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Abstract The foliar incorporation of various reactive

forms of nitrogen (N) has been identified and studied for

nearly 30 years. However, the ecosystem-level ramifica-

tions of this uptake pathway have only recently been

considered by the scientific community. In this review, I

present our current understanding of the foliar uptake

process and then discuss why this pathway of N addition to

ecosystems should be considered separately from the bulk

deposition of N to the soil surface. Direct foliar uptake is a

direct addition of N to plant metabolism and could poten-

tially more readily influence plant growth compared to soil-

deposited N. Current ecosystem process models do not

partition reactive N between foliar and soil entry pathways

and the influence of N deposition on ecosystem C

sequestration is likely inadequately represented in most

models. I also outline several research priorities for the

future understanding of the ecological consequences of

foliar uptake of reactive N.

Keywords Nitrogen � Nitrogen dioxide � Nitric acid �
Peroxyacetyl nitrate � Ammonia

Introduction

Throughout history, the lack of reactive nitrogen (N) has

largely limited the food production needed to sustain

human population growth. A desire to increase food pro-

duction by the use of fertilizer and the increase in the use of

fossil fuels has led to an excess in reactive N delivered to

the biosphere each year, resulting in a array of human

health and ecological issues (e.g., Cowling et al. 2001;

Galloway et al. 2003, 2008; Erisman et al. 2007).

One major ramification of increased global reactive N is

a large increase in the reactive N gases delivered to the

atmosphere each year and the eventual deposition of this

reactive N back to the earth’s surface. Galloway et al.

(2004) suggest that total global atmospheric deposition of

reactive N increased from 31.6 to 103 Tg N year-1 from

1860 to the mid-1990s and is expected to further increase

to 195 Tg N year-1 by 2050.

The response of entire ecosystems to added reactive N is

the subject of a large and varied body of literature (e.g.,

Holland and Lamarque 1997; Aber et al. 2003; Galloway

et al. 2004) and well beyond the scope of this review. The

current review was prepared with the following goals in

mind: to summarize the existing literature describing the

foliar incorporation of reactive N, to present several

arguments for why foliar and soil pathways of N incor-

poration into biota should be considered separately, and to

suggest future avenues of research to more fully elucidate

the importance of canopy incorporation of N.

The sources of reactive N in the atmosphere

Oxidized forms of N (NOy) and ammonia (NH3) emissions

to the atmosphere result from natural sources, food pro-

duction, and the generation of energy (Galloway et al.

2004). Total NOy emissions to the atmosphere are currently

estimated to be *46 Tg N year-1 with the largest contri-

bution coming from the combustion of fossil fuels
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(*20 Tg N year-1). Total NH3 emissions to the atmo-

sphere are *57 Tg N year-1 with the largest contribution

coming from volatilization from animal wastes

(*23 Tg N year-1) (van Aardenne et al. 2001). Both of

these estimates are increasing with time and are predicted

to be [50% larger by 2050 (Galloway et al. 2004).

The various forms of NOy and NH3 are reactive gases

that readily deposit back to the surface at relatively short

time scales (minutes to days) after emission. Global

deposition estimates (Lelieveld and Dentener 2000) reflect

this rapid deposition and suggest a large proportion of all

emissions are deposited back to the surface on a less than

annual time scale.

Plant cover plays an important and controlling role in

the rate of deposition of most reactive compounds includ-

ing N. In general, plant canopies greatly increase the rate of

deposition. However, the ultimate rates at which reactive N

compounds are transferred between the atmosphere and the

surface are the result of several interconnected ecological,

biochemical, chemical, and edaphic controls and the

overarching meteorological conditions. The challenges

associated with the measurement and modeling of these

fluxes has been at the forefront of ecology, biometeorology

and biogeochemistry for two decades and much uncertainty

still exists (e.g., Baldocchi and Wilson 2001; Monson and

Holland 2001). However, there is little doubt that some

proportion of the downward flux of reactive compounds

interacts with, and may be absorbed, by plant canopies.

Historical perspective of foliar uptake

The role of atmospheric deposition in plant nutrition has

been acknowledged and described for nearly 200 years

(e.g., Von Liebig 1827). However, the foliar uptake of N

was not studied intensively until the mid-twentieth century.

With the general recognition of N-based air pollution, plant

scientists described the foliar interactions with several

reactive N compounds (Dugger et al. 1963; Hill and Ben-

nett 1970; Spierings 1971; Wellburn et al. 1972; Zeevaart

1976 among others). The pioneering work of these early

authors led to two observations that have guided much of

the research in the field: at some atmospheric concentra-

tion, reactive N compounds cause phytotoxicity; the

endpoint chemical products formed in the apoplast during

fumigation [most commonly nitrite (NO2
-), nitrate

(NO3
-), and ammonium (NH4

?)] are compounds assimi-

lated by the normal plant N assimilation pathways.

Therefore, the potential for both detrimental and beneficial,

through fertilization, effects of foliar uptake have been

considered since the earliest measurements.

Most of the early experiments were laboratory fumiga-

tions of entire plants. Due to the technology available for

both gas production and measurements, these experiments

were done at high concentrations, well above those observed

in the field. Therefore, phytotoxic leaf damage was often

observed. For example, Zeevaart (1976) described necrotic

leaf damage of up to 87% in several herbaceous plant species

after 2 days of fumigation. However, the fumigation level

used in this experiment was 4–11 p.p.m. (a level 100 times

higher than that currently observed in the atmosphere).

Interestingly, during this same experiment, Zeevaart (1976)

observed large increases in the NO2
- content of leaves,

leaving open the possibility of plant fertilization even at

these unnaturally high levels of fumigation.

These early experiments provided insight into many of

the phytotoxic effects of reactive N and described much

of the mechanisms of uptake. However, it was not until

the past 25 years that adequate methodologies for con-

trolling and monitoring gas concentration at levels

representative of the atmosphere were applied to physio-

logical measurements.

Physiological ecology of foliar uptake

Uptake mechanisms

Figure 1 describes the general understanding of the leaf

uptake pathways of oxidized and reduced forms of reactive

N. Nitric oxide (NO), nitrogen dioxide (NO2), and NH3

dissolve in the leaf apoplast to primarily form nitrous acid

(HONO, HNO2) and nitric acid (HNO3) that then dissociate

to NO2
-, NO3

-, and protons and NH4
?, respectively

(Zeevaart 1976; Wellburn 1990; Gessler and Rennenberg

1998). The NO/NO2 reaction is irreversible and dependent

upon the concentration of NO2
-/NO3

- in the apoplastic

solution (Remmler and Campbell 1986; Stulen et al. 1998).

The dissolution of NH3 into the leaf apoplast is driven by

the gradient in concentration between the NH3 concentra-

tion in the air of the substomatal space and the surrounding

mesophyll tissue. This gradient is variable depending upon

the ambient NH3 concentration and in many areas far from

point sources of NH3, a net emission of NH3 is observed

from leaves. This suggests NH3 has a leaf-level compen-

sation point (Krupa 2003). A compensation point has also

been reported for NO2 (Thoene et al. 1991; Sparks et al.

2001; Teklemariam and Sparks 2006) but it is usually small

(\50 pmol) and often does not appear congruent with

whole canopy estimates (Lerdau et al. 2000). It has been

suggested there is some level of storage (in the apoplast or

in cellular vacuoles) of NO3
- and NH4

? before eventual

assimilation (Grundmann et al. 1993; Qiao and Murray

1997). However, these studies were conducted at very high

concentrations and similar storage has not been reported in

studies conducted at realistic atmospheric concentrations.
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Once in the apoplast, NH4
? is transported into the cell

and assimilated by the glutamine synthetase (GS) and

glutamate synthase (GOGAT) systems (Lea and Miflin

1974; Tischner 1987; Wallsgrove 1987; Krupa 2003). The

other major source of NH3 in the cytosol is photorespira-

tory and, as such, the NH3 derived from foliar uptake

interacts directly with photorespiratory processes. Gluta-

mate dehydrogenase has also been suggested as an

alternative to the GS/GOGAT system (Srivastava and

Singh 1987; Stulen et al. 1998), but appears to play a minor

role in the assimilation of atmospheric NH3 (Rhodes et al.

1989; Krupa 2003). GS is often found in plants as two

isoforms, one cytosolic and the other chloroplastic (Fig. 1).

The relative importance of GS1 and GS2 varies across plant

species (Miflin and Habash 2002) and both may be

involved in the assimilation of NH3.

After dissolution to NO2
- and NO3

- from NO2 in the

apoplast, both forms are transported into the cell where

NO3
- is rapidly reduced to NO2

- by the enzyme nitrate

reductase (Stulen and ter Steege 1995). NO2
- is then

transported into the chloroplast and reduced to NH4
? by

nitrite reductase and eventually incorporated into plant

proteins (Lea et al. 1994; Fig. 1). The source of NO3
- in

the leaf can therefore be from both foliar uptake and root

transport. However, many trees, especially conifers, pref-

erentially absorb NH3 at the root surface or reduce N in the

roots and do not transport appreciable amounts of NO3
- in

the xylem to the leaves. Therefore, in these species,

atmospheric N may be the only or most significant source

of NO3
-/NO2

- to the leaves.

NH4
? and NO3

- accumulate on leaf surfaces from the dry

deposition of both gases and particles (Davidson and Wu

1990; Bobbink et al. 1992). A large body of evidence com-

paring bulk deposition to canopy throughfall has suggested

an uptake of leaf-surface N (e.g., Lovett et al. 1985; Garten

and Hanson 1990; Bobbink et al. 1992 among others).

However, the mechanisms of how these ions enter the leaf

are still unclear. Often throughfall measurements reveal a net

release of other ions (e.g., K?, Mg2?, Ca2?) suggesting a

process of cation exchange in the canopy. Diffusion through

stomata and cuticular transport have also been suggested as

mechanisms (Bowden et al. 1989; Boyce et al. 1996).

The uptake mechanisms governing the leaf uptake of

HNO3 vapor have remained elusive due to the extreme

reactivity of this compound. A large body of literature

using primarily micrometeorological techniques has pro-

vided estimates of total HNO3 flux to ecosystems (e.g.,

Meyers et al. 1989; Janson and Granat 1999; Sievering

et al. 2001; Pryor et al. 2004). However, these methods do

not necessarily help to elucidate the uptake mechanisms at

the leaf level. Mechanistic work has suggested HNO3, in

contrast to other reactive N gases, is primarily deposited to

the cuticle rather than taken up via stomata (Dasch 1989;

Marshall and Cadle 1989). Modeling based on the chemical

characteristics of HNO3 (Taylor et al. 1988; Hanson and

Taylor 1990) and 15N-HNO3 tracer studies (e.g., Vose and

Swank 1990) have further supported that HNO3 is pri-

marily deposited to leaf cuticles.

Leaf uptake of HONO has been reported (Schimang

et al. 2006) and the pathway of assimilation would likely

be similar to that of NO2. The leaf uptake of the organic

form of nitrogen peroxyacetyl nitrate (CH3C(O)O2NO2;

PAN) has also been described (Okano et al. 1990; Sparks

et al. 2003; Teklemariam and Sparks 2004). These authors

suggest the assimilatory pathway after incorporation into

the leaf apoplast would mirror that for NO2. However, the

mechanism of how PAN disassociates into the apoplastic

water remains unresolved.

Leaf-level controls

The primary control over the foliar uptake rate of most

reactive N gases is the size of the stomatal aperture. The rate

of the uptake of NO2 into the leaf has been reported to be

strongly related to stomatal conductance in a multitude of

studies (Saxe 1986; Hanson and Lindberg 1991; Hargreaves

et al. 1992; Weber and Rennenberg 1996; Sparks et al. 2001;

Gut et al. 2002; Teklemariam and Sparks 2006; Eller and

Sparks 2006 among others). This relationship appears to be

linear for most plants and is the primary factor controlling the

magnitude of flux into the leaf. Similarly, the leaf uptake of

Fig. 1 Primary biochemical processes describing the foliar uptake

and assimilation of atmospheric ammonia (NH3), nitric oxide (NO),

and nitrogen dioxide (NO2). Adapted from Stulen et al. (1998). GS1

Cytosolic isoform of glutamine synthetase, GS2 chloroplastic isoform

of GS, NR nitrate reductase, NiR nitrite reductase, GOGAT glutamate

synthase, NO2
- nitrite, NO3

- nitrate, NH4
? ammonium
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gaseous NH3 is strongly controlled by the stomatal aperture

(Duyzer et al. 1994; Hanstein et al. 1999; Gessler et al. 2000,

2002). However, as described in ‘‘Uptake mechanisms’’, the

concentration of NH4
? in the apoplastic water strongly

influences the flux rate (and direction) of NH3 flux and the

strong control of stomatal conductance is often minimized

under physiological or environmental conditions leading to

high apoplastic NH4
? concentrations (Gessler and Rennen-

berg 1998; Wyers and Erisman 1998; Herrmann et al. 2001).

Although the complete uptake mechanisms have yet to be

elucidated for HONO and organic forms or reactive N (pri-

marily PAN), the leaf uptake of both of these gases is

strongly related to stomatal aperture (Sparks et al. 2003.

Schimang et al. 2006; Teklemariam and Sparks 2006).

Because of high reactivity, the flux of HNO3 is often unre-

lated to stomatal conductance (Meyers et al. 1989; Pryor and

Klemm 2004). The flux of particulate forms of NH4
? and

NO3
- into leaves is likely related to the stomatal aperture.

However, this relationship has yet to be demonstrated

experimentally.

After stomatal resistance to diffusion, the strongest con-

trol over leaf uptake of reactive N gases is the dissolution of

the gases into the apoplastic water and transport into meso-

phyll cells. Several authors have suggested resistance at the

level of the mesophyll to plant uptake (Thoene et al. 1991,

1996; Hereid and Monson 2001; Sparks et al. 2001; Gut et al.

2002; Teklemariam and Sparks 2006; Eller and Sparks

2006). The primary hypotheses presented have proposed

antioxidant compounds in the apoplast facilitating rapid

uptake (Ramge et al. 1993; Teklemariam and Sparks 2006;

Eller and Sparks 2006; Haberer et al. 2006) and regulation of

the transport and consumption of the apoplastic endpoint

products (NO2
-, NO3

-, and NH4
?) by downstream enzy-

matic activity (Zeevaart 1976; Murray and Wellburn 1985;

Rowland et al. 1987; Bender et al. 1991; Thoene et al. 1991;

Hur and Wellburn 1994; Hufton et al. 1996; Wellburn 2002;

Eller and Sparks 2006). Eller and Sparks (2006) suggested

the uptake of NO2 to leaves could be predicted with fidelity

using a correlative model considering stomatal conductance,

apoplastic ascorbate, and leaf nitrate reductase activity.

However, this model described only a single plant species

and it is unclear if such a model would be applicable across

multiple plant species or functional types.

Leaf- and canopy-level fluxes of NH3 are usually modeled

using a compensation model originally developed by Sutton

et al. (1998). This is a canopy resistance model that uses a

stomatal compensation point for NH3 and soil emission. The

stomatal compensation point is calculated (see Nemitz et al.

2000) as a function of temperature and the leaf emission

potential (the ratio of NH4
? to H? in the apoplast). This

method has been used successfully in several experimental

and modeling studies (Flechard and Fowler 1998; Schjo-

erring et al. 1998; Milford et al. 2001; Sparks et al. 2008).

The transport of leaf-surface NO3
- and NH4

? ions pri-

marily occurs through cuticular diffusion (Peuke et al.

1998). The indirect evidence for this stems from the

observation that NH4
? leaf uptake is higher than NO3

- leaf

uptake in most tracer experiments (e.g., Garten and Hanson

1990; Peuke et al. 1998). Our current understanding of

plant cuticles suggests cations are transported much more

readily through cuticles than anions (Tyree et al. 1990).

Plant cuticles tend to be positively charged at pH values[3

(Schonherr and Bukovac 1973) and negatively charged

ions are excluded from cuticular diffusion.

A mechanism for stomatal transport has been presented.

Burkhardt and Eiden (1994) suggested continuous water

layers connect the leaf surface to the mesophyll through the

stomata during wetting allowing the diffusion of ions.

However, this hypothesis has not been fully tested to date.

Relative magnitude compared to other sources of N

Determining the relative magnitude of foliar incorporation

of N compared to soil-derived N has been challenging.

Sievering et al. (2007) have suggested that nearly 50% of

the N demand of a forest in Colorado, USA, is met by

canopy incorporation of reactive N. However, this is one of

the highest estimates seen in the literature and canopy

uptake of reactive N is variably reported as 0–50% of plant

N demand (e.g., see review of Harrison et al. 2000). The

variability of such estimates is probably driven by two

factors: the inherent challenges in estimating canopy

uptake from throughfall measurements, and an incomplete

closure of the N budget at any given site. Although vari-

able, the estimates of canopy uptake do suggest it is a

consequential pathway for N entry into ecosystems.

At the whole-plant level, Vallano and Sparks (2007) used

combined fumigation/hydroponic systems and isotopic

tracers to estimate that up to 16% of total plant growth N can

be derived from atmospheric NO2. This agreed relatively

well with earlier modeled estimates by Muller et al. (1996)

and Ammann et al. (1999). This study considered only one

chemical species of reactive N and it is likely the sum of all

potential foliar inputs of N would be higher and could

potentially match those reported in some field throughfall

estimates.

Phytotoxicity versus airborne nutrition

Laboratory estimates of phytotoxicity compared to field

observations

All plant foliage is sensitive to reactive N at high enough

concentrations (Wellburn 1990; Okano et al. 1990; Krupa

2003). However, at concentrations reflective of the current
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atmosphere (even in polluted areas) visible signs of phy-

totoxicity due to direct exposure are rarely observed or at

least are not discernable from the influence of bulk

deposition.

Field experiments have shown variable effects of leaf

exposure to reactive N on overall plant growth with both

increased and decreased growth rates observed (e.g.,

Adaros et al. 1991; Saxe 1994; Hufton et al. 1996). How-

ever, detrimental physiological responses including

decreased photosynthesis (Saxe 1986), effects on plasma

membranes (Russell et al. 1999) and plant water-use effi-

ciency (Siegwolf et al. 2001) have been reported coincident

with leaf fumigation with reactive N.

Evidence for nutritive effects of foliar uptake

in the field

There is significant debate about whether total N depo-

sition to ecosystems significantly influences plant growth.

Recent reviews suggest an enhanced growth effect of

added N in both temperate and boreal forests of Europe

and North America (Högberg 2007; Magnani et al.

2007). However, modeling efforts (Currie et al. 2004)

based on long-term N addition experiments and short-

term 15N cycling studies (Nadelhoffer et al. 1999) sug-

gest small to non-existent influences on plant growth.

These efforts do not consider soil- and foliar-derived N

separately. It would be intriguing to see if experiments

which add reactive N to the soil surface would show

increases in plant biomass if that N were applied to the

canopy. However, large-scale experiments adding reac-

tive N directly to the canopy are rare. The largest

experiment to date was conducted at Howland Forest,

Maine, USA where NH4NO3 was added to the forest

canopy as a liquid mist. The impacts of this addition to

growth have yet to be published (although see Gaige

et al. 2007). Experiments like this one will shed some

light on the influence of ion additions of N to the can-

opy. However, the simulation of the addition of all N to

the canopy, including gases and particles, remains a

challenge for the future.

Why should foliar uptake of reactive N be considered

separately from soil-deposited N?

The level of atmospheric reactive N available for foliar

uptake and total rates of N deposition are obviously related;

higher atmospheric concentrations drive both processes.

Therefore, the obvious question is: are there reasons the

foliar uptake and soil deposition pathways should be con-

sidered separately?

Transport distances of reactive N compounds

Table 1 describes the atmospheric lifetimes of the domi-

nant chemical species involved in both foliar uptake and

bulk N deposition. The lifetime of a molecule in the table

does not necessarily indicate time until chemical destruc-

tion, but considers the rate of deposition to the surface. The

factors assumed in the lifetime estimate are listed in the

footnotes to Table 1.

Table 1 shows that there are significant differences

among various forms of reactive N in lifetime and, hence,

distances traveled from sources of emission. Further, the

atmospheric chemistry of reactive N (Crutzen 1979) plays

a significant role in transport distance. The primary emis-

sion compounds (NO, NO2, and NH3) undergo chemistry

that significantly lengthens the distanced traveled before

deposition or foliar uptake. NO and NO2 may react with

oxidized hydrocarbons to form PAN. PAN is relatively

stable in the atmosphere, deposits to the surface less readily

than NO2, and allows reactive forms of oxidized N to be

transported long distances. NH3 (a compound that deposits

to the surface very rapidly and has an atmospheric lifetime

of less than 1 day) is the only strongly basic compound in

the atmosphere and readily reacts with acids in the atmo-

sphere by reactions such as:

2NH3 þ H2SO4 ) NH4ð Þ2SO4

Therefore, some portion of emitted NH3 is converted to

NH4
? in the atmosphere, significantly extending its

Table 1 Chemical formula and atmospheric lifetime of the major

N-containing chemical species taken up directly by plant foliage

Chemical species Chemical formula Atmospheric

lifetime

Ammonia/ammonium NH3/NH4
? 1–10 daysa

Nitric oxide NO 57–600 sb

Nitrogen dioxide NO2 143 s (daytime)

7 h (nighttime)c

Nitrate radical NO3 5–6 s (daytime)d

[1,000 s (nighttime)

Nitric acid HNO3 0.5 days-1 me

Peroxyacetyl nitrate (PAN) CH3C(O)O2NO2 2–600 hf

a Estimates include lifetime of NH3 and particulate NH4
? from Er-

isman et al. (2007) and Schlesinger and Hartley (1992)
b Calculated for reactions with O3 and HO2: reaction coefficients

from Finlayson-Pitts and Pitts (2000)
c Reaction coefficients from Finlayson-Pitts and Pitts (2000)
d Daytime zenith angle = 0�; nighttime s calculated for reactions

with NO2 and volatile organic compounds in an unpolluted atmo-

sphere, from Brasseur et al. (1999)
e Includes heterogeneous incorporation into clouds and aerosols,

from Brasseur et al. (1999)
f Assuming no new PAN synthesis, from Singh et al. (1990)
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atmospheric lifetime as a particle, aerosol, or as an ion in

water (Schlesinger and Hartley 1992). The effect of

differential atmospheric lifetimes coupled with a non-

random distribution of point sources suggests that sites

arrayed across the landscape not only receive different

amounts of total reactive N but also different proportions of

chemical species in that deposition. In general, NO2 and

NH3 will dominate deposition near point sources of

emission, organic compounds like PAN will become

more dominant further downwind after the air mass

begins to oxidize, and highly oxidized forms like HNO3

will dominate fully oxidized air masses. This is, of course,

a simplified view and does not consider several factors

including the disassociation of PAN back to NO2 and the

variability of air mass movement across the landscape.

However, it is likely that different environments receive

dramatically different amounts and compositions of

reactive N.

Foliar uptake is likely to be most important in envi-

ronments dominated by reactive N compounds likely to

enter plant stomata at a rate higher than deposit to other

surfaces in the environment. This appears to be the case for

NO2 (Sparks et al. 2001; Wellburn 2002), PAN (Sparks

et al. 2003), and other forms of organic nitrate (Lockwood

et al. 2008), but not the case for NH3 and HNO3

(Bytnerowicz et al. 1998; Nielsen et al. 2002). Therefore,

the partitioning of total deposition between foliar uptake

and deposition to other surfaces could be very different

across environments.

The foliar incorporation pathway leads to a direct

addition of NO3
- and NH4

? to metabolism

The pathway of direct foliar uptake of reactive N is clearly

fundamentally different from uptake of N deposited to

other surfaces in the environment. Long- and short-term

studies of N application to the soil surface (Nadelhoffer

et al. 1999; Currie et al. 2004; Pregitzer et al. 2008) have

shown that at least some of the deposited N is incorporated

into soil organic matter and has some likelihood of

returning directly back to the atmosphere as a gas (through

nitrification, denitrification, or volatilization) or being

leached from the system and never being incorporated into

plants. In contrast, foliar uptake is a direct addition to plant

metabolism and competes with no other process in sup-

porting plant growth.

Whether foliar uptake of N supports net growth likely

depends on the balance between plant N limitation and the

phytotoxic effects of exposure. Phytotoxic effects are well

documented for both NH3 (Krupa 2003) and oxides of N

(Wellburn 1990). However, the concentrations where

injury or decreased performance occur are usually well

above the concentrations seen in all but the most polluted

environments. It should be pointed out that the isolated

effects of foliar uptake have been primarily assessed over

short timescales and it is very likely long-term chronic

influences on growth do occur.

Detrimental ecosystem-level effects of soil-added

reactive N

Chronic soil deposition of reactive N has a suite of

potential detrimental effects including increases in NO3
-

leaching and loss of base cations (Hultberg et al. 1994;

Hedin et al. 1995), soil acidification (van Breeman et al.

1995), and forest decline (Aber 1992; Stoddard 1994;

McNulty et al. 1996). Therefore, the growth response of

plants to N deposition may be particularly sensitive to

the partitioning between the foliar and soil pathways (i.e.,

the larger the proportion moving directly through foliage

the larger the growth response).

Ecosystem-level considerations

Interaction with rising carbon dioxide concentrations

Consideration of foliar N uptake is compelling against the

backdrop of global increases in atmospheric carbon dioxide

(CO2). The debate over the general relationship between

simultaneous increases in CO2 and reactive N is ongoing

(Nadelhoffer et al. 1999; Högberg 2007) and the potential

differential role of soil versus foliar incorporation of added

N is not considered in most simulations (White et al. 2000;

Pepper et al. 2005). Increases in available N at the site of

carboxylation (i.e., the leaf) could potentially drive addi-

tional C gain in otherwise N-limited sites. However, very

little experimental evidence exists for such a scenario.

Hufton et al. (1996) examined the combined influence of

increased CO2 and NO ? NO2 fumigation in hydroponi-

cally grown lettuce and found a 20% increase in growth in

plants experiencing the combined fumigation compared to

elevated CO2 alone. The fumigation level of reactive N in

this study was 10 times higher than that experienced by

plants in the field (450 p.p.b.), but does suggest foliar

uptake of N can influence growth under elevated CO2.

The influence of added N directly from the atmosphere

to the apoplast is likely very complex. Bloom et al. (2001)

observed NO3
- accumulation in leaves under elevated CO2

in wheat and suggested multiple mechanisms whereby

NO3
- assimilation is inhibited under elevated CO2. This

suggests that the effect of additional NO3
- from foliar

uptake may either be unimportant under elevated CO2 (if

inhibition of NO3
- is severe) or that the higher apoplastic

concentrations of NO3
- generated by foliar uptake may

offset the slower rate of assimilation.
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Herbivory

Increased atmospheric CO2 levels have often been linked

to herbivory through changes in leaf N content leading to

increased levels of herbivory (e.g., Coviella and Trumble

1999; Hunter 2001). There is some debate as to whether

this phenomenon occurs predictably in the field (Hamilton

et al. 2004), but, if true, foliar uptake of N is likely to

strongly influence this relationship.

A common observation of plants under fumigation by

reactive N is an increase in at least some aspects of leaf N

(Rowland 1986; Rowland et al. 1987; Segschneider et al.

1995; Hanstein et al. 1999; Takahashi et al. 2005) and there

is some level of correspondence between natural variation

in foliar uptake and leaf N contents (Calanni et al. 1999;

Tomaszewski and Sievering 2007; Sievering et al. 2007).

Therefore, foliar uptake has the potential to alter the stoi-

chiometry of C and N in plant tissues in opposition to that

driven by elevated CO2. This would likely have an influ-

ence on herbivory and should be experimentally tested in

the future.

N-limited ecosystems

Many of the potential influences of foliar uptake of N

compounds as highlighted in this review are focused on

N-limited environments where the added N may have some

influence on plant growth. N (and other nutrient) limita-

tions to plant growth are common in many landscapes

(Field 2001), but the likely impact of N deposition in

general and the foliar uptake of N in particular must be

interpreted in the context of the limitations to growth. For

example, the influence of N deposition and the foliar

uptake of N will be strongly modulated by water avail-

ability in arid and semi-arid regions. Most field research to

date has largely focused on either N-limited ecosystems or

ecosystems receiving large amounts of reactive N deposi-

tion due to human activities. Much less is known about the

influence of overall N deposition and foliar uptake in non-

N-limited/low deposition ecosystems.

Measurements at different levels of integration

Scaling from leaf-level measurements

As with all leaf-level physiological measurements, scaling

up from estimates derived from single leaves is very

challenging. Part of the problem is simply the extrapolation

of small errors in precision. Small percentage errors in leaf-

level measurements are compounded when extrapolated to

whole plants and canopies. Further, leaf and branch mea-

surements of foliar uptake often utilize a cuvette or

enclosure that, despite sophisticated levels of control, dif-

fers in many regards to the natural environment.

Despite these difficulties, the largest knowledge base

regarding foliar uptake of reactive N comes from small-

scale measurements and should be utilized in larger-scale

process models and experiments. Currently, laboratory and

field measurements have generated leaf-area specific flux

rates for NO (e.g., Hereid and Monson 2001; Teklemariam

and Sparks 2006), NO2 (e.g., Thoene et al. 1996; Weber

and Rennenberg 1996; Gessler et al. 2000, 2002; Sparks

et al. 2001; Eller and Sparks 2006), NH3 (e.g., Fangmeier

et al. 1994; Hanstein et al. 1999; Ashraf et al. 2003; Castro

et al. 2006), PAN (e.g., Sparks et al. 2003; Teklemariam

and Sparks 2004), and HONO (e.g., Schimang et al. 2006).

Direct estimates of leaf uptake of HNO3 and ionic and

particulate forms of NO3
- and NH4

? are less well resolved

(e.g., Hanson and Taylor 1990; Burkhardt and Eiden 1994;

Bytnerowicz et al. 1998; Peuke et al. 1998) and only first

approximation estimates can currently be made. Many of

the uptake estimates listed above can be expressed over a

range of plant species, ambient gas concentrations and

stomatal conductances. Until larger integration estimates

are made (see below), leaf-level uptake estimates should be

used to partition N additions to ecosystems between foliar

and soil pathways in process models.

Throughfall measurements

In the early 1990s, Lovett and Lindberg (1993) examined

precipitation and canopy throughfall chemistry at sites

across Europe and North America and estimated that

*40% of all N deposited is retained by the canopy. Since

that time, studies have interpreted the difference between

total deposition (wet and dry) to the canopy and throughfall

to be a measurement of canopy retention and potential

assimilation of reactive N into plant biomass (e.g., Bales-

trini and Tagliaferri 2001; Gaige et al. 2007). Recently,

Sievering et al. (2007) have put forth the idea of canopy N

uptake (CNU) and related estimates of CNU to net eco-

system exchange of C (NEE). This general concept may be

an integrated way to approach the relationship between

foliar incorporation of N and plant growth. However,

several shortcomings currently limit the usefulness of this

approach. First, it remains difficult to link canopy retention

to assimilation. For example, preliminary measurements

from a large canopy-level application of 15N label to a

forest in Maine indicated less than 5% of the label was

recovered in live foliage and wood after 2 years of N

addition to the canopy (Dail et al., in review). Second, most

throughfall-based analyses do not account for gaseous

losses of N from the canopy. We know that significant

phytolysis of reactive N yielding gaseous losses occurs

from snow and ice (Dibb et al. 1998; Munger et al. 1999;

Oecologia (2009) 159:1–13 7
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Beine et al. 2002) and recent evidence suggests similar

phytolytic losses occur from plant canopies (Raivonen

et al. 2006). Such gaseous losses would cause canopy

uptake estimates to decrease. Third, it has not been dem-

onstrated the N added through CNU can influence

physiology at the timescale Sievering et al. (2007) use for

comparison to NEE. These authors use NEE and CNU

estimates from time periods corresponding to the time

between precipitation events (the timescale necessary for a

canopy throughfall measurement). Often these time periods

are short (a few to several days) and it is unclear if N

assimilated into the canopy can influence physiology at this

timescale.

Micrometeorological measurements

Perhaps some of the most powerful methods for assessing

the integrated deposition of N are micrometeorological

methods such as eddy covariance and relaxed eddy accu-

mulation. These and other meteorological methods have

been used to quantify fluxes of various components of

reactive N to plant canopies (Pryor et al. 2001; Riedo et al.

2002; Pryor and Klemm (2004); Butterbach-Bahl et al.

2004; Farmer et al. 2006; Turnipseed et al. 2006). How-

ever, it is challenging to separate the foliar incorporation

component from the overall flux estimate generated using

these methods. Downward fluxes to canopies are the

summation of deposition to surfaces, foliar (stomatal)

deposition, and chemical destruction. The estimate is also

strongly influenced by meteorological conditions (Baldoc-

chi and Wilson 2001). Therefore, although meteorological

methods can provide robust estimates of the fluxes of

reactive N, additional information is needed to partition

this flux among different pathways of deposition and

chemical destruction.

Appropriate experiments for informing future modeling

efforts

Modeling estimates of the global enhancement of forest

growth due to atmospheric reactive N deposition vary

dramatically between 0.1 and 2 Pg C year-1 (Schindler

and Bayley 1993; Townsend et al. 1996; Holland et al.

1997). Most of these efforts simply assume growth

enhancement is proportional to N deposition and do not

necessarily differentiate foliar incorporation from soil-

deposited N.

The information most useful to process modeling is a

reasonable partitioning of deposited N among pathways

leading to plant assimilation (soil vs. foliar) and estimates

of how this deposited N increases plant growth across a

variety of ecosystems.

Producing these estimates will require a combination of

ecosystem and fine-scale physiology measurements. Ide-

ally, meteorological measurements of flux and leaf-level

uptake measurements could be co-located at focal sites and

coordinated with laboratory measurements of dominant

plant species. A research science plan suggestive of such a

strategy has been presented by a workshop aimed at

increasing understanding of atmosphere-biosphere N

interactions (Holland et al. 2005).

Important future research directions

Determine the relationship between instantaneous plant

performance and foliar uptake of reactive N

Physiological responses to foliar incorporation of reactive

N have been studied (see ‘‘Physiological ecology of foliar

uptake’’ and ‘‘Phytotoxicity versus airborne nutrition’’

above). However, several important questions have rarely

been addressed. Does the availability of reactive N to

leaves influence short- and long-term photosynthetic

capacity? What is the cost associated with overcoming the

phytotoxic effects of the incorporation of reactive N by

leaves and does it increase rates of respiration? How does

the net effect of physiological alteration influence plant

growth?

Advances in technology for determining dry N

deposition

The monitoring of wet deposition is done routinely at many

sites. However, the monitoring of dry deposition is much

rarer. The best regional estimates of dry N deposition

within North America come from the Environmental Pro-

tection Agency sponsored Clean Air Status and Trends

Network (CASTNet) sites. However, CASTNet sites only

measure a subset of dry-deposited N (particulate NO3
- and

NH4
? and gas-phase HNO3) and do not quantify several

important species of gaseous N (e.g., NH3, and major

components of total NOy including NO2, dinitrogen pent-

oxide, HONO, PANs, and alkyl nitrates). In addition,

CASTNet sites are relatively rare. Similar monitoring

networks exist in Europe with many of the same problems.

New technologies for the monitoring of dry deposition of

reactive N are needed for any scaling exercise of both total

N deposition and foliar uptake.

Examination of the affects of foliar N uptake under

increased CO2 concentrations

As discussed in ‘‘Interaction with rising carbon dioxide

concentrations’’, some evidence exists that direct foliar
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incorporation of reactive N may increase the growth of

plants under elevated CO2. However, this relationship has

not been tested rigorously and has only been examined in

very few plant species. If a synergistic relationship exists

between canopy uptake of reactive N and plant growth, the

influence on C sequestration is potentially large and should

be quantified in multiple plant functional types.

Develop methods for partitioning between foliar

and root N uptake

Partitioning of deposited N among pathways of incorpo-

ration (foliar vs. soil) will be key to our future

understanding of the influence of N deposition on ecosys-

tem productivity. It is unlikely any single method can be

used to determine this partitioning. However, a combina-

tion of methods that quantify total N deposition, rates of

foliar uptake of various compounds, and the influence of

incorporation on plant growth could be used to determine

partitioning in key ecosystems.

Incorporation of the foliar uptake of reactive N

into regional and global production models

As discussed in ‘‘Appropriate experiments for informing

future modeling efforts’’, current process models either do

not consider foliar uptake of reactive N separate from total

N deposition or make this separation without firm experi-

mental evidence. Given the potential differences between

soil- and canopy-deposited N, a future research priority

should be to reasonably partition these pathways in process

models.

Conclusions

In the past 30 years, large strides forward have been made

in our understanding of the leaf uptake of reactive N. More

work is needed to elucidate the leaf uptake mechanisms of

ionic, particulate, and organic forms, but we do understand

the basic mechanisms of uptake for the dominant inorganic

forms (NO, NO2, NH3) of reactive N. However, similar

strides have not been made in determining the ecological

importance of foliar uptake. It is still unclear when or if

foliar uptake enhances plant growth and what the direct

connections are between uptake and physiological pro-

cesses like photosynthesis.

Foliar uptake of reactive N is likely very different from

the acquisition of N by plants after soil deposition and

should be considered differently in ecosystem process

modeling. In order to facilitate this, research priority

should be placed on combined ecosystem and physiology

studies aimed at accurately partitioning the entry of reac-

tive N into ecosystems between foliar and soil pathways.
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