊥, µx)⊗ Iµ2ν2

g/k (z, x⊥, µx) , (4.6)

where each function is evaluated at a value of the renormalization scale for which no large

logarithms arise, which is the invariant mass of the produced final state and µx = 2e−γE/xT ,

respectively. In the second line, Iµνg/j is the gluon matching tensor which is related to Bµνg/N
in eq. (2.5) in a completely analogous way as Ig/j is related to Bg/N [27, 46]. It can be

decomposed into the two independent components Ig/j and I ′g/j analogously to eq. (2.6).

Hµ1ν1, µ2ν2

H is the hard tensor. For Higgs production it has the explicit form

HH
µ1ν1, µ2ν2

(m2
t ,m

2
h,mh) = C2

t (m2
t ,mh)

∣∣CS(−m2
h,mh)

∣∣2gµ1µ2gν1ν2 , (4.7)

with the Wilson coefficients arising on first integrating out the top quark and then matching

to SCET. To determine eq. (4.6) to NNLO, the NLO results of I ′g/j are required which we

calculated finding results in accordance with [27].

The resulting expressions for the H coefficients are found in full agreement with the

results in [35, 36], and constitute a fully independent validation of them in a completely

different calculational approach.

4.2 Further checks

Below we describe further observations and checks confirming our results for the matching

kernels I(n) and anomaly coefficients F (n) with n ≤ 2 . We first observe that these functions

depend only on the scale logarithm L⊥ and the momentum fraction z. As required by

consistency, no dependence on the analytic regulator α or the associated scale ν remained,

but they canceled in eq. (2.11), where moreover all dependence on the hard scale q2 had

been refactorized from the resulting functions. This not only confirms our results but also

the consistency of the whole framework and explicitly demonstrates the applicability of the

analytic regulator of [23] in high order calculations.
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Moreover, in our results no poles in the dimensional regulator ε remained, but they

could consistently be removed by renormalization (2.13), (2.18), where the exact renormal-

ization factors had been implied already by their RGEs in terms of known functions and are

listed in section D.1. We also explicitly confirmed that Fīı(L⊥, αs) and Ii/j(z, L⊥, αs) them-

selves obey the RGEs (2.23), (2.24) and that their L⊥ dependent terms can be reconstructed

through the relations in appendix D.2 from the results listed here and the expressions in

appendix C and D.3. These points are yet another strong confirmation of our results.

Furthermore, we did not only perform the calculation in light cone gauge as described

in this article, but also in Feynman gauge finding identical results. This not only serves as

test to our calculation, but also explicitly demonstrates that the individual factors in our

framework are gauge invariant.

In addition to that, we compared our results to literature: we could explicitly con-

firm the expressions for the anomaly coefficients and the NLO matching kernels as given

in [22, 27].

5 Conclusions

In this paper, we have derived perturbative QCD corrections to all parton-to-parton TPDFs

at NNLO. Our calculation is based on a gauge invariant operator definition [22, 27] with

an analytic regulator [23]. We demonstrate for the first time that such a definition works

beyond the first non-trivial order, and that it provides a fully complementary approach to

qT -resummation in the CSS framework [17, 18, 21, 34]. From our calculation, we extract

the coefficient functions relevant for qT -resummation at N3LL accuracy. Our results can be

applied to any process yielding a colorless final state, provided the NNLO virtual corrections

are known. They confirm the recent structural findings in [34], while working with a

completely different methodology [22, 23, 27] based on SCET. Combined with the work

of [48], our results could also be applied to the transverse momentum resummation in tt̄

production. For gluon-gluon initiated processes with a general spin structure, in addition

to the results presented here, N3LL transverse momentum resummation may require the

NNLO corrections to the second tensor structure of the gluon TPDFs, which we will present

in a separate article. We documented our calculation in detail, and validated our results

with numerous non-trivial checks, including an independent re-derivation of the second-

order contributions to the hard factors H for Drell-Yan and Higgs production that were

obtained previously in [35, 36]. A digital form of our results is provided in [44].
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A Calculation of double real integrals

In this appendix we outline the determination of the integrals IRR({ai}) defined in eq. (3.12)

which appear for the double real emission. As explained in section 3.2, we distinguish three

relevant subsets of integrals.

We first consider the integrals with a8,9 = 0. It is convenient to define integrals of

the form

IRR
1 (a1, a2, a3) =

1

2π

Γ2(1− ε)
Γ(1− 2ε)

∫ π

0
dθ1 sin1−2εθ1

∫ π

0
dθ2 sin−2εθ2D

−a1
1 D−a2

2 D−a3
3 ,

IRR
2 (a5, a6, a7) ≡

∫ 1

0
dy D−a5+ε

5 D−a6−ε
6 D−a7

7 = z1−a5+ε−a7
Γ(1− a5 + ε)Γ(1− a6 − ε)

Γ(2− a5 − a6)

× 2F1 (1− a5 + ε, 2− a5 − a6 − a7; 2− a5 − a6; 1− z) . (A.1)

The full integrals are then given by

IRR(a1, a2, a3, 0, a5, a6, a7, 0, 0) =

∫ 1

0
dy IRR

1 (a1, a2, a3)D−a5+ε
5 D−a6−ε

6 D−a7
7 . (A.2)

If one of its arguments is 0, the IRR
1 integrals can be readily calculated to be

IRR
1 (a1, a2, 0) =

Γ(1− ε− a1) Γ(1− ε− a2)

Γ(2− 2ε− a1 − a2)
2F1 (a1, a2; 1− ε; y) ,

IRR
1 (0, a2, a3) =

Γ(1− ε− a2) Γ(1− ε− a3)

Γ(2− 2ε− a2 − a3)
2F1 (a3, a2; 1− ε; 1− y) ,

IRR
1 (a1, 0, a3) =

Γ(1− ε− a1) Γ(1− ε− a3)

Γ(2− 2ε− a1 − a3)
. (A.3)

If furthermore a7 = 0, the remaining integral over y can be carried out, and the result is

IRR(a1, a2, 0, 0, a5, a6, 0, 0, 0) =
Γ(1− ε− a1) Γ(1− ε− a2) Γ(1− a5 + ε) Γ(1− a6 − ε)

Γ(2− 2ε− a1 − a2) Γ(2− a5 − a6)

× 3F2 (a1, a2, 1− a5 + ε; 1− ε, 2− a5 − a6; 1) ,

IRR(0, a2, a3, 0, a5, a6, 0, 0, 0) =
Γ(1− ε− a2) Γ(1− ε− a3) Γ(1− a5 + ε) Γ(1− a6 − ε)

Γ(2− 2ε− a2 − a3) Γ(2− a5 − a6)

× 3F2 (a2, a3, 1− a6 − ε; 1− ε, 2− a5 − a6; 1) . (A.4)

We also have

IRR(a1, 0, a3, 0, a5, a6, a7, 0, 0) = IRR
1 (a1, 0, a3) IRR

2 (a5, a6, a7) . (A.5)

For more generic cases, we change variables to

u =
1 + cos θ1

2
, v =

1 + cos θ2

2
, (A.6)

which allows us to rewrite the integral as

IRR
1 (a1, a2, a3) =

2−4ε

π

Γ2(1− ε)
Γ(1− 2ε)

∫ 1

0
du

∫ 1

0
dv u−ε−a3 (1− u)−ε−a1 v−1/2−ε (1− v)−1/2−ε

×
[(√

u(1− y)−
√
y(1− u)

)2
+ 4v

√
u(1− u)y(1− y)

]−a2

. (A.7)
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From this representation, it is obvious that if a2 ≤ 0, the integrand can be expanded and

written in terms of powers of u, 1 − u, v, 1 − v, y and 1 − y. The integrals over u and v

then lead to some Γ functions, while the powers of y and 1 − y can be absorbed into a5

and a6. The remaining y integral can then be performed with the help of eq. (A.1).

For a2 > 0, we first perform the v integral to get

IRR
1 (a1, a2, a3) = y−a2

∫ y

0
duu−ε−a3 (1− u)−ε−a1−a2

2F1

(
a2, a2 + ε; 1− ε; u(1−y)

y(1−u)

)
+ (1− y)−a2

∫ 1

y
duu−ε−a3−a2 (1− u)−ε−a1

2F1

(
a2, a2 + ε; 1− ε; y(1−u)

u(1−y)

)
. (A.8)

For each of the two integrals above, we change variable from u to the last argument of the

hypergeometric function, which we call t. We then apply 2F1(a, b; c; t) = (1−t)c−a−b2F1(c−
a, c− b; c; t) and insert the resulting expression into eq. (A.2) to arrive at

IRR(a1, a2, a3, 0, a5, a6, a7, 0, 0) =

∫ 1

0
dy

∫ 1

0
dt y1−a2−a3−a5 (1− y)1−2ε−a1−a2−a6 (A.9)

×D−a7
7 (1− t)1−2a2−2ε

2F1(1− a2 − ε, 1− a2 − 2ε; 1− ε; t)

×
{
t−ε−a3 [1− (1− t)y]−2+2ε+a1+a2+a3 + t−ε−a1 [1− (1− t)(1− y)]−2+2ε+a1+a2+a3

}
.

From here, the remaining integrals in general cannot be performed in closed form, and

a series expansion in α and ε is required. These expansions are documented in the next

appendix.

We now turn to the cases where a8 > 0 or a9 > 0. As mentioned above, we can

always drop the analytic regulator α for these integrals. Therefore we can always reduce

a4 to 0. Following the same procedure as before, cases with a2 ≤ 0 can be performed

straightforwardly. For a2, a8 > 0 we obtain

IRR(a1, a2, a3, 0, a5, a6, a7, a8, 0) =

∫ 1

0
du

∫ 1

0
dy y−a5+ε (1− y)−a6−εD−a7

7 D−a8
8

×
[
θ(y − u) y−a2 u−a3−ε (1− u)−a1−a2−ε

2F1

(
a2, a2 + ε; 1− ε; u(1−y)

y(1−u)

)
+ θ(u− y) (1− y)−a2 u−a2−a3−ε (1− u)−a1−ε

2F1

(
a2, a2 + ε; 1− ε; y(1−u)

u(1−y)

)]
. (A.10)

The main complication here is that D7 = [1− (1− y)(1− z)] and D8 = [1− (1− u)(1− z)]
may both appear. This prevents us from changing variable to the last argument of the

hypergeometric function, since regardless of whether we substitute u or y, either D7 or D8

will become very complicated in terms of the new variable t. We therefore now consider

specific cases. For a7 = 0 one obtains

IRR(a1, a2, a3, 0, a5, a6, 0, a8, 0) =

∫ 1

0
du

∫ 1

0
dt u1−a2−a3−a5 (1− u)1−a1−a2−a6−2εD−a8

8

× (1− t)1−2a2−2ε
2F1(1− a2 − ε, 1− a2 − 2ε; 1− ε; t)

×
{
t−a6−ε [1− (1− t)(1− u)]−2+a2+a5+a6 + t−a5+ε [1− (1− t)u]−2+a2+a5+a6

}
. (A.11)
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The representation of IRR(a1, a2, a3, 0, a5, a6, 0, 0, a9) is essentially the same as above, with

D−a8
8 replaced by D−a9

9 .

The relevant cases, where in addition a7 > 0, are a7 = 1, a1, a3 = 0 and either a8

or a9 = 1. We then partial fraction decompose D7 with D8 or D9, respectively. After

changing variables from either u or y to the last argument of the hypergeometric function,

which we call t, and if relevant renaming y to u, one obtains

IRR(0, a2, 0, 0, a5, a6, 1, 1, 0) =

∫ 1

0
du

∫ 1

0
dt u−a2−a5−ε(1− u)1−a2−a6−εD−1

8

× (1− t)−2a2−2ε
2F1 (1− a2 − ε, 1− a2 − 2ε; 1− ε; t)

×
{
t−ε [1− (1− t)(1− u)]−1+a2+2ε + t−a6 [1− (1− t)(1− u)]−1+a2+a5+a6

− t−ε [1− (1− t)u]−1+a2+2ε − t−a5 [1− (1− t)u]−1+a2+a5+a6

}
(A.12)

and an even more involved version of this for a9 = 1. At intermediate steps, an additional

regulator is introduced in a5 which however does not lead to poles in the final result for

the integral.

B List of double real integrals

In the previous appendix we described the methods of calculating the double real integrals.

Some integrals can be represented in an exact form in terms of hypergeometric functions

3F2 as in eq. (A.4). Several other integrals with a2 < 0 can be obtained following the steps

explained below eq. (A.7). For other integrals, we calculate them as a series expansion, and

list them in this appendix. The results will be written in terms of harmonic polylogarithms

H~an ≡ H(~an, z) introduced in [45].

To which order in α and ε a given integral is needed relies on the prefactor multiplying

the integral. We first list the integrals which are needed to order α1. We found that

they all have a7, a8, a9 = 0, and therefore we will suppress these arguments below. For

these integrals, it is more convenient to choose α/ε instead of α as one of the expansion

parameters, since we need to send α to 0 before ε. The results are

IRR(α, 1, α, 0, r, 1) =
1

ε2
− 2εζ3 − 3ε2ζ4

− α

ε

[
1

2ε2
+ (1 + x)ζ2 + ε(4− x)ζ3 + ε2

11 + 2x

2
ζ4

]
+O

(
[α/ε]2, ε3

)
,

IRR(1 + α, 1, α, 0, r, 0) =
1

ε2
+ 2ζ2 + 4εζ3 + 11ε2ζ4

− α

ε

[
1

ε2
+ 2xζ2 − 2εζ3 − ε2

27− 17x

2
ζ4

]
+O

(
[α/ε]2, ε3

)
,
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IRR(α, 1, 1 + α, 0,−1 + r, 1) =
2

ε2
− 2ζ2 − 6εζ3 − 8ε2ζ4

− α

ε

[
3

2ε2
+ 2(1 + x)ζ2 + ε(11 + 2x)ζ3 + ε2

56− x
2

ζ4

]
+O

(
[α/ε]2, ε3

)
,

IRR(α, 1, 1 + α, 0, r, 0) =
2x

α/ε

[
1

ε2
− 2εζ3 − 3ε2ζ4

]
− x

ε2
− 2ζ2 + ε(2− 6x)ζ3 − ε2(2 + 9x)ζ4

+
α

ε

[
x

ε2
+ ε(2− 4x)ζ3 − ε2

15− 5x

2
ζ4

]
+O

(
[α/ε]2, ε3

)
,

where r = −α(1 − x) with x = ±1. Obviously the last integral contains a pole in α.

For all the remaining integrals we can drop the α regulator and the following results are

understood up to corrections of O(α). The remaining integrals with a8, a9 = 0 are

IRR(1, 1, 0, 0, 0,−1, 1, 0, 0) =
2

1− z

[
H0

ε
+H0,0 −H1,0 − ζ2

+ ε
(
H0,0,0 − 2H0,1,0 −H1,0,0 − 3ζ3

)]
+O(ε2) ,

IRR(0, 1, 1, 0,−1, 0, 1, 0, 0) =
2

1− z

[
H0

ε
−H1,0 − ζ2 + ε

(
−H1,0,0 + ζ3

)]
+O(ε2) .

Note that while the above integrals contain an explicit (1 − z) in the denominators, this

divergence at z → 1 is canceled by the terms in the numerator and the whole integral is at

most logarithmically divergent. The remaining integrals with a8 > 0 or a9 > 0 are

IRR(−1, 1, 0, 0, 0, 1, 0, 1, 0) =
1

1− z

[
2H0

ε
− 4H1,0 − 4ζ2 + 8ε

(
H1,1,0 + ζ2H1 − ζ3

)]
,

IRR(0, 1, 0, 0, 0, 0, 0, 1, 0) =
1

1− z

[
H0

ε
+H0,0 − ε

(
H0,0,0 + 2H0,1,0 + 2ζ2H0 + 4ζ3

)]
,

IRR(0, 1, 0, 0, 0, 0, 0, 0, 1) =
1

1− z

[
H0

ε
−H0,0 + ε

(
H0,0,0 + 2H0,1,0 + 2ζ2H0 + 4ζ3

)]
,

IRR(0, 1, 0, 0, 0, 0, 1, 0, 1) =
1

1− z2

[
2H0

ε
− 4H−1,0 + 2H0,0 − 2ζ2

+ 2ε
(
4H−1,−1,0 − 2H−1,0,0 − 4H0,−1,0 +H0,0,0 + 2H0,1,0 + 2ζ2H−1 − ζ3

)]
,

IRR(0, 1, 0, 0, 0, 0, 1, 1, 0) = − 1

εz
+

2H0

1− z
+

2

z
+ 2ε

[
H0,0 − 2H0

1− z
+
H1,0 + ζ2 − 2

z

]
,

IRR(0, 2, 0, 0, 0, 0, 1, 1, 0) =
(1− z)2

6εz2
+

3− z
1− z

H0

3
− z2 + z + 10

9z2

+
ε

3

[
3− z
1− z

H0,0 −
(1− z)2

z2
(H1,0 + ζ2) +

(
2z

1− z
+

3

z

)
H0

3
+

2z2 + 11z + 47

9z2

]
,

IRR(−1, 2,−1, 0, 0, 0, 0, 1, 0) = 0 ,

IRR(−1, 2,−1, 0, 0, 0, 0, 2, 0) = 0 ,

where the dropped corrections are of O(ε2).
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C Anomalous dimensions and splitting functions

In this appendix we collect the expressions for the anomalous dimensions and splitting

functions for the reader’s convenience. We define the perturbative expansion of the quark

and gluon anomalous dimensions γi as

γi(αs) =
αs
4π

γi0 +
(αs

4π

)2
γi1 +O(α3

s) , (C.1)

and analogously for the cusp anomalous dimensions Γi in the fundamental and adjoint

representation. The coefficients up to the second order are given by

1

Cf
Γq0 =

1

Ca
Γg0 = 4 ,

1

Cf
Γq1 =

1

Ca
Γg1 =

(
268

9
− 4π2

3

)
Ca −

80

9
TfNf ,

γq0 = −3Cf ,

γq1 = C2
f

(
−3

2
+ 2π2 − 24ζ3

)
+ CfCa

(
−961

54
− 11π2

6
+ 26ζ3

)
+ CfTfNf

(
130

27
+

2π2

3

)
,

γg0 = −11

3
Ca +

4

3
TfNf ,

γg1 = C2
a

(
−692

27
+

11π2

18
+ 2ζ3

)
+ CaTfNf

(
256

27
− 2π2

9

)
+ 4CfTfNf . (C.2)

The QCD β function is

β(αs) =
dαs(µ)

d logµ
= −2αs

[
αs
4π

β0 +
(αs

4π

)2
β1 + · · ·

]
, (C.3)

where

β0 =
11

3
CA −

4

3
TFNf ,

β1 =
34

3
C2
A −

20

3
CATFNf − 4CFTFNf . (C.4)

Higher order coefficients of Γi, γi and β can be found in [11, 40, 41], respectively.

The DGLAP splitting functions are

Pij(z, µ) =
αs
4π

P
(0)
ij (z) +

(αs
4π

)2
P

(1)
ij (z) + · · · , (C.5)

where the first order coefficients are

P (0)
qq (z) = 2CF p̃qq(z) + 3CF δ(1− z),

P (0)
gg (z) = 4CAp̃gg(z) +

[
11
3 CA −

4
3TFNf

]
δ(1− z) ,

P (0)
qg (z) = 2TF p̃qg(z) ,

P (0)
gq (z) = 2CF p̃gq(z) , (C.6)
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with the functions

p̃qq(z) =
1 + z2

(1− z)+
,

p̃gg(z) =
z

(1− z)+
+

1− z
z

+ z(1− z) ,

p̃qg(z) = z2 + (1− z)2
,

p̃gq(z) =
1 + (1− z)2

z . (C.7)

The second order coefficients can be obtained from the results in [9, 10] and we do not

repeat these expressions here. The coefficients up to third order are given in [11, 12].

By (. . .)+ we denote the plus prescription with support on [0, 1] regulating the pole at

z = 1. To express our results, we also use p̃ij(−z). In those cases the plus prescription is

dropped.

D Further results

In this section, we collect a number of results which either appear in intermediate steps

or have been given in the literature already. Due to the flavor and charge conjugation

symmetry of QCD, the number of independent functions reduces and below we use a

notation, where q refers to a quark of unspecified (but same) flavor and q′ to a quark of

different flavor. Up to NNLO we moreover have Bq̄/q = Bq̄′/q and corresponding relations

for the other functions.

D.1 Renormalization factors

As explained in section 2, the renormalization factors are related by their RGEs to the

anomalous dimensions and QCD β function listed in appendix C. Here we list the resulting

expressions for the perturbative coefficients according to eq. (2.27) up to NNLO for φi/j ,

ZBi and ZFi beyond their LO terms

φ
(0)
i/j(z) = δi/jδ(1− z) , Z

B,(0)
i = 1 , Z

F,(0)
i = 0 . (D.1)

Due to eq. (2.17), the parton-to-parton PDFs are directly related to their renormalization

factors and due to the RGEs both of them to the DGLAP splitting kernels, yielding the

relations

φ
(1)
i/j(z) = −

P
(0)
ij (z)

ε
,

φ
(2)
i/j(z) =

1

2ε2

[∑
k

P
(0)
ik (z)⊗ P (0)

kj (z) + β0 P
(0)
ij (z)

]
−
P

(1)
ij (z)

2ε . (D.2)
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For ZBi in eq. (2.12) we find

Z
B,(1)
i (L⊥) =

Γi0
2ε2

+
Γi0 L⊥ − 2γi0

2ε
,

Z
B,(2)
i (L⊥) =

(Γi0)2

8ε4
+

Γi0
4ε3

[
Γi0 L⊥ − 2γi0 −

3

2
β0

]
(D.3)

+
1

8ε2

[
Γi1 +

(
Γi0 L⊥ − 2γi0

)2 − 2β0

(
Γi0 L⊥ − 2γi0

)]
+

1

4ε

(
Γi1 L⊥ − 2γi1

)
,

while the coefficients for ZFi in eq. (2.13) are given by

Z
F,(1)
i =

Γi0
ε
,

Z
F,(2)
i = −β0Γi0

2ε2
+

Γi1
2ε
. (D.4)

D.2 Dependence on scale logarithms

The L⊥ dependence of Fīı and Ii/j can be recovered from their values at L⊥ = 0 by solving

the RGEs (2.23), (2.24). More explicitly, we can expand these functions in both αs and

L⊥ according to

Fīı(L⊥, αs) =
∑
n≥1

n∑
l=0

F
(n,l)
īı

(αs
4π

)n
Ll⊥ , (D.5)

Ii/j(z, L⊥, αs) =
∑
n≥0

2n∑
l=0

I
(n,l)
i/j (z)

(αs
4π

)n
Ll⊥ . (D.6)

Since the RGEs have to hold for all values of L⊥ and αs, they imply the recursion relations

F
(n+1,l+1)
īı =

1

l + 1

[
δl,0Γin +

n∑
s=0

s βn−sF
(s,l)
īı

]
, (D.7)

I
(n+1,l+1)
i/j (z) =

1

l + 1

n∑
s=0

[
1

2
Γin−sI

(s,l−1)
i/j (z) +

(
s βn−s − γin−s

)
I

(s,l)
i/j (z)

−
∑
k

I
(s,l)
i/k (z)⊗ P (n−s)

k/j (z)

]
. (D.8)

for the coefficients defined above with n, l ≥ 0. Coefficients on the right hand side with l′

outside the range specified in eqs. (D.5), (D.6) are understood to vanish.

The coefficients with values (n′, l′) are thus expressed in terms of coefficients with lower

values of n and l and the QCD parameters listed in appendix C. Applying these equations

recursively, one can remove all terms with l > 0 on the right hand sides of these equations

as can be shown easily by induction. Phrased differently, the functional dependence on L⊥
of Fīı and Ii/j can be recovered from their values at L⊥ = 0 , F

(n,0)
īı = F

(n)
īı (L⊥ = 0) and

I
(n,0)
i/j (z) = I

(n)
i/j (z, L⊥ = 0).

Note that the RGEs also imply F
(0,l)
īı = 0 as well as I

(0,l)
i/j = 0 for l > 0. From these

values and eqs. (D.7), (D.8) the maximal power of L⊥ per power of αs follows as specified

in eqs. (D.5), (D.6).
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D.3 Results at lower order

The anomaly coefficients are obtained as

F
(0)
īı (L⊥) = 0 ,

F
(1)
qq̄ (0)

CF
=
F

(1)
gg (0)

CA
= 0 . (D.9)

The NNLO results have been given in eq. (4.1) and the terms containing L⊥ are implied

by eq. (D.7). The full results agree with [22].

The renormalized matching kernels up to NLO are

I
(0)
i/j (z, L⊥) = δijδ(1− z) ,

I
(1)
g/g(z, 0) = − CAζ2δ(1− z) ,

I
(1)
g/q(z, 0) = 2CF z ,

I
(1)
q/g(z, 0) = 2TF z(2− z) ,

I
(1)
q/q(z, 0) =CF

[
2(1− z)− ζ2δ(1− z)

]
,

I
(1)
q′/q(z, 0) , I

(1)
q̄/q(z, 0) = 0 . (D.10)

Due to eqs. (2.18), (D.3) we actually determined them up to ε2 for the extraction of the

renormalized NNLO matching kernels. The terms containing L⊥ are implied by eq. (D.8).

The NNLO results have been presented in section 4. The full results are available in the

FORM module [44] associated with this paper.

D.4 Bare TPDFs

For the logarithms associated with the analytic regulator we identify

La = log
ν

n·p̄
and Lc = log

ν n̄·p x2
T

4e−2γE
(D.11)

for the anti-collinear and collinear region, respectively.

Then the exact NLO results for the bare TPDFs of the collinear and anti-collinear

region are given by

B(1)
i/j(z, x

2
T , µ, ν) = eαLc+εL⊥e−(ε+2α)γE

Γ(−ε− α)

Γ(1 + α)
(1− z)α f (1)

i/j (z) ,

B̄(1)
i/j(z, x

2
T , µ, ν) = eαLa+εL⊥e−εγEΓ(−ε)(1− z)−α f (1)

i/j (z) , (D.12)

with the functions

f
(1)
g/g(z) = 4CA

1

1− z

[(
1− z + z2

)
2

z

]
,

f
(1)
g/q(z) = 2CF

[
1 + (1− z)2

z
− εz

]
,

f
(1)
q/g(z) = 2TF

[
1− 2

1− ε
z(1− z)

]
,
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f
(1)
q/q(z) = 2CF

1

1− z

[
1 + z2 − ε(1− z)2

]
,

f
(1)
q′/q(z) , f

(1)
q̄/q(z) = 0 . (D.13)

Note that here the coefficients are given with respect to the renormalized coupling constant,

such that appropriate powers of the MS factor are included and the NNLO expressions

contains not only the double real and virtual-real contributions, but also a counter term

contribution:

B(2)
i/j = B(2,2)

i/j + B(2,1)
i/j −

β0

ε
B(1)
i/j , (D.14)

and correspondingly for the anti-collinear functions. The last term is obtained from the

NLO results above. For the other terms we only list the pole terms in the analytic regulator,

since the full results are very lengthy. The complete results can be found in the FORM

module [44] accompanying this article. They can be written as

B(2,nr)
i/j (z, x2

T , µ, ν) = enrαLc+2εL⊥ f
(2,nr)
i/j (z, 1) +O(α, ε) ,

B̄(2,nr)
i/j (z, x2

T , µ, ν) = enrαLa+2εL⊥ f
(2,nr)
i/j (z,−1) +O(α, ε) , (D.15)

with nr the number of emitted partons. For the virtual real contribution we identify

f
(2,1)
g/g (z, s) = C2

Aδ(1− z)
4s

α

{
1

ε3
− 1

ε
ζ2 +

2

3
ζ3

}
+O(α0) ,

f
(2,1)
q/q (z, s) = CFCCAδ(1− z)

4s

α

{
1

ε3
− 1

ε
ζ2 +

2

3
ζ3

}
+O(α0) ,

f
(2,1)
g/q (z, s) , f

(2,1)
q/g (z, s) = O(α0) ,

f
(2,1)
q̄/q (z, s) = f

(2,1)
q′/q (z, s) = 0 . (D.16)

For the double real contribution the pole terms are obtained as

f
(2,2)
g/g (z, s) = C2

A

{
δ(1− z)

[
8

α2ε2
+

8

α2
ζ2 −

8 + 10s

αε3
− 11s

3αε2
+

1

αε

(
− 67s

9
+ 4sζ2

)
+

1

α

(
− 11s

3
ζ2 −

404s

27
+

2(4 + 23s)

3
ζ3

)]
+ p̃gg(z)

[
16s

αε2
+

16s

α
ζ2

]}
+ CATFNfδ(1− z)

{
4s

3αε2
+

20s

9αε
+

1

α

(4s

3
ζ2 +

112s

27

)}
+O(α0) ,

f
(2,2)
g/q (z, s) = CFCA

{
p̃gq(z)

[
8s

αε2
+

8s

α
ζ2

]
− 8sz

αε

}
+O(α0) ,

f
(2,2)
q/g (z, s) = CFTF

{
p̃qg(z)

[
8s

αε2
+

8s

αε
+

8s

α

(
1 + ζ2

)]
+

[
− 8s

αε
− 8s

α

]}
+O(α0) ,
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f
(2,2)
q/q (z, s) = CFCAδ(1−z)

{
− 2s

αε3
− 11s

3αε2
+

s

αε

(
4ζ2 −

67

9

)
+
s

α

(38

3
ζ3 −

11

3
ζ2 −

404

27

)}
+ C2

F

{
δ(1−z)

[
8

α2ε2
+

8

α2
ζ2 −

8(1 + s)

αε3
+

8(1 + s)

3α
ζ3

]
+ p̃qq(z)

[
8s

αε2
+

8s

α
ζ2

]
− 8(1−z)s

αε

}
+ CFTFNfδ(1−z)

{
4s

3αε2
+

20s

9αε
+

1

α

(
4s

3
ζ2 +

112s

27

)}
+O(α0) ,

f
(2,2)
q′/q (z, s) , f

(2,2)
q̄/q (z, s) = O(α0) . (D.17)

Using the results listed above, it is a straightforward exercise to confirm the cancellation

of all poles in the analytic regulator up to NNLO in αs on the left hand side of eq. (2.11)

as well as the cancellation of the related scale ν and the associated generation of the hard

scale q2 ∼ n̄·p n·p̄ by the difference of the two logarithms in eq. (D.11).
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