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Abstract
Background: Protein acetylation is increasingly recognized as an important mechanism regulating
a variety of cellular functions. Several human protein acetyltransferases have been characterized,
most of them catalyzing ε-acetylation of histones and transcription factors. We recently described
the human protein acetyltransferase hARD1 (human Arrest Defective 1). hARD1 interacts with
NATH (N-Acetyl Transferase Human) forming a complex expressing protein N-terminal α-
acetylation activity.

Results: We here describe a human protein, hARD2, with 81 % sequence identity to hARD1. The
gene encoding hARD2 most likely originates from a eutherian mammal specific retrotransposition
event. hARD2 mRNA and protein are expressed in several human cell lines. Immunoprecipitation
experiments show that hARD2 protein potentially interacts with NATH, suggesting that hARD2-
NATH complexes may be responsible for protein N-α-acetylation in human cells. In NB4 cells
undergoing retinoic acid mediated differentiation, the level of endogenous hARD1 and NATH
protein decreases while the level of hARD2 protein is stable.

Conclusion: A human protein N-α-acetyltransferase is herein described. ARD2 potentially
complements the functions of ARD1, adding more flexibility and complexity to protein N-α-
acetylation in human cells as compared to lower organisms which only have one ARD.

Background
Protein acetylation is a very common modification with a
significant impact on several cellular processes. Acetyla-
tion occurs both at lysine residues within proteins (Nε-

acetylation) and at the N-terminus of proteins (Nα-
acetylation). In yeast, N-acetyltransferase 1 (Nat1p) com-
plexes with Arrest defective 1 (Ard1p) to generate a func-
tional NatA protein Nα-acetyltransferase [1], Ard1p being
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the catalytic subunit. Proteins with Ser-, Thr-, Gly-, or Ala-
N-termini are described to be substrates of NatA after
methionine cleavage [2]. The yeast NatB and NatC com-
plexes acetylates different subsets of methionine N-ter-
mini [2-4]. Almost all known N-terminally acetylated
yeast proteins are products of one of these Nat com-
plexes[5]. Protein N-terminal acetylation is generally
believed to be a cotranslational process linked to the
ribosome [6-10]. hARD1, the human protein with highest
sequence similarity to yeast ARD1, has been described on
the genomic (TE2, GenBank [NM_003491]) [11], mRNA
[12], protein, and enzyme activity levels [6]. Endogenous
hARD1 was demonstrated to interact with NATH and
express protein Nα-acetyltransferase activity. The complex

was found to interact with ribosomal subunits supporting
its function in cotranslational acetylation [6]. In vitro
translated mouse homologues, mNAT1 and mARD1,
have also been shown to interact and express N-acetyl-
transferase activity [13]. In S. cerevisiae and D. mela-
nogaster, a third subunit of the NatA complex has been
described and named Nat5p and San, respectively [8,14].
The function of this subunit is unknown, but sequence
analysis suggests that Nat5p/San is an acetyltransferase.
The human orthologue, hNAT5, was also recently demon-
strated to be a part of the human NatA complex [15].

Even though 80–90 % of all mammalian proteins and 50
% of yeast proteins are estimated to be cotranslationally

Human ARD2 gene expressionFigure 1
Human ARD2 gene expression. (A) The genomic organization of the hARD2 gene on Chromosome 4 (not to scale) displaying 
Exon1, Exon2, Intron, the open reading frame (ORF), the nucleotides in the splice sites and the primers pr1-pr4. The regis-
tered cDNA sequences BC004552 and BC063623 are also indicated. (B) RT-PCR of the hARD2 ORF using the primers pr1 
and pr3 in the cell lines Jurkat (1), HEK293 (2), NPA (3). β-Actin is used as an internal control. (C) Detection of hARD2 exon 
1–2 specific PCR product (381 nts) using primers pr2 and pr4 in the cell lines Jurkat (1) and HeLa (2). The asterisk denotes an 
unspecific PCR product.
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Nα-acetylated [4,16-20], only a few examples exist
describing the functional importance of proper Nα-
acetylation. For instance, the function of the yeast pro-
teins Orc1p and Sir3p in telomeric silencing is dependent
on proper NatA-mediated Nα-acetylation of these proteins
[21,22].

Using yeast null strains, NatA activity has been demon-
strated to be associated with Go entry, cell growth, and the
ability to sporulate [23-26]. The importance of protein
Nα-acetylation has also been described in C. elegans,
where knockdown of either the ard1 or nat1 homologues
resulted in embryonal lethality [27]. The human NatA
complex has also recently been demonstrated to be essen-
tial for normal cellular viability. RNA interference medi-
ated knockdown of NATH or hARD1 induced apoptosis
in HeLa cells [28].

Mouse ARD1 was also reported to be implicated in the
acetylation of lysine 532 of HIF-1α, contributing to its
degradation in normoxia [12]. However, several inde-
pendent investigations have reported that at least the
wildtype hARD1 protein does not mediate Nε-acetylation
of the lysine residue 532 of HIF-1α [29-32].

The hARD1 gene is located on chromosome X (Xq28).
Database searches revealed the presence on chromosome
4 (4q21.23) of a putative human paralogue of the previ-
ously published hARD1 gene (GeneID:84779, hypotheti-
cal protein [MGC10646]). We named this hypothetical
human ARD, hARD2.

Here we describe the cloning and expression of hARD2.
The entire ORF of hARD2 is intronless, resembling a gene
duplicate. Many gene duplicates are non-functional pseu-
dogenes but some, including hARD2, are active genes pro-
ducing mRNAs and proteins [33-35]. Similar to hARD1,
hARD2 interacts with NATH and expresses N-α-acetyl-
transferase activity.

Results
hARD2 cloning and expression
Analysis of the genome sequence of hARD2 suggests that
the complete open reading frame is located within only
one exon. This is supported by the sequences of cDNAs
[BC004552and BC063623] (Figure 1A). One intron
(7385 nts) and a non-coding second exon was predicted
at the 3'-end of the gene. The intron borders are defined
by the common "GT-AG" consensus (Figure 1A) [36].
Using RT-PCR, human cDNA and primers covering the
predicted ORF, we cloned hARD2 (see Methods) and
demonstrated hARD2 mRNA expression in different cell
lines (Figure 1B). To verify the presence of spliced hARD2
mRNA we used primers flanking the intron. RT-PCR prod-
uct of the expected size was detected (Figure 1C) and DNA

Detection of hARD2 proteinFigure 2
Detection of hARD2 protein. (A) HEK293 cells were tran-
siently transfected with plasmids encoding Xpress-lacZ as a 
negative control (neg), Xpress hARD1 (Xp-hA1) or Xpress 
hARD2 (Xp-hA2) and after 48 h processed by SDS-PAGE 
and Western blotting. Different membranes were incubated 
with anti-hARD1, anti-hARD2 and anti-Xpress as indicated. 
(B) HEK293 cells were transiently transfected with a plasmid 
encoding native hARD2 (hA2) or Xpress-lacZ as a negative 
control (neg) and after 48 h processed by SDS-PAGE and 
Western blotting. The membrane was incubated with anti-
hARD2. (C) Different cell lines were lysed and approximately 
8 µg of total protein was analyzed as above. The membrane 
was incubated with anti-hARD2, anti-β-tubulin, anti-hARD1 
and anti-NATH. 1: SK-MEL2; 2: HEK293; 3: HeLa; 4: MCF-7; 
5: NB4. The asterisk denotes an unspecific band or a slower 
migrating hARD2 variant.
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sequencing verified its authenticity as a spliced hARD2
mRNA. There has also been reported an hARD2 cDNA
sequence covering another exon, 5' to the Exon 1 indi-
cated in Figure 1A [Acc:XM_496704]. This cDNA encodes
a protein with extra amino acid residues in the N-terminal
domain of the protein, while the reading frame is intact.
However, we were not able to verify the existence of such
a transcript (data not shown).

We then demonstrated endogenous hARD2 protein
expression using an antibody specific for amino acids
192–206 within hARD2, a region specific to hARD2 as
compared to hARD1. To confirm the specificity of the
antibody, Xpress-hARD1 and Xpress-hARD2 was
expressed in HEK293 cells. The resulting cell lysates were
analyzed by SDS-PAGE and Western blotting. Anti-
hARD2 only detected X-press-hARD2 and anti-hARD1
only detected X-press-hARD1, while anti-Xpress detected
both proteins as expected (Figure 2A). Then, HEK293 cells
were transfected with a plasmid encoding wildtype
hARD2 and the resulting Western blot displayed a strong
band at the expected size of hARD2. In the untransfected
control (neg) there was a weaker band at the same posi-
tion strongly indicating the presence of an endogenous
hARD2 (Figure 2B). Endogenous hARD2 protein was
detected in several human cell lines indicating that it is
commonly expressed in human cell cultures (Figure 2C).
Particularly high expression was detected in the MCF-7
breast carcinoma cell line. The expression of hARD1 in the
same cell lines indicates that hARD1 and hARD2 are
simultaneously present in the cells (Figure 2C).

Evolution of the hARD2 gene
The hARD1 and hARD2 GenBank identifiers were used to
identify the relevant protein family in TAED [37]. The pro-
tein sequences of all members of this family were blasted
against all Ensembl peptides http://www.ensembl.org,
identifying them as members of Ensembl family 'N TER-
MINAL ACETYLTRANSFERASE COMPLEX ARD1 SUBU-
NIT HOMOLOG EC_2.3.1'. A non-redundant set of the
union of the TAED and Ensembl families was produced,-
a multiple alignment of the peptide sequences was calcu-
lated (data not shown), and an initial phylogenetic tree
was produced. Using this tree and the synteny informa-
tion available through Ensembl suggested that ARD2 is a
mammalian specific duplication. To confirm this we
searched for expression of the Ensembl rat and mouse
ARD2 genes (data not shown). RT-PCR experiments of rat
and mouse cDNA using primers flanking each gene con-
firmed the expression of the mouse gene
ENSMUSG00000046000 (ENSMUSP00000057336),
which is in a region of synteny with hARD2, and the rat
gene ENSRNOG00000023002
(ENSRNOP00000035961) which is not. All the ARD2s
have single exon open reading frames, indicating that they

might have arisen through a mammalian specific retro-
transposition event. Furthermore, we used cDNA and
genomic DNA from kangaroo (Macropus giganteus) to
check for the presence of ARD gene(s) and in an attempt
to pinpoint the time at which the duplication occurred.
Degenerate primers made from human hARD1 and
hARD2 flanking the ORF and one exon were used to
amplify and TOPO-TA clone kangaroo ARD from cDNA
and genomic DNA, respectively. Blasting hARD1 and
hARD2 against the opossum genome predicted peptides
available from Ensembl showed only one ARD gene, with
a gene structure the same as hARD1. The Kangaroo and
Opossum ARDs and the Ensembl putative Dog ARD1 and
ARD2 were aligned with the original set of protein
sequences [see Additional file 1], a coding sequence align-
ment was produced from this [see Additional file 2], the
best aligned section was extracted (positions 53–214 in
the protein alignment, positions 157–642 in the coding
sequence alignment) [see Additional file 3], and from this
a new tree was generated [see Additional file 4] All kanga-
roo sequences clustered together in one clade, with the
opossum sequence as an outgroup. The tree therefore sug-
gests the presence of only one kangaroo ARD gene (or sev-
eral that are much more related to each other than are
hARD1 and hARD2). This tree was rooted to give the final
tree (Figure 3), which shows that the speciation of Kanga-
roo and Opossum precedes the gene duplication that
results in ARD2. Thus, ARD2 seems not to be present in
kangaroo and opossum and thus the emergence of ARD2
probably represents a eutherian mammal specific retro-
transposition event. Also, kangaroo muscle tissue was
lysed and analysed by SDS-PAGE and Western blotting
using anti-hARD1 and anti-hARD2 (data not shown). A
kangaroo protein of the expected size was observed when
using anti-ARD1 but not when using anti-hARD2. The
opossum ARD sequence is identical to hARD1 in the
region recognized by anti-hARD1. However, the posterior
probability supporting the split separating metatherians
from the eutherian ARD1/ARD2 divergence is only 0.25.
Further, a band of 700 nucleotides was observed by PCR
of genomic kangaroo material, although this kangaroo
ARD band did cluster as a metatherian sequence, rather
than with the ARD2 clade [see Additional file 4]. Alto-
gether, this provides some level of support for a eutherian
origin of ARD2. Knowledge of the kangaroo gene struc-
ture and full gene sequence will improve the confidence
level of this conclusion.

Structural comparison between hARD1 and hARD2
Alignment of the mammalian ARD1 and ARD2s and iden-
tification of the location of their N-acetyltransferase
domains (Pfam domain PF00583 [38]), shows only con-
servative substitutions from ARD1 to ARD2, except for an
alanine to proline substitution at aa117 in human ARD2
(Figure 4). As mentioned above, the hARD2 sequence is
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Phylogenetic tree of ARD genesFigure 3
Phylogenetic tree of ARD genes. Phylogenetic tree showing that the speciation resulting in the marsupials, probably precedes 
the gene duplication that resulted in ARDs. All identifiers are from Ensembl, except for 061219 (UniProt), 12718517 and 
28422364 (GenBank GI numbers), Opossum (Ensembl prediction 'Built_from_P41227_and_others_1') and Kangaroo (which is 
a consensus sequence of all the Kangaroo sequences described in this paper). The protein sequences were aligned using T-Cof-
fee, a coding sequence alignment was produced from this, the best aligned section was extracted (positions 53–214 in the pro-
tein alignment, positions 157–642 in the coding sequence alignment), and from this a new tree was generated using MrBayes 
(3000000 generations, 250000 burn-in, different rates for transitions and transversions, gamma distributed rates across sites). 
This tree was then rooted by mapping it to the NCBI tree of life whilst miniming the number of gene duplication and loss 
events when allowing poorly supported branches to be rearranged (Berglund, Steffansson, Betts and Liberles, Manuscript sub-
mitted). The figures on the branches are posterior probabilities produced by MrBayes. The two branches marked 'X' are the 
result of rearrangements during the rooting of the tree.
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Alignment of selected mammalian ARD proteinsFigure 4
Alignment of selected mammalian ARD proteins. The top four sequences are Human, Chimp, Mouse and Rat ARD1, respec-
tively. The bottom five are Human, Chimp, Mouse and Rat ARD2, plus the additional Rat ARD whose expression was con-
firmed. ARD1 exons are shown as alternating shaded and unshaded regions and exon boundaries that split a codon are shown 
in darker shading. The large boxed region is for the acetyltransferase domain (identified by a match to Pfam domain PF00583). 
The smaller boxed region at position 117 shows the Ala-Pro substituion in human ARD2. Sequence identifiers are from 
Ensembl.
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highly similar to hARD1 in the first ~175 amino acids. The
alanine amino acid residue at position 117 within the pre-
dicted acetyltransferase domain of hARD1(amino acids
44–129)[39] is substituted by a proline in hARD2. How-
ever, structure prediction analysis indicates that this resi-
due is a part of a loop in both hARD1 and hARD2 [see
Additional file 5]. This prediction was made by selecting a
protein structure that also matches to Pfam domain
PF00583 (PDB identifier 1qst, which is for a histone
acetyltransferase), aligning it and hARD1 and hARD2 to
the Pfam hidden markov model using HMMer [40], run-
ning SwissModel [41] and making a Molscript figure [42].
Importantly, this proline residue is not conserved within
the mammalian ARD2s (Figure 4). The difference in the
C-terminal region may also account for changes in the
enzymatic activity. Several serine and threonine amino
acid residues have changed between the two proteins and
this could result in a change in the regulation of the
enzymes by kinases. Prediction of the disorder and globu-
larity [43] of hARD1 and hARD2 indicates that the C-ter-
minal part of these two proteins to some extent diverge
(data not shown).

Overexpressed hARD2 co-immunoprecipitate NATH and 
HIF-1α
The NATH-hARD1 complex constitutes a functional pro-
tein N-acetyltransferase in human cells [6]. To study
whether or not a complex of NATH and hARD2 could
exist, we performed immunoprecipitation experiments.
Extract of HEK293 cells transfected with a plasmid encod-
ing V5-tagged hARD2 was made and used for immuno-
precipitation with anti-V5. Western blotting analysis of
the immunoprecipitates revealed that a minor fraction of
NATH interacts with hARD2-V5 (Figure 5A). The interac-
tion with NATH is to be expected since the removal of the
C-terminal 61 amino acids of hARD1 did not abolish
NATH binding [6] and the remaining N-terminal 174
amino acids of the hARD1 sequence is as mentioned
above highly similar to hARD2 (Figure 4).

The interaction between hARD1 and HIF-1α has been
described [12]. To investigate whether also hARD2 is
capable of interacting with HIF-1α, we cotransfected
MCF-7 cells with plasmids encoding Xpress-hARD2 and
HA-HIF-1α. HA-HIF-1α will then accumulate under these
normoxic conditions probably due to saturation of VHL-
mediated degradation of HIF-1α. The resulting cell lysates
were subjected to immunoprecipitation with the anti-
Xpress antibody. Western blotting analysis using anti-HA
demonstrated that a fraction of HA-HIF-1α co-immuno-
precipitates with Xpress-hARD2 (Figure 5B).

Subcellular localization of hARD2
Subcellular localization of hARD2 was studied by express-
ing V5-tagged hARD2 in HeLa cells followed by immun-
ofluorescence staining (Figure 6A and 6C). Similarly to
hARD1 [6], hARD2-V5 was present both in the cytoplasm
and in the nucleus, but the majority of the protein
appeared to be located in the cytoplasm. Thus, hARD2-
NATH complexes may potentially have a function in the
cytoplasm.

N-α-acetyltransferase activity of hARD2
To investigate whether or not hARD2 is a functionally
active protein N-acetyltransferase, Xpress-hARD2 was
immunoprecipitated from HEK293 cells and the N-acetyl-
transferase activity of the Xpress-hARD2 was determined
and compared to a negative control using Xpress-lacZ and
a positive control using Xpress-hARD1 (Figure 7A). We
found that hARD2 expresses N-acetyltransferase activity,
demonstrated by the acetylation of the N-terminus of cor-
ticotropin (ACTH 1–24). The activity data was normalized
using the quantified protein amount in the agarose beads
analyzed by Western blotting (data not shown). The radi-
oactivity of the Xpress-lacZ samples were defined as back-
ground and subtracted from the Xpress-hARD1/hARD2
values. The activity of the Xpress-hARD2 in three inde-
pendent experiments gave a mean value of 62 % relative

hARD2 interacts with NATH and HIF-1αFigure 5
hARD2 interacts with NATH and HIF-1α. (A)HEK293 cells, 
transfected with plasmids encoding hARD2-V5 or lacZ-V5 as 
a negative control, were harvested and the lysates were 
immunoprecipitated (IP) with the anti-V5 antibody. The 
immunoprecipitates were analysed by SDS-PAGE and West-
ern Blotting. The membrane was incubated with anti-NATH. 
The amount of lysate loaded on the gel represents approx. 
10 % of the material used in the immunoprecipitation reac-
tion. (B) MCF-7 cells were cotransfected with plasmids 
encoding HA-HIF-1α and X-press-hARD2 or X-press-lacZ as 
a negative control. After 48 hours the cells were collected 
and processed as (A). The membrane was incubated with 
anti-HA.
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to Xpress-hARD1. These results demonstrate that hARD2
expresses N-acetyltransferase activity, but also suggest that
its specific activity is lower than that of hARD1 under the
assay conditions used.

hARD1 and hARD2 are differently regulated during NB4 
cell differentiation
It has been demonstrated that mARD1 and mNAT1
mRNAs are downregulated during neuronal differentia-
tion of P19 cells [13]. Since this suggests a role of these
proteins in differentiation, we wanted to investigate the
endogenous protein expression of human homologues
hARD1, hARD2 and NATH during differentiation. For this
purpose we used retinoic acid induced differentiation of
the promyelocytic NB4 cell line. Protein levels of hARD1
and NATH significantly decreased during differentiation
in NB4 cells (Figure 8). This correlates well with the find-
ings in mouse neuronal cells. However, the levels hARD2
protein is not significantly altered under these conditions
(Figure 8).

Discussion
We here report on the presence of a human gene encod-
ing a protein acetyltransferase at the mRNA, protein and
enzyme activity levels. The ARD2 acetyltransferase has
originated through a retrotransposition event and repre-
sents an additional ARD gene that can evolve independ-
ently from ARD1. Our results suggest that the
duplication event is eutherian mammal specific. Amino
acid sequence differences between hARD1 and hARD2
demonstrate that changes already have taken place, par-
ticularly in the C-terminal region of hARD2. As pro-
posed for hARD1, hARD2 could have several different
roles in the cell. The interaction with NATH indicates a
role in the cytoplasm, possibly cotranslational N-
acetylation. It is likely that hARD1 and hARD2 bind the
same region within NATH and therefore compete for
NATH binding. The difference in activity between
hARD1 and hARD2 could suggest that the ACTH pep-
tide used in this assay is not an optimal substrate for
hARD2. It is not unlikely that the substrate preference is
different between these two enzymes. A putative HIF-1α
associated function is supported by the immunoprecip-
itation results demonstrating the potential interaction

N-Acetyltransferase activity of hARD2Figure 7
N-Acetyltransferase activity of hARD2. (A) N-terminal 
acetyltransferase assay using immunoprecipitated Xpress-
lacZ (negative control), Xpress-hARD1 or Xpress-hARD2 
complexes as the enzyme. Radioactivity [14-C] incorporated 
into the ACTH substrate was determined by scintillation 
counting. The activity data (cpm) were adjusted according to 
the FUJIFILM IR-LAS 1000 and Image Gauge v.3.45 relative 
arbitary units representing levels of Xpress-lacZ/hARD1/
hARD2 proteins. The activity of Xpress-lacZ was defined as 
background and was subtracted from the Xpress-hARD1 and 
Xpress-hARD2 activity to obtain the specific activity pre-
sented.

Subcellular localization of hARD2-V5 by immunofluorescenceFigure 6
Subcellular localization of hARD2-V5 by immunofluores-
cence. HeLa cells were transiently transfected with plasmid 
expressing hARD2-V5, fixed and labelled with anti-V5 and 
thereafter with Alexa-568-conjugated antibody. Images dis-
play hARD2-V5 in red (A and C) and nuclear DAPI staining in 
blue (B and D). Untransfected cells demonstrating the back-
ground staining levels of Alexa-568 can be observed in C 
next to the transfected cells.
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between hARD2 and HIF-1α (Figure 5B). Whether or
not HIF-1α is a direct substrate for hARD2 mediated
acetylation has not been investigated in this study and
recent studies question the role of hARD1 in destabiliz-
ing HIF-1α [29-32]. Thus, the potential link between
HIF-1α and hARD1/hARD2 remains an unresolved
issue.

Unfortunately, the multiple sequence alignment outside
of the acetyl transferase domain used for phylogenetic
studies is not good enough for evolutionary studies
involving calculation of substitution rates at synonymous
and nonsynonymous sites or other likelihood ratio tests.
Future sequencing from additional mammals should
improve alignment quality to enable such studies. The
ultimate question regarding differences in function
between hARD1 and hARD2 is one of selective pressures
and neofunctionalization vs. subfunctionalization (see
for example, [44,45]), which requires knowledge of the
expression patterns and functions of the ancestral state.

The metatherian, frog, and fish sequences, which are cur-
rently available, can serve as proxies for the ancestral state
as they appear not to have duplicate ARD copies. In an
attempt to address the function of zebrafish ARD, an anti-
body to hARD1 was directed against zebrafish tissue, but
no binding was detected, probably due to sequence diver-
gence (data not shown). Future work in zebrafish or other
non-eutherian mammal species closer to human can
address the function of the ancestral state and the relative
selective pressures on hARD1 and hARD2.

There are several indications that hARD1 and NATH may
be linked to differentiation. As mentioned, mNAT1 and
mARD1 mRNAs are downregulated during neuronal dif-
ferentiation in mouse [13]. In the present study, we show
that hARD1 and NATH proteins were both downregulated
after induction of differentiation in promyelocytic leukae-
mia cells. This is the first description of NAT-ARD1 down-
regulation induced by differentiation in human cells and
also the first verification of downregulation at the protein
level. Interestingly, the hARD1 gene was one of twelve
genes identified to be elevated in dedifferentiated hepato-
cellular carcinomas [46]. It should also be noted that the
yeast ARD1 gene originally was implicated in controlling
the switch between the mitotic cell cycle and developmen-
tal pathways [25]. Whether or not hARD1 and NATH
influences differentiation per se, awaits further studies, but
our present results add support to a link between the
NATH-hARD1 complex and differentiation. The lack of
hARD2 downregulation during granulocytic differentia-
tion could suggest that a specific subset of proteins then is
acetylated at a stable level. In contrast, the hARD1 specific
substrates would be less acetylated during differentiation.
This balance between acetylation of different subsets of
proteins could have an impact on the differentiation proc-
ess itself or alternatively facilitate cellular adaptations
associated with the process.

Conclusion
In summary, we have identified and characterized a
human protein N-α-acetyltransferase which probably
originates from a recent gene duplication event. The
hARD2 protein displays similar properties as hARD1 in
terms of subcellular localization and potential interac-
tions with NATH and HIF-1α. Further expression and
enzymatic studies are required to assess the overall func-
tional contribution of hARD2 in cellular processes.

Methods
hARD2 cloning and expression
NCBI BLAST database was employed in the search of
human homologues of yeast ARD1. The second best hit
after hARD1 was the protein MGC10646, termed hARD2.
Primers pr1 and pr3 were designed to clone the hARD2
gene and to detect the presence of hARD2 mRNA. Plasmid

Regulation of hARD1, hARD2 and NATH during differentia-tionFigure 8
Regulation of hARD1, hARD2 and NATH during differentia-
tion. NB4 cells were treated with 1 µM all-trans retinoic acid 
for 96 hours. Untreated wells were cultured in parallel as a 
negative control. Cells were lysed and analyzed by SDS-
PAGE and Western blotting. 10 µg total protein was loaded 
in each well. Membranes were incubated with the indicated 
antibodies, anti-hARD1, anti-hARD2, anti-NATH and anti-β-
tubulin. The data presented was representative of four inde-
pendent experiments. Protein levels were quantitated using 
FUJIFILM IR LAS 1000 and Image Gauge 3.45. Protein levels 
in control (-) samples were set to 1.0 and protein levels in 
treated cells (+) were estimated relative to this and normal-
ized to B-tubulin levels. Pictures in the lower panel show rep-
resentative cells after 96 hours of treatment (+) or control (-
). Cells were stained using May-Grünwald-Giemsa.
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encoding V5- and Xpress-tagged hARD2 was constructed
from a gene-specific PCR of cDNA made from total RNA
isolated from human ARO cells. PCR product was inserted
into the TOPO TA vectors pcDNA3.1/V5His and pcDNA
4/HisMax (Invitrogen). Simultaneously a vector encoding
wildtype hARD2 was made using a reverse primer includ-
ing the hARD2 stop codon. cDNA was made as previously
described [47]. The primers for amplifying the hARD2
gene (Figure 1) were as follows: pr1 (hARD2 forward), 5'-
ATG AAC ATC CGC AAC GCT CAG-3'; pr3 (hARD2 rev),
5'- GGA GGT GGA ATC CGA GCT TTC-3'; pr2 (hARD2
545forward), 5'-CAG CAC ACT TTC TGA TTC TGA AG-3';
pr4 (hARD2 926reverse), 5'-GTA ATG GCA GGT CTC AAA
GTTC-3'. β-Actin primers: Actin-F, 5'- GGC ACC ACA CCT
TCT ACA 3'; Actin-R, 5'- AGG AAG GCT GGA AGA GTG 3'.
Primers for amplifying genomic M. giganteus ARD: For: 5'-
gtg aar cgy tcn cac cgg cgc cty ggy ctg-3'; Rev: 5'-ctc ttc ctg
rcr tgy agr gas acr tay ttk gc-3'. Primers for amplifying M.
giganteus ARD from cDNA: kARD1/2 ORFf, 5'-ATG AAC
ATC CGC AAY GCK MRG CCA GAS GAC C; kARD1/2
ORFr, 5'-CTA GGA GGY KGA RTC SGA GSY YTC TGA
GCT GTC C (r = a + g, y = c + t, n = a + c + t + g, s = c + g,
k = g + t).

Cell culture and transfection
Cells were cultured at 37°C, 5% CO2 in DMEM (HEK293,
embryonal kidney, ATCC CRL-1573 and HeLa, epithelial
cervix adenocarcinoma, ATCC CCL-2), RPMI 1640 (NB4,
acute promyelocytic leukemia, DSMZ ACC 207 and MCF-
7, epithelial mammary gland, breast adenocarcinoma,
ATCC HTB-22) or EMEM (SK-MEL2, malignant
melanoma, ATCC HTB-68) supplemented with 10% FBS
and 3% l-glutamine. Transfections were performed using
Fugene6 (Roche) according to the instruction manual.
The plasmid pHA-HIF-1α has been described [48]. A
hARD2 specific rabbit antibody was generated by Bio-
genes GmbH using a peptide corresponding to amino
acids 192–206 of hARD2. Western blotting was per-
formed as described [47]. Dilutions: anti-hARD2 1:500;
anti-hARD1 [6] 1:500; anti-NATH [6] 1:500; anti-V5 (Inv-
itrogen) 1:1000; anti-β-tubulin (Sigma) 1:1000; anti-HA
(Sigma) 1:1000.

Immunofluorescence and immunoprecipitation
HeLa cells were transfected using Fugene6 and grown 24
h on coverslips. Then cells were prepared for immunoflu-
orescence as described [6]. HEK293 or MCF-7 cells (~2 ×
106) were transfected using Fugene6 and incubated 48
hours before harvesting and lysis in 300 µl lysis buffer.
Immunoprecipitation was performed as previously
described [6].

N-α-acetyltransferase assay
Immunoprecipitation of X-press-lacZ, X-press-hARD1 or
X-press-hARD2 was performed as described above. Pellets

of Protein A/G-Agarose bound X-press-hARD2 was added
10 µl ACTH (0.5 mM, human corticotropin fragment 1–
24, Calbiochem), 4 µl [3H]Acetyl-CoA (1 µCi, 107 GBq/
mmol, Amersham Biosciences) and 136 µl 0.2 M K2HPO4
(pH 8.1). The mixture was incubated for 2 hours at 37°C.
After centrifugation the supernatant was added to 150 µl
SP Sepharose (50% slurry in 0.5 M Acetic acid, Sigma) and
incubated on a rotor for 5 min. The mixture was centri-
fuged and the pellet was washed three times with 0.5 M
acetic acid and finally with methanol. Radioactivity in the
ACTH containing pellet was determined by scintillation
counting.

Alignment and tree building
Peptide sequence alignments were made using T-Coffee
[49] with the default settings. Coding sequence align-
ments were produced by aligning the coding sequences
with reference to the alignment of the corresponding pep-
tide sequences. The phylogenetic tree from the initial pep-
tide sequence alignment was built using MrBayes [50]
with the Jones matrix of substitution run on four MCMC
chains for 750000 generations, to generate a majority rule
consensus tree of all compatible partitions of the final
500000 generations (sampled rate 100). MrBayes was also
used to produce the coding sequence alignment based
tree, with the same settings as before except for a nucle-
otide model of substitution allowing different rates for
transitions and transversions and a gamma distribution of
rates across sites. Gene trees were rooted by mapping
them on to the NCBI tree of life whilst minimizing gene
duplication and loss events and allowing poorly sup-
ported branches (those with posterior probabilities less
than 0.7) to be rearranged according to the NCBI taxon-
omy as a reference species tree (Berglund, Steffansson,
Betts and Liberles, Manuscript submitted).

Abbreviations
ARD, Arrest-defective; DAPI, 4',6-diamidino-2-phenylin-
dole; hARD1, human ARD1; hARD2, human ARD2; HIF-
1α, hypoxia inducible factor-1α; mARD1, mouse ARD1;
mNAT1, mouse NAT1; NAT, N-acetyltransferase; NATH,
NAT human; PCR, polymerase chain reaction.
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Peptide sequence alignment of ARD sequences, produced using T-Coffee.
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Additional File 2
Nucleotide sequence alignment of ARD sequences produced by aligning 
the nucleotide sequences as per their peptide sequence alignment given in 
Additional file 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2091-7-13-S2.ALN]

Additional File 3
Well aligned region of the alignment in Additional file 2 (positions 157 
to 642), with genomic kangaroo ARD fragments added. This alignment 
was run through MrBayes to produce the unrooted tree in Additional file 
4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2091-7-13-S3.ALN]

Additional File 4
Unrooted tree produced by running the alignment in Additional file 3 
through MrBayes. This tree was rooted by mapping on to the tree of life to 
produce the tree in figure 3 (see methods). In figure 3 the kangaroo clade 
has been summarised as one node called 'Kangaroo', and the the two ver-
sions of Mouse ARD1 have been replaced by just the Ensembl version. Fig-
ure produced using ATV (Zmasek and Eddy, 2001).
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Additional File 5
Structure of the acetyltransferase domain of hARD2, as modelled by align-
ment of both hARD2 and PDB entry 1qst to the alignement of Pfam 
domain PF00583 and then running through SwissModel. The space-filled 
residue shows the position of the Ala-Pro substitution on going from 
hARD1 to hARD2, and that this substitution occurs in a loop. Figure pro-
duced using MolScript (Kraulis 1991).
Click here for file
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