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Abstract
Homocysteine is an independent risk factor for cardiovascular diseases. It is also known to be
associated with a variety of complex disorders. While there are a large number of independent
studies implicating homocysteine in isolated pathways, the mechanism of homocysteine induced
adverse effects are not clear. Homocysteine-induced modulation of gene expression through
alteration of methylation status or by hitherto unknown mechanisms is predicted to lead to several
pathological conditions either directly or indirectly. In the present manuscript, using literature
mining approach, we have identified the genes that are modulated directly or indirectly by an
elevated level of homocysteine. These genes were then placed in appropriate pathways in an
attempt to understand the molecular basis of homocysteine induced complex disorders and to
provide a resource for selection of genes for polymorphism screening and analysis of mutations as
well as epigenetic modifications in relation to hyperhomocysteinemia. We have identified 135 genes
in 1137 abstracts that either modulate the levels of homocysteine or are modulated by elevated
levels of homocysteine. Mapping the genes to their respective pathways revealed that an elevated
level of homocysteine leads to the atherosclerosis either by directly affecting lipid metabolism and
transport or via oxidative stress and/or Endoplasmic Reticulum (ER) stress. Elevated levels of
homocysteine also decreases the bioavailability of nitric oxide and modulates the levels of other
metabolites including S-adenosyl methionine and S-adenosyl homocysteine which may result in
cardiovascular or neurological disorders. The ER stress emerges as the common pathway that
relates to apoptosis, atherosclerosis and neurological disorders and is modulated by levels of
homocysteine. The comprehensive network collated has lead to the identification of genes that are
modulated by homocysteine indicating that homocysteine exerts its effect not only through
modulating the substrate levels for various catalytic processes but also through regulation of
expression of genes involved in complex diseases.
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Review
Elevated levels of homocysteine (hyperhomocysteinemia)
has been implicated as an independent risk factor for car-
diovascular disease [1,2] and is associated with various
other diseases and/or clinical conditions including Alzhe-
imer's disease [3], neural tube defects [4], schizophrenia
[5], end-stage renal disease [6], osteoporosis [7] and non-
insulin-dependent diabetes [8,9]. Homocysteine, a thiol
containing amino acid, is formed during methionine
metabolism in the cell. It is a key branch-point intermedi-
ate in the ubiquitous methionine cycle, the function of
which is to generate one-carbon methyl groups for trans-
methylation reactions that are essential for several biolog-

ical processes (Figure 1). Methionine from dietary sources
is converted to S-adenosyl methionine (SAM) by the
enzyme S-adenosyl methionine synthase. The methyl
group of SAM is required for over 100 known transmeth-
ylation reactions, including methylation of macromole-
cules, phospholipids, myelin, choline and catecholamine.
During these reactions SAM is converted by various
methyl transferases to S-adenosyl homocysteine (SAH),
which is then hydrolyzed to homocysteine and adenosine
by S-adenosyl homocysteine hydrolase. This is a reversible
reaction with the equilibrium favoring the synthesis of
SAH. Homocysteine once formed can either be remethyl-
ated to methionine by methionine synthase (MS) or

Methionine-Homocysteine metabolism and related pathwaysFigure 1
Methionine-Homocysteine metabolism and related pathways. A representation of the methionine cycle (central), 
transulfuration pathway and its connection to folate cycle, glycolysis pathway and urea cycle. The genes marked in blue have 
been identified by literature based searches as mentioned in the methods section. The solid and dotted lines indicate direct and 
indirect (multi step) interaction/ conversion respectively.
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Table 1: List of genes identified by literature mining that are modulated by elevated level of homocysteine

S.NO Symbol Gene Name Function

1 Adk Adenosine kinase Methionine Metabolism
2 Agt1 Angiotensin I Renin – Angiotensin
3 Ahcyl1 S-adenosylhomocysteine hydrolase – like Methionine Metabolism
4 Bax BCL2-associated × protein Apoptosis
5 Bcl-2 B-cell cll/lymphoma 2 Apoptosis
6 Bhmt2 Betaine-homocysteine methyltransferase2 Methionine Metabolism
7 Calm1 Calmodulin 1 Signaling
8 Proxy1/Cap43 Protein regulated by oxygen 1 Hypoxia
9 Casp12 caspase-12 Apoptosis
10 Casp3 caspase-3 Apoptosis
11 Cav3 Caveolin Apoptosis
12 Ccr2 Chemokine receptor 2 Atherosclerosis
13 Cdk2 Cyclin-dependent kinase 2 Apoptosis
14 Cetp Cholesteryl ester transfer protein Lipid metabolism
15 Cgrp Calcitonin gene related peptide Signaling
16 Cck Cholecystokinin Insulin secretion
17 Clu Clusterin Apoptosis
18 Cmyc Myc proto-oncogene protein Apoptosis
19 Cnp C-type natriuretic peptide Vasorelaxant activity.
20 Crp C-AMP receptor protein Apoptosis/signaling
21 Cubn Cubilin Vitamin B12 Transport
22 Cx43 Connexin43 Integral to plasma membrane/Signaling
23 Ccna1 Cyclin A1 Cell cycle
24 clcn Chloride ion channel gene Chloride transport
25 Cyc Cytochrome Apoptosis
26 Demethylase Demethylase Metabolism
27 Dhfr Dihydrofolate reductase Metabolism
28 Dnmt1 DNA Methyltransferase 1 Metabolism
29 Dnmt2 DNA Methyltransferase 2 Metabolism
30 Dnmt3a DNA Methyltransferase 3 Metabolism
31 Erk2 Extracellular Signal-Regulated Kinase 2 Signalling
32 Fak Focal adhesion kinase Apoptosis
33 Fbp1/ Folr1 Folate-Binding Protein1 Folate transport
34 Fbp2 Folate-Binding Protein2 Folate transport
35 G6pdh Glucose-6-phosphate dehydrogenase Metabolism
36 Gad67 Glutamic acid decarboxylase 67 Apoptosis
37 Gadd153 Glutamic acid decarboxylase 153 Apoptosis
38 Gadd45 Glutamic acid decarboxylase 45 Apoptosis
39 Gata4 GATA-Binding Protein 4 Transcription factor
40 GPX1 Glutathione Peroxidase Anti-oxidant
41 Gsh1 GS homeobox 1 Transcription Factor
42 Grp78 Glucose related protein 78 Apoptosis
43 Grp94 Glucose related protein 98 Apoptosis
44 H2B Histone 2B Histone protein
45 H3 Histone 3 Histone protein
46 HDACs Histone deacetylases Histone Deacetylation
47 Hmgcr Hydroxy-3-Methylglutaryl-Coa Reductase Lipid metabolism
48 Hmt Homocysteine-S-methyltransferase Metabolism
49 Ikβα Inhibitor Of Kappa Light Chain Gene Enhancer Signaling
50 IL-1 Interleukin 1 Signaling
51 IL-6 Interleukin 6 Signaling
52 IL-8 Interleukin 8 Signaling
53 Inmt Indolethylamine N-methyltransferase Protein methylation
54 iNOS Inducible Nitric Oxide Synthase Nitric oxide stress
55 Interferon Interferon Signaling
56 Ifg Ifngamma Signaling
57 Ldhd D-Lactate Dehydrogenase Metabolism
58 Ldlr Low Density Lipoprotein Receptor Lipid metabolism
59 Lpl Lipoprotein lipase Lipid metabolism
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60 Lox1 Lectin like oxidized LDL receptor-1 Lipid Transport
61 Lpa Apolipoprotein Lipid metabolism
62 lyase Lyase Lipid metabolism
63 Mcp1 Monocyte Chemoattractant Protein 1 Atherosclerosis
64 Mbd2 Methyl-CpG-Binding Domain Protein 2 Methylation binding protein
65 Mecp2 Methyl-CpG-Binding Protein 2 Methylation binding protein
66 Mapk/Mek Mitogen-Activated Protein Kinase Kinase Signalling
67 Mgmt O6-methylguanine-DNA methyltransferase Apoptosis
68 Mmp3 Matrix metalloproteinase 3 Remodeling of extracellular matrix
69 Mtap Methyl Thioadenosine Phosphorylase Metabolism
70 Mtase Methyltransferase Metabolism
71 NF-Kβ Nuclear Factor Kappa-B Signaling
72 Nmda N-methyl-D-aspartate receptors Alzheimer Disease
73 Nos2 Nitric Oxide Synthase 2 Nitric oxide Synthesis
74 P21 ras P21 ras Signaling
75 P38 Serine /threonine protein kinase belong to MAPK subfamily Apoptosis
76 P53 Tumor protein p53 Apoptosis
77 Pai-1 Plasminogen Activator Inhibitor-1 Blood coagulation
78 Pam Peptidylglycine alpha-amidating monooxygenase Neuro peptide amidation
79 Icmt/Pcmt Isoprenylcysteine Carboxylmethyltransferase Signaling.
80 Pdgf Platelet-derived growth factor Inhibits apoptosis
81 Pemt Phosphatidylethanolamine (PE) N-Methyltransferase Methylation of PE
82 Pkc Protein kinase C Apoptosis
89 Ppar alpha Peroxisome Proliferator-Activated Receptor-Alpha Signaling
84 PPARgamma2 Proliferator-Activated Receptor-Gamma2 Signaling
85 Prmt Protein Arginine N-Methyltransferase Protein methylation
86 Ps1 Presenilin 1 Alzheimer Disease
87 S3a Ribosomal protein S3A Structural constituent of Ribosome
88 Smap8 smooth muscle-associated protein 8 Signaling
89 Srebp1 sterol regulatory element binding protein-1 Lipid Transport
90 Sst Somatostatin Alzheimer Disease
91 Tdag51 T-cell death-associated gene 51 Apoptosis
92 TGFbeta Transforming growth factor beta Apoptosis
93 TNFalpha tumor necrosis factor alpha Signaling
94 TNFRSF1B Tumor necrosis factor receptor 2 gene Signaling
95 Timp1 Tissue Inhibitor Of Metalloproteinase 1 Signaling
96 tPA Tissue-type plasminogen activator Blood Coagulation
97 Vcam 1 Vascular Cell Adhesion Molecule 1 Cell adhesion/Signaling
98 Yy1 Yin Yang 1 Transcription factor
99 F2 Coagulation factor II Blood Coagulation
100 HemK/PrmC N5-glutamine AdoMet-dependent methyltransferase Methylation
101 ABCC2 ATP-Binding Cassette subfamily C Cellular cisplatin transporter.
102 Ace Angiotensin converting enzyme Renin – Angiotensin
103 Nat1 arylamine N-acetyltransferase type-1 Detoxification of a plethora of 

hydrazine and arylamine drugs
104 Gnmt Glycine N-Methyltransferase Methylation
105 Apo B Apolipoproteine B Lipid metabolism
106 Ins Insulin Signalling
107 Sod Super Oxide Dismutase Anti-oxidant
108 ApoC3 Apolipoprotein C-III Lipid metabolism
109 Atf3 Activating transcription factor Transcription factor
110 Ap1 activating protein-1 Transcription factor
111 Fcmt Farnesylcysteine methyltransferase Methylation
112 Hmox Heme oxygenase Biliverdin metabolism

Table 1: List of genes identified by literature mining that are modulated by elevated level of homocysteine (Continued)

betaine hydroxymethyl transferase (BHMT) and/or con- tHcy is present as homocysteine-cysteine mixed disulfide

verted to cystathionine by cystathionine-beta-synthase
(CBS). Excess homocysteine is exported into circulation
where it rapidly binds to proteins and other small mole-
cules like cysteine. In circulation < 1% of homocysteine is
present in the free reduced form, while 10–20 % of the

and homocystine (dimer of homocysteine), 80–90 % of
homocysteine in circulation is protein bound [10]. The
essential steps that contribute to the metabolism of
homocysteine are outlined in (Figure 1). In healthy well
nourished individuals homocysteine metabolism is well
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regulated and the plasma concentration is usually less
than 12 µM. However, genetic defects or nutritional defi-
ciencies lead to elevation of the levels of homocysteine.

Although hyperhomocysteinemia has been associated
with several diseases, the mechanism of homocysteine-
induced deleterious effects is not fully elucidated. Promi-
nent among the various mechanism proposed for the
harmful effects of homocysteine is its ability to modulate
the expression of certain genes that may either directly or
indirectly lead to several pathological conditions [11].
Homocysteine-induced modulation of gene expression
may be due to altered methylation status as the levels of
SAH, an inhibitor of many SAM-dependent methyl trans-
ferases (Mtase) are elevated during hyperhomocysteine-
mic conditions [12,13]. Apart from the modulation of
gene expression due to altered methylation, homo-
cysteine might modulate gene expression by hitherto
unknown mechanisms [14].

Methods
We manually screened all the abstracts from PUBMED,
NCBI (up to November 2004) that contained the key-
words "homocysteine" and "gene". The genes that are
associated with homocysteine could be classified into two
broad groups: (i) Genes that are modulated in response to
elevated homocysteine levels (Table 1). Modulations of
these genes are predicted to result in diseased states. (ii)
Genes that are directly or indirectly involved in the mod-
ulation of homocysteine levels (Table 2). Defects in these
genes, primarily due to single nucleotide polymorphism
(SNP) have been, in some cases, shown to elevate the lev-
els of homocysteine. The list was also verified using an in-
house JAVA based text mining tool. We then mapped the
genes in appropriate pathways/ networks, using databases
that are available in the public domain, in an attempt to
elucidate the probable mechanism of homocysteine
induced deleterious effects.

Physiological processes that are affected due to 
homocysteine-induced modulation of gene 
expression
Elevated homocysteine levels and oxidative stress
One of the mechanisms proposed for the deleterious
effects of homocysteine is its ability to generate reactive
oxygen species thereby producing oxidative stress (Figure
2). It is generally proposed that homocysteine, due to the
presence of a thiol group, can rapidly auto-oxidize in cir-
culation in the presence of ceruloplasmin, the major cop-
per binding protein in plasma, to form homocystine and
hydrogen peroxide (H2O2), thereby generating oxidative
stress [15]. However, several recent reports indicate that
transition metal catalyzed oxidation of homocysteine is
not a facile process. In fact transition metal catalyzed oxi-
dation of cysteine has been reported to be much faster

than that of homocysteine [16] and although the concen-
tration of cysteine is about 20–25 times higher than that
of homocysteine it is usually not considered a risk factor
for cardiovascular diseases [17]. Therefore, it seems
unlikely that the deleterious effect of homocysteine is due
to the generation of hydrogen peroxide via metal cata-
lyzed auto-oxidation. However, homocysteine might
indirectly result in oxidative stress by decreasing the tran-
scription, translation [18] and catalytic activity of antioxi-
dant enzymes like glutathione peroxidase (GPx) and
superoxide dismutase (SOD) [19]. Homocysteine treated
bovine aortic endothelial cells showed a significant
decrease in glutathione peroxidase activity. The effect of
Homocysteine on enzyme activity is demonstrated by
compensatory effect of GPx-1 over expression on the
adverse effects of homocysteine on endothelial function
[20]. Nonaka et al [21] reported that homocysteine
decreases the secretion and expression of extra cellular
superoxide dismutase (EC-SOD), the most abundant iso-
zyme of SOD, in the vascular wall in rat vascular smooth
muscle cells.

Hyperhomocysteinemia has also been reported to be
associated albeit indirectly with hypoxic conditions. Sup-
porting this is the expression of Cap43 [that codes for a 43
kDa protein associated with hypoxia in endothelial cells
(EC)] in cells treated with homocysteine. Hypoxia in alve-
oli leads to damage of capillary wall, a condition predis-
posing for atherosclerosis. Furthermore, it has also been
shown that there is a decrease in the MAT1A transcription
and mRNA stability in cultured hepatocytes exposed to
hypoxic conditions [22].

Elevated levels of homocysteine have been reported to
decrease the bioavailability of endothelial nitric oxide.
Under normal condition Nitric oxide (NO) exerts anti-
atherosclerotic effect through various mechanisms (Table
3). The NO produced by endothelium is known to
decrease in response to elevated levels of homocysteine
[23]. Decrease in the bioavailability of nitric oxide due to
increased homocysteine concentration is perceived to
cause vasoconstriction thus leading to cardiovascular dis-
orders. Interestingly, the bioavailability of NO is
decreased in hyperhomocysteinemic condition despite
normal expression of eNOS [24]. The decrease in the bio-
availability of nitric oxide in hyperhomocysteinemic con-
ditions may be attributed to the formation of S-
nitrosohomocysteine formed under physiological condi-
tions (Figure 2). NO can also rapidly react with molecular
oxygen and other oxygen free radicals to form peroxyni-
trites (ONOO-) [25-27]. Furthermore, endothelial tet-
rahydrobiopterin, a critical co-factor for the endothelial
nitric-oxide synthase (eNOS) is also a target for oxidation
by ONOO- and its oxidation results in formation of trihy-
drobiopterin radical (BH3•) and consequently decrease
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NO production [28,29]. Thus, elevated levels of homo-
cysteine may lead to the accumulation of reactive oxygen
species due to the decreased activity of antioxidant
enzymes and these oxygen radicals could then potentially
inactivate NO resulting in vasoconstriction.

Another potential mechanism for the decreased bioavail-
ability of NO in hyperhomocysteinemic states is the
increased generation of asymmetric dimethylarginine
(ADMA), an analogue of L-arginine, which is a competi-
tive inhibitor of eNOS [30]. ADMA also promotes the
"uncoupling" of eNOS (Figure 2) leading to increased
production of superoxide & other reactive oxygen species,
which may cause further decrease in availability of NO.
ADMA is produced during degradation of proteins con-
taining methylated arginine residues by protein arginine
N- methyltransferases (PRMTs) [31]. The increased SAM
dependent generation of these methylated proteins,

results in both increased production of ADMA and
increased generation of homocysteine [32]. The inhibi-
tion of endothelial nitric oxide synthesis by ADMA
impairs cerebral blood flow, which may contribute to the
development of Alzheimer's disease [33].

Furthermore, one of the mechanisms proposed for the
anti-thrombotic effect of NO is its ability to inhibit the
expression of the prothrombotic protein PAI-1. It has also
been shown that NO released from activated platelets
inhibits the recruitment of platelets to the growing throm-
bus [34]. Thus decrease in NO concentration may result in
increased expression of PAI-1 and platelet aggregation
leading to thrombosis.

Intracellular oxidative stress may be either due to exces-
sive generation of reactive oxygen species or to decreased
ability of cells to scavenge the reactive oxygen species lead-

Table 2: List of genes identified by literature mining that modulate homocysteine levels

S.No Symbol Gene Name Function

1. Mthfr Methylenetetrahydrofolate Reductase Conversion of 5, 10-methylene-tetrahydrofolate to 5-methyl-
tetrahydrofolate.

2. Cbs Cystathionine beta-synthase Condensation of homo-cysteine and serine to form cystathionine
3. Mtr Methyltetrahydrofolatehomocysteine 

methyltransferase
Remethylation of homocysteine to methionine

4. Mtrr Methionine synthase reductase Reductive regeneration of cob(I)alamin cofactor required for the 
maintenance of MTR in a functional state

5. Rfc-1 Reduced-folate carrier 5-methyl-tetrahydrofolate internalization in cell
6 Gcp II/Folh1 Glutamate Carboxypeptidase II Polyglutamate converted to monoglutamate folate by action of the 

enzyme folylpoly gammaglutamate carboxy-peptidase (FGCPI), an enzyme 
expressed by GCPII.

7 eNos Endothelial Nitric oxide synthase Conversion of L-Arginine to L-Citrulline and nitric oxide synthase (NO)
8. Tc II Transcobalamine II Transport of vitamin B12
9. Shmt1 Serine Hydroxymethyltransferase 1 Reversible conversion of serine and tetrahydrofolate to glycine and 5, 10-

methylene tetrahydrofolate.
10. Tyms Thymidylate Synthase 5, 10-methylene THF and deoxyuridylate to form dihydro-folate and 

thymidylate.
11 Cth Cystathionine Gamma-Lyase Hydrolysis of cystathionine to cysteine and α-Ketoglutarate
12 Mthfd Methylene-tetra hydrofolate dehydrogenase Conversion of 5, 10-methylene-tetrahydrofolate to5, 10methenyl-

tetrahydrofolate.
13 Mthfs Methenyltetrahydrofolate synthetase Conversion of 5-formyltetrahydrofolate to 5, 10-

methenyltetrahydrofolate.
14 Apo E Apolipoproteine E Mediates the binding, internalization, and catabolism of lipoprotein 

particles.
15 Vegf Vascular endothelial growth factor Growth factor active in angiogenesis, vasculogenesis and endothelial cell 

growth.
16 Pon1 Paraoxonase 1 Hydrolyzes the toxic organo-phosphorus. It also mediate an enzymatic 

protection of LDL against oxidative modification.
17 Bhmt Betaine-homocysteine methyltransferase In Liver & kidney it catalyses the conversion of betaine to dimethyl glycine 

(DMG).
18 Mat1A Methionine Adenosyltransferase 1A Methionine to SAM by transfer of the adenosyl moiety of ATP to the 

sulfur atom of methionine
19 Ahcy S-adenosylhomocysteine hydrolase Hydrolysis of AdoHcy to adenosine and homocysteine
20 Cbl Cystathionine beta lyase Conversion of cystathionine to homocysteine.
22 Factor V Coagulation factor V Cofactor for the factor Xa-catalyzed activation of prothrombin to the 

clotting enzyme thrombin.
23 Pai-1 Prothrombin activator inhibitor-1 Inhibition of fibrinolysis by inhibiting the plasminogen-activator and t-PA.
Page 6 of 19
(page number not for citation purposes)



Lipids in Health and Disease 2006, 5:1 http://www.lipidworld.com/content/5/1/1
ing to its accumulation. We propose that homocysteine-
induced oxidative stress is primarily due to the decreased
ability of the cells to detoxify H2O2 & other lipid peroxides
due to decreased activity of intracellular antioxidant
enzymes. Furthermore, decreased bioavailability of nitric
oxide may lead to the increased expression of pro-inflam-
matory cytokines and PAI which can potentially lead to
cardiovascular diseases.

Hyperhomocysteinemia: apoptosis and inflammatory 
pathways
The major process linking levels of homocysteine with
apoptosis and inflammatory pathway is the Endoplasmic
Reticulum (ER) stress (Figure 3, branch 3,) and c-myc
mediated signaling (Figure 3, branch 2). Endoplasmic
Reticulum is the destination for secretary and extracellular
proteins. It also serves as a site of calcium storage, calcium
signaling, and biosynthesis of steroids, cholesterol &
other lipids. The ER has high level of numerous resident
chaperone proteins such as glucose-regulated proteins,
GRP-78 & GRP-94, which under normal conditions are
required for proper protein folding prior to export, to
their destination. However, during energy deprivation
these proteins initiate signal of ER stress, a condition in
which unfolded & misfolded proteins accumulate
[35,36]. Homocysteine has been shown to alter the cellu-
lar redox state resulting in ER stress [37]. Homocysteine
increases the expression and synthesis of GRP78, a glu-
cose-regulated protein that is induced during ER stress.
Cells respond to ER Stress by various processes, promi-
nent among these is a process known as unfolded protein
response (UPR) mediated by ER-resistant trans-mem-
brane protein kinase (IRE1) [38]. Furthermore, Homo-
cysteine was found to induce the expression of glutamic
acid decarboxylase (GADD45, GADD 153), ATF4 (Figure
3, branch 3) and YY1 [[38], Figure 3, branch 4] as well as
RTP and HERP [39,40]. Interestingly, in a separate study it
has been reported that inducers of GRP78 also increase
the expression of these genes [41]. The GADDs also link
homocysteine levels with ER stress and alterations in cell
growth and proliferation. In addition, YY1, a member of
GL1 zinc finger family enhances the transcription activa-
tion of GRP78 promoter under a variety of ER stress con-
ditions [42,43]. Increased expression of YY1 mediates the
stress signal from ER to nucleus.

However, exposure to excess ER stress results in apoptotic
cell death. ER stress activates c-Jun N-terminal kinases
(JNKs) that regulate gene expression via phosphorylation
and activation of transcription factors such as c-JUN. The
activation of JNK is mediated by TNF receptor-associated
factor-2 (TRAF2), which transduce signals from IREs that
act as stress sensors and initiates UPR [44]. TRAF2 acti-
vates the apoptosis-signaling kinase (ASK1) or MAPKKK
(mitogen activated protein kinase kinase kinase). Activa-

tion of MAPKKK leads to activation of JNK protein kinase
that in turn causes apoptosis [45]. The TRAF1 binds to the
TRADD (TNFR-Associated Death Domain), which recruits
the activated caspase 8 initiating a proteolytic cascade sub-
sequently resulting in apoptosis. Furthermore, caspase 8
also leads to release of pro-apoptotic factor cytochrome C
[46]. Homocysteine may induce oxidative stress and
apoptosis through an NADPH oxidase and/or JNK-
dependent mechanism(s) [47]. Extra cellular adenosine
(Ado) along with homocysteine (Ado/Hcy) causes apop-
tosis of cultured pulmonary artery endothelial cells
through the enhanced formation of intracellular S-adeno-
sylhomocysteine (Figure 3, branch 1). SAH inhibits iso-
prenylcysteine carboxylmethyltransferase (ICMT), which
results in decrease of Ras methylation and activation of
downstream signaling molecules resulting in apoptosis.
ICMT catalyzes the posttranslational methylation of iso-
prenylated C-terminal cysteine residues found in many
signaling proteins such as small monomeric G proteins
[48,49]. Similarly high concentration of adenosine results
in apoptosis of L1210 lymphocytic leukemia cells. Apop-
tosis in these cells was preceded by an early but transient
expression of the proto-oncogene c-myc [50].

Expression of c-myc sensitizes cells to a wide range of pro-
apoptotic insults that include DNA damage, hypoxia and
nutrient deprivation (Figure 3, branch 2). The pro -apop-
totic effect of c-myc is mediated through the release of
cytochrome C into the cytosol [51]. Holocytochrome C
interacts with apoptotic protease activating factor (APAF-
1), which then recruits and activates procaspase 9. This
ternary complex triggers the autocatalytic processing of

Hyperhomocysteinemia and Oxidative StressFigure 2
Hyperhomocysteinemia and Oxidative Stress. Homo-
cysteine might directly or indirectly lead to oxidative stress 
via the pathways shown in the figure. The genes marked in 
blue have been identified by literature based searches as 
mentioned in the methods section. The solid and dotted lines 
indicate direct and indirect (multi step) interaction/ conver-
sion respectively. X – Inhibition
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caspase 9 and subsequently activates caspase 3. However
inhibition of CD95 and P53 signaling pathway does not
block this release, but activation of the caspase dependent
apoptotic machinery requires cooperation between c-myc
induced cytochrome C release and CD95 signaling. Thus,
c-myc induction leads to release of cytochrome C to the
cytosol recruiting the cells to other apoptotic triggers like
CD95 pathway or p53 activation. C-myc might also
induce apoptosis through active response factor (ARF)
expression via activation of P53 [52]. Recently it has been
shown that homocysteine induced apoptosis in human
umbilical vein endothelial cells is correlated with p53
dependent Noxa expression [53]. The expression of the
Noxa gene involves direct activation of its promoter by
p53. Interestingly, the activity of p53 is regulated through
lysine methylation. Methylated p53 is restricted to the
nucleus and has increased stability. The "hyper-stabiliza-
tion" and activation of p53 result in cell cycle arrest and
apoptosis [54]. The methyltransferase activity is critical for
p53 dependent apoptosis. Thus, it can be perceived that in
hyperhomocysteinemic state p53 lysine methylation
could be inhibited. Homocysteine could also potentially
inhibit endothelial cell growth by inhibiting the expres-
sion of cyclin A mRNA. Apart from cyclin A associated
kinase activity, cyclin dependent kinase (CDK2) activity
was also significantly inhibited [55]. Interestingly, stress
induced activation of P53 promotes transcription of P21,
which in turn binds to CDKs and leads to blocking of the
G1 to S phase transition during cell cycle.

Homocysteine affects mitogenesis in a cell type specific
manner. Although elevated levels of homocysteine lead to
apoptosis and has growth inhibitory effect on endothelial
cells, it leads to proliferation of smooth muscle cells eg.
homocysteine enhances AP-1 activity in A7r5 aortic
smooth muscle cells thus influencing cell proliferation
[56]. In a recent report it was shown that elevated levels of
homocysteine result in increased AP-1 nuclear protein
binding, cell DNA synthesis and proliferation in mesang-
ial cells by increasing Erk activity via a calcium-dependent

mechanism [[57], Figure 3, branch 5]. Furthermore,
homocysteine has been reported to up regulate the expres-
sion of VEGF mRNA in pigmented human endothelial cell
line via ATF4 mediated activation. [58]. The cell survival
signal from VEGF is mainly brought about by P13-medi-
ated activation of Akt/PKB. The downstream targets for
Akt/PKB pathway inhibit apoptosis. Furthermore, VEGF
also leads to the induction of Raf-MEK -ERK pathway in
human umbilical endothelial cells (HUVECs) relating to
cell survival [59].

Apart from activating the unfolded protein response,
homocysteine-induced ER stress also activates the sterol
regulatory binding proteins (SREBPs). Homocysteine
induces the expression of sterol regulatory element bind-
ing protein-1 (SREBP1, Figure 3), an ER membrane bound
transcription factor, in cultured vascular endothelial cells
and human hepatocyte leading to increased biosynthesis
and uptake of cholesterol, triglycerides and accumulation
of intracellular cholesterol [60,61]. Normally the expres-
sion and activity of SREBPs is regulated by SREBP cleavage
activation protein (SCAP). However, it is believed that
homocysteine circumvents this mechanism, maintaining
the cells in sterol-starved state although lipids continue to
accumulate.

Thus by mapping the genes (identified using literature
based search) in appropriate pathway, we show that ele-
vated levels of homocysteine cause the up regulation of ER
stress proteins resulting in apoptosis. Homocysteine
might also mediate apoptosis via P53 mediated pathway
or by inhibition of methyl transferases like ICMT. Further-
more, ER stress also leads to altered lipid metabolism
which may lead to cardiovascular disorders. Thus, homo-
cysteine-induced ER stress emerges as the common path-
way that relates to apoptosis and atherosclerosis. In this
context it needs to be mentioned that homocysteine can
potentially cleave critical protein disulfide bonds result-
ing in the alteration of structure and/or function of the
protein [62-64]. It can be perceived that this might also
lead to protein misfolding /unfolding which is a hallmark
of ER stress.

Hyperhomocysteinemia and the coagulation cascade
During vascular injury, tissue factor, an integral mem-
brane glycoprotein that is tightly associated with phos-
pholipids, form a complex (1:1) with factor VII thereby
initiating the coagulation cascade (Figure 4). Homo-
cysteine can enhance the pro-coagulant activity in a
number of ways. Elevated homocysteine levels have been
reported to increase the cellular tissue factor activity [65].
Mann et al [63] also suggested that homocysteine rapidly
incorporates into factor V resulting in impaired inactiva-
tion of factor Va by activated protein C (APC). Binding of
homocysteine to factor V however did not have any effect

Table 3: Mechanisms mediating the anti-atherosclerotic effect of 
nitric oxide

Anti-atherosclerotic effect of nitric oxide Reference(s)

Promotion of SMC proliferation 131
Inhibition of platelet aggregation 132
Reduction in endothelial activation & Inhibition of 
MCP-1

133, 134

Stabilizes NF-Kβ inhibitor, Ikβα 135
Inhibition of LDL oxidation & lipid peroxidation 136,137
Reduces super oxide generation 138
Decrease the Expression of PAI-1 34
Nitric oxide regulates vascular cell adhesion 
molecule 1 gene expression

139
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on the conversion of factor V to factor Va. APC, a vitamin
K dependent protein is formed by the action of thrombin
on protein C in the presence of a membrane bound cofac-
tor, thrombomodulin. Interestingly, homocysteine has
also been shown to inhibit the cofactor activity of throm-
bomodulin [66]. Thus homocysteine impairs the throm-
bomodulin-APC anticoagulant pathway by inhibiting the
cofactor activity of thrombomdulin resulting in the
decreased formation of APC and also by inhibiting the
inactivation of factor Va by APC. Furthermore, homo-
cysteine also affect another important endothelial antico-
agulant pathway viz. endothelial cell heparin-like
glycosaminoglycans-antithrombin III anticoagulant
mechanism [67]. It has been reported that incubation of
endothelial cells with homocysteine suppresses the
amount of antithrombin III binding to cell surface.
Homocysteine also reduces the cellular binding for tissue
plasminogen activator and enhances the plasminogen
activator inhibitor-1 (PAI-1) gene expression and secre-
tion from vascular endothelial and smooth muscle cells
by a mechanism independent from paracrine-autocrine
activity of TGF beta and TNF alpha. Hajjar et al also sug-
gested that endothelial cells treated with homocysteine
resulted in selective reduction in cellular binding sites for
t-PA. This 65% decrease in binding was associated with a
60% decrease in cell-associated t-PA activity [64]. Thus
homocysteine may promote prothrombotic state.

Thus, it can be perceived that elevated homocysteine lev-
els will lead to prothrombotic state by enhancing the pro-
coagulant pathway and/or suppressing the anticoagulant
pathways.

Hyperhomocysteinemia and atherosclerosis
Atherosclerosis is a chronic inflammatory disease of the
artery, in which deposits of fatty substances, cholesterol,
cellular waste products, calcium and other substances
build up in endothelial layer of artery [68]. Apart from the
conventional risk factors for atherosclerosis, elevated level
of homocysteine is now considered to be an independent
risk factor for cardiovascular diseases. Several mecha-
nisms have been proposed for the homocysteine induced
cardiovascular disease including altered lipid metabolism,
cholesterol dysregulation, modulation of extracellular
matrix protein expression, inflammatory response and
oxidative stress. From the genes obtained after literature
mining we found that homocysteine might induce athero-
sclerosis via one or more of the pathways depicted in Fig-
ure 5. The various interlinked pathways that contribute to
the complex phenotype of atherosclerosis are outlined
below.

I) Homocysteine mediates cholesterol dysregulation
Homocysteine plays an important role in cholesterol bio-
synthesis by inducing the transcription as well as transla-

tion of 3-hydroxy-3- methylglutaryl coenzyme A reductase
(HMGCR), the rate-limiting enzyme in the cholesterol
biosynthesis (Figure 5, branch 1). It also increases choles-
terol synthesis and accumulation in endothelial cells [69].
Inhibitors of HMGCR like simvastatin prevented the
homocysteine-induced accumulation of cholesterol.
Thus, it can be perceived that elevated levels of homo-
cysteine result in cholesterol biosynthesis dysregulation.
Furthermore, as mentioned earlier, sterol regulatory ele-
ment-binding protein-2 (SREBP), a transcription factor, is
activated in the liver of hyperhomocysteinemic rats and
the activation of SREBP-2 leads to hepatic lipid accumula-
tion by regulating HMG-CoA reductase expression in the
liver [70]. Hyperhomocystenemia also modulates
cholestrol biosynthesis pathway through upregulation of
the ER chaperone, GRP78/BiP in hepatocytes while the
actual transport of the cholesterol in endothelial cells was
found to be downregulated leading to upregulation of
HMGCR in endothelial cells [71].

Ii) Homocysteine affects LPL and Lox-1 expression, which leads to 
atherosclerosis
Homocysteine has been found to induce the expression of
macrophage lipoprotein lipase (LPL) both at the tran-
scription and translation level presumably via PKC activa-
tion [[72], figure 5, branch 6]. LPL is the major lipolytic
enzyme involved in hydrolysis of triglycerides in lipopro-
teins [73]. It is secreted by macrophages in atherosclerotic
lesions and macrophage LPL produced in the vascular
wall acts as a pro-atherogenic protein. This enzyme medi-
ates the uptake of lipoproteins by macrophages, promotes
lipoprotein retention to the extracellular matrix, induces
the expression of the proatherogenic cytokine TNF-α,
increase monocyte adhesion to endothelial cells and pro-
liferation of vascular smooth muscle cells. It also pro-
motes foam cell formation and atherosclerosis in vivo.
Homocysteine was found to simultaneously change mac-
rophage LPL & c-fos mRNA levels and induce the binding
of nuclear protein to AP1 sequence (Figure 5, branch 7).
This suggests that c-fos also may have a role to play in the
stimulatory effect of homocysteine on macrophage LPL
mRNA expression.

Homocysteine is known to down regulate the expression
of peroxisome proliferators-activated receptors (PPARs)
that are redox sensitive transcription factors in the vascu-
lature belonging to the ligand-activated nuclear receptor
family (Figure 5, branch 9). They play a key role in regu-
lating expression of genes that control glucose and lipid
metabolism and has been implicated in metabolic disor-
ders leading to atherosclerosis. PPAR agonists like fibrates
are known to promote anti-inflammatory effects presum-
ably via the induction of antioxidant enzymes by PPARs.
Homocysteine can potentially bind to PPARs and com-
pete with the PPAR ligands like fibrates [74]. In fact it has
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been reported that homocysteine binds to PPARs with a
10 fold higher affinity than fibrates [74], a class of lipid-
modifying agents that have been widely used to substan-
tially decrease plasma triglyceride levels. It also results in
moderate decrease in LDL cholesterol and an increase in
HDL cholesterol concentrations. Thus, elevated levels of
homocysteine might lead to hyperlipidemia by compet-
ing with the PPAR ligands like fibrates which are known
to catabolise VLDL and triglycerides [75].

Oxidized low density lipoprotein (OxLDL) (Figure 5,
branch 8) is one of the major factor that is responsible for
endothelial dysfunction is as it induces expression of
adhesion molecules, chemokines like MCP1 and impairs
the endothelium-dependent vasorelaxation. LOX-1 is the
principle receptor of OxLDL in vascular endothelial cells.
Homocysteine has been reported to enhance endothelial
LOX-1 gene expression and TNFα release upon oxLDL
stimulation [[76,77] Figure 5, branch 3]. Tontonoz et al
demonstrated that oxLDL induces PPAR-γ in foam cell of
atherosclerotic lesion, thus potentiating pathogenesis of
atherosclerosis [78]. Oxidized LDL has a role in the activa-
tion of PPAR-γ dependent gene expression and regulation
of oxLDL receptor CD36. Thus, activation of PPAR-γ and
CD36 constitute a positive feedback loop to potentiate the
effects of oxLDL. PPARα and PPAR-γ can also suppress the
inflammatory gene expression in monocytes, [79,80] and

mediate the anti-inflammatory response in the vessel
wall. Hence, a balance between pro inflammatory effect of
oxLDL and anti-inflammatory properties of PPARs deter-
mine the inflammatory status of cell/ vessel wall. Recent
cross sectional studies report that oxidized LDL have
higher association with angiographically documented
coronary artery disease in patients 60 years or younger
which implies that early onset CAD is more correlated
with oxidized LDL thus by upregulating oxidized LDL
receptors homocysteine induces athreosclerotic changes
in an independent manner in both endothelial cells as
well as mononuclear cells accelerating the rate of athero-
sclerosis [81].

(iii) Homocysteine modulates inflammatory gene response in 
endothelial cells
In endothelial cells, proinflammatory cytokines enhance
the binding of NF-κB to DNA and cause up-regulation of
NF-κB dependent genes [82,83] (Figure 5, branch 6)
Homocysteine has been reported to induce NF-κB activa-
tion in HUVECs and human aortic endothelial cells
(HAECs). It also activates IκB-α resulting in nuclear trans-
location of NF-κB and enhanced NF-κB /DNA interaction.
Thus, homocysteine cause an imbalance in intracellular
signaling rather than a complete suppression of endothe-
lial cell function. NF-κB may also play an important role
in homocysteine-induced MCP-1 expression leading to
monocyte macrophage accumulation in atherosclerotic

Elevated homocysteine levels and the Coagulation pathwayFigure 4
Elevated homocysteine levels and the Coagulation 
pathway. Elevated homocysteine levels may lead to throm-
bosis either by increasing the activity of the tissue factor 
(branch 1) thereby facilitating the coagulation cascade or by 
inhibiting the anticoagulant pathways (branch 2 and 3). The 
genes marked in blue have been identified by literature based 
searches as mentioned in the methods section. The solid and 
dotted lines indicate direct and indirect (multi step) interac-
tion/ conversion respectively.

Elevated homocysteine levels and apoptosisFigure 3
Elevated homocysteine levels and apoptosis. Elevated 
levels of homocysteine directly (branch 1 and 2) or via ER 
stress (branch 3 and 4) lead to apoptosis. Homocysteine also 
might lead to cell survival via calcium dependent ERK phos-
phorylation (branch 5). The genes marked in blue have been 
identified by literature based searches as mentioned in the 
methods section. The solid and dotted lines indicate direct 
and indirect (multi step) interaction/ conversion respectively.
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lesions. Wang et. al [84] demonstrated that in homo-
cysteine treated vascular smooth muscle cells both mRNA
and protein levels of MCP-1 were increased through acti-
vation of PKC and superoxide production followed by
NF-κB activation. MCP-1 & IL-8 are major chemokines for
leukocyte trafficking and has been found in atheromatous
plaques. The major route of action of MCP-1 is via its
interaction with MCP-1 receptor on surface of monocyte
(CCR2). Homocysteine stimulates CCR2 expression in
monocyte leading to an enhanced binding and chemotac-
tic response [84]. Apart from MCP-1, homocysteine also
up regulate the expression of IL-8 in cultured human
monocyte via enhanced formation of homocysteine
induced ROS (Reactive Oxygen species) [85]. Homo-
cysteine also induces expression of VEGF presumably via
activation of NF-κB [86]. VEGF has been found to be
expressed in activated macrophages, endothelial cells, and
smooth muscle cells in human coronary atherosclerotic
lesions, but not in normal artery [87]. VEGF has also been
reported to increase atherosclerotic plaque size [88].

Moreover, in endothelial cells homocysteine modulates
the expression of cell adhesion molecule-1 (sCAM-1) [89]
which is generally perceived as a marker for vascular
inflammation. Mansoor et. al. recently reported increase
in the concentration of plasma homocysteine and triglyc-
erides six hours after methionine and/or fat loading. It
resulted in significant increase in the concentrations of P-
selectin, E-selectin and VCAM-1 in healthy volunteers
[90](Figure 5, branch 4).

Increasing evidence suggests the role of hyperhomo-
cysteinemia in the underlying pathophysiological mecha-
nism of the increased vascular risk development of
coronary artery disease in patients with T2DM (Type 2
Diabetes Mellitus). The mechanisms by which homo-
cysteine promotes this and exerts its detrimental effects
may relate to induction of endothelial dysfunction and/or
chronic inflammation (Figure 5, branches 4–6). T2DM
stems from the failure of the body to respond normally to
insulin, called "insulin resistance", ultimately leading to
hyperglycemic condition. This common form of diabetes
is often associated with obesity. Studies on experimental
models have suggested that obesity also is a state of
chronic inflammation. Over the years increasing evidence
has accumulated indicating an ongoing cytokine-induced
acute-phase response (low-grade inflammation) to be
closely involved in the pathogenesis of T2DM and associ-
ated complications such as dyslipidemia and atheroscle-
rosis. Observation that plasma concentrations of
proinflammatory markers viz. C-reactive protein (CRP),
interleukin-6 (IL-6), plasminogen activator inhibitor-1
(PAI-1) and tumor necrosis factor-α (TNF-α) in the obese

Interactions between proinflammatory cytokinesFigure 6
Interactions between proinflammatory cytokines. 
The interaction between different proinflammatory cytokines 
is shown which may be modulated by homocysteine levels 
resulting in pathological consequences.

Elevated Homocysteine is associated with atherosclerosisFigure 5
Elevated Homocysteine is associated with athero-
sclerosis. Elevated level of homocysteine affects the choles-
terol biosynthesis (branch 1), expression of extracellular 
matrix proteins (branch 2), enhance endothelial LOX-1 gene 
expression and TNFα release upon oxLDL stimulation 
(branch 3,branch 8), affect the expression of cell adhesion 
molecule (branch 4), enhance SMC proliferation by increas-
ing cyclin A activity (branch 5), induce the expression of LPL 
both at the transcription and translation level presumably via 
PKC activation (branch 6,7) that modulates inflammatory 
gene response in endothelial cells. Elevated level of homo-
cysteine also down regulate the expression of PPARs (Figure 
6, branch 9). The genes marked in blue have been identified 
by literature based searches as mentioned in the methods 
section. The solid and dotted lines indicate direct and indi-
rect (multi step) interaction/ conversion respectively.
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are elevated has confirmed the same. The interactions
between the proinflammatory cytokines are shown in (fig-
ure 6). Association of hyperhomocysteinemia with ele-
vated levels of proinflammatory cytokine in T2DM
patients substantiates its role in accelerating diabetes asso-
ciated atherosclerosis [91]. Impaired SAM synthesis in
liver tissue has also been shown to enhance production of
pro-inflammatory cytokines and mediators [92].

V) Hypertension, angiotensin II and atherosclerosis
Hypertension is a risk factor for cardiovascular disease,
and experimental evidence supports a role of renin-angi-
otensin system in contributing to pathogenesis of athero-
sclerosis [[93], Figure 5]. Untreated hypertension is
associated with disturbed glutathione redox status and
increased plasma homocysteine concentrations [94].
Hypertension associated with the elevation of angiotensin
II levels results in the induction of smooth muscle cell
superoxide via NADPH oxidase [95,96]. In addition, angi-
otensin II has also been shown to stimulate MCP-1 and
VCAM -1 expression in rat aorta [97] and elevate LOX-1
expression in cultured vascular endothelial cells [98].
Interestingly, homoctysteine as mentioned above induces

the expression of MCP-1, VCAM-1 and LOX-1 [77,85].
Thus, elevated levels of homocysteine may lead to hyper-
tension by mechanisms similar to that of angiotensin II.
This hypothesis is further supported by the report that
methionine loading in normotensive and spontaneously
hypertensive rats resulted in quantitative difference in
homocysteine in the two rats. In spontaneously hyperten-
sive rat, the serum levels of homocysteine were higher
than in normotensive rats. Furthermore, methionine-
related aortic alterations developed earlier were consider-
ably more pronounced with the formation of additional
connective tissue in spontaneously hypertensive rats [99].
Interestingly, administration of angiotensin II exacerbated
the methionine loading-related aortic alterations. Mild
hyperhomocysteinemia is associated with stiffer small
arteries with increased collagen deposition but these
changes are accentuated by angiotensin II-induced blood
pressure elevation [100]. There is also a report, which sug-
gests that in NIH/3T3 fibroblasts, angiotensin II induces
GATA4 activity and homocysteine delayed this binding
and hence alters the angiotensin II signaling [101]. It is
thus perceived that the deleterious effects of homo-
cysteine may at least in part be mediated via modulation
of angiotensin II -signaling for gene transcription.

vi) Homocysteine and extra cellular matrix
Homocysteine up regulates the synthesis and accumula-
tion of SMC collagen [[102] Figure 5, branch 2] and sev-
eral studies have demonstrated that homocysteine is
mitogenic for arterial SMCs [103,104] Extra-cellular
matrix proteins like collagen are known to be critical com-
ponents of atherosclerotic lesions [105]. The proliferation
of smooth muscle cells and synthesis of extracellular
matrix are important determinants of the extent of lesion
development and plaque stability. Fibrillar collagen has
an important role in the pathogenesis of atherosclerosis
due to its substantial contribution to the mass of connec-
tive tissue. It renders structural support for the plaques
[106]. Uncontrolled collagen accumulation leads to arte-
rial stenosis, while excessive collagen breakdown com-
bined with inadequate synthesis weakens plaques thereby
making them prone to rupture.

Apart from collagen, homocysteine induces matrix metal-
loproteinases. Remodeling of extra-cellular matrix of the
arterial wall by inducing elastolysis via activation of met-
alloproteinases in response to elevated levels of homo-
cysteine is shown by studies in animal models. Chaussalet
et al [107] showed that pathological levels of homo-
cysteine increased the secretion of elastolytic metallopro-
teinase-2 and -9 and their activator kallikrein, in HUVECs
[107]. Furthermore, hyperhomocysteinemic patients had
elevated mRNA levels of MMP-9 and tissue inhibitors of
metalloproteinases-1 (TIMP-1) in freshly isolated periph-
eral blood mononuclear cells (PBMCs). Most importantly

Pathways that link elevated homocysteine level with Neuro-logical disordersFigure 7
Pathways that link elevated homocysteine level with 
Neurological disorders. Elevated homocysteine levels may 
cause neurological diseases by various mechanisms which 
include), altered methylation (branch 1 & 4), ER stress 
(branch 2), direct interaction with receptors (branch 3) and 
biomarker of apoptosis (branch 4). The Symbols shaded in 
color are the gene names given included in the gene-list. The 
genes marked in blue have been identified by literature based 
searches as mentioned in the methods section. The solid and 
dotted lines indicate direct and indirect (multi step) interac-
tion/ conversion respectively.
Page 12 of 19
(page number not for citation purposes)



Lipids in Health and Disease 2006, 5:1 http://www.lipidworld.com/content/5/1/1
folic acid treatment reduced the levels of homocysteine
and concomitantly a significant reduction in the levels of
MMP-9 and TIMP-1 mRNA in PBMCs was observed [108].

Hyperhomocysteinemia: Neurological disorders
Elevated levels of homocysteine have been associated
with Alzheimer disease (Figure 7). A characteristic feature
of the disease is the accumulation of amyloid beta (Aβ)
peptide and formation of Amyloid plaques and neurofi-
brillary tangles in the brain. Although the mechanism of
neurodegeneration has not yet been completely eluci-
dated, it is reported that increased calcium levels in the
cytosol, increased generation of reactive oxygen species,
hyper phosphorylation of tau proteins and apoptosis are
the important hallmarks of this disease [109,110].
Increased surface phosphatidyl serine (PS) is an early
marker of neuronal apoptosis [111]. The involvement of
reactive oxygen species is supported by the fact that high
concentrations of copper have been found in the vicinity
of Aβ amyloid deposits [112]. Moreover, high levels of
antioxidant enzyme such as heme oxygenase-1, SOD-1,

catalase and GPX were observed in plaque of brain tissue.
Homocysteine also increases the levels of calcium and is
known to generate reactive oxygen species especially in
the presence of transition metal ions and thus it is not sur-
prising that AD patients show elevated levels of homo-
cysteine. Seshadri et al. found elevated levels of
homocysteine prior to disease onset and suggested that
the risk of AD increases by about 40% for every 5 µM
increase in the concentration of homocysteine [113].

AD patients have elevated levels of homocysteine and
decreased levels of SAM. This is believed to alter the DNA
methylation status and hence gene expression in AD
patients. This hypothesis is supported by the observation
that SAM when added to human neuroblastoma SK-N-SH
cells in culture, down-regulates expression of PS I gene
coding for presenilin, a key factor for Aβ formation in AD
due to methylation of its promoter [114]. Similarly, there
are other studies suggesting that levels of SAM, folate and
vitamin B12 influence DNA methylation of the genes that
are involved in the Aβ formation [115]. Furthermore, it

Table 4: An exhaustive list of Gene polymorphism studies that have reported to affects the plasma level of homocysteine

S.NO Gene Symbol Polymorphism Amino Acid Consequences

Homocysteine 
Level

Gene expression /Enzyme 
Activity

1 MTHFR C677T
A1298C
A1793G

A222V
E429 A
R594Q

↑
↑
↑*

↓ [140]
↓
N.R

2 CBS 31 bp VNTR (exon 13-intron 13)
G919A
844Ins68 (Exon 8)
T833C

-----
G307S
-----
L278 T

↑**[141–142]
↑ [143–144]
↓ [121]
↑ [120]

↓
? [120]
↑ (P) [145]
? [120]

3 MTR A2756G D919G ↓ [121] N.R
4 MTRR A66G I22M ↑ [145] N.R
5 MAT G791A R264H NE [146] ↓ [147]
6 TYMS A 28-bp repeat (Enhancer region)

A 6-bp deletion (3'UTR)
--------
-----

↑ [124,125]
↓ (del/del) [148]

Alteration in transcription level[120]
↓ [149]

7 CTH G1346T S403I ↑ [126] N.R
8 GCP II/Folh1 C1561T H475Y ↑ [127,128] ↓ [128]
9 RFC-1 G80A R26H NE [129] N.R
10 eNOS G894T

T786C (Promoter)
CA Repeats (Intron 13)

E298D
---------
---------

↑ [150]
↑ [152]
↑ (In female) [154]

N.E [151]
↓ [153]
N.R

11 TC II C776G
A67G

P259R
I23V

↑ [130]
↓ [130]

↓ [155]

12 APO E Epsilon4 alleles -------- ↑ [156] N.R
13 PAI-1 4G Ins/del (Promoter) -------- ↑ [157] Affects the response of the PAI-1 

promoter to cytokines [158]
14 F2 G20210A (3'UTR) -------- ↑ [159] ↑ [160]
15 Factor V G1691A R506Q ↑ [159] Impairs APC mediated inactivation of 

factor Va [161]

N.R Not reported in the literature
N .E No Effect was observed.
* Border line association was observed in the presence of high folate concentration.
** After post methionine load
(P) Presence of low concentration of pyridoxal -5-phosphate.
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has also been reported that Herp, a homocysteine respon-
sive protein, up regulated during ER stress, regulates PS-
mediated amyloid beta generation presumably by bind-
ing to PS [116].

Homocysteine acts as an agonist and a partial antagonist
at the glutamate binding site of the NMDA and the gly-
cine-binding site of the receptor respectively. Under phys-
iological conditions, when the concentration of glycine is
normal, the neurotoxicity of homocysteine is observed at
a very high concentration (millimolar range). However,
under pathological conditions, such as in stroke or
trauma where glycine levels in the brain is elevated, neu-
rotoxicity of homocysteine is observed even at very low
concentrations of homocysteine (10–100 µM) as the neu-
rotoxic attributes of homocysteine exceeds its protective
activity [117]. Under physiological conditions excitation
of glutamate receptors initiates the stimulation of lipases
and phospholipases with the generation of second mes-
sengers that are necessary for normal cell function. How-
ever, over stimulation of glutamate receptors leads to
excessive calcium entry, abnormal phosphorylation and
proteolysis. Thus, increase in the concentration of homo-
cysteine probably results in the over stimulation of gluta-
mate receptors resulting in increased calcium influx. The
neuronal damage is due to excess calcium influx and also
the accumulation of reactive oxygen species.

Thus, we propose that homocysteine either by inducing
oxidative stress or ER stress might lead to apoptosis which
in turn may result in neurological disorders. Alternatively
homocysteine might act on glutamate receptors triggering
a cascade of events that might result in the disease.

Polymorphisms in genes resulting in 
hyperhomocysteinemia
Quantitative differences in the activity and availability of
enzymes involved in regulation of homocysteine levels
directly or indirectly are important in regulating the levels
of homocysteine and hence phenotype of complex dis-
eases. The factors that contribute to quantitative variation
between individuals are repeat and single nucleotide pol-
ymorphism at the genetic level and epigenetic modifica-
tions. There are several attempts to analyze
polymorphism in genes related to homocysteine pathway.
A similar analysis of polymorphism in genes that are part
of the interlinked network would be necessary to under-
stand the implications of plasma homocysteine levels on
predisposition and manifestation of complex diseases.

Polymorphisms in the genes involved in the methionine
and the folate cycles and the transsulfuration pathway
(Figure 1) are correlated with elevation of homocysteine
levels. A list of genes relevant to homocysteine metabo-
lism along with the known polymorphism and its effect

on homocysteine level has been listed (Table 4). Among
the genetic polymorphisms MTHFR C677T has been stud-
ied extensively. Along with C677T, the 1298A>C and
1793G>A polymorphism were associated with the plasma
total homocysteine, folate, and vitamin B12 in kidney
transplant recipients [118]. In a recent study we found
that in the Indian population MTHFR A1298C but not
C677T polymorphism was associated with plasma homo-
cysteine levels [119]. Cystathionine β-synthase (CBS), the
first enzyme in transsulfuration pathway, is a B6 –
dependent heme protein in mammals. Common muta-
tions in the gene (G919A and T833C) lead to hyperhomo-
cysteinemia, which is directly associated with increased
risk of cerebral thrombosis [120]. Furthermore, the most
prevalent mutations, a 68 bp insertion in the CBS gene
leads to lower increase in post methionine load homo-
cysteine levels while A2756G transition in MS (MTR)
gene, are associated with decreased fasting levels of
plasma homocysteine [121]. Methionine is converted to
SAM by the enzyme methionine-adenosyl transferase
(MAT). There are reports suggesting that the expression of
MAT is altered in alcoholic liver injury [122]. A tandem
repeat polymorphism with the gene coding for thymi-
dylate synthase (TYMS) is known to affect the expression
of this enzyme [123]. Reports suggest that TYMS 3/3 gen-
otype is associated with reduced plasma folate and among
individuals with low dietary folate intake is associated
with elevated plasma homocysteine levels. But the TYMS
3R3R genotype is not a determinant of homocysteine in
healthy young Caucasian adults from Northern Ireland
[124,125]. There is also an association of a common non-
synonymous SNP in the cystathionase (CTH) gene
G1346T (S403I) with plasma homocysteine concentra-
tions [126]. Apart from these, glutamate carboxypeptidase
II (GCPII) polymorphism (H475Y) is known to elevate
the levels of homocysteine/ folate in plasma [127,128].

Trascobalamin II (TCN II) facilitates the transport of the
vitamin B12 to various tissues. Genetic variations in
TCNII gene such as Pro259Arg significantly decrease holo-
TCNII or holo-TCNII concentrations [129]. Karin et al
have mentioned that cardiovascular disease patients and
normal controls, who have high vitamin B12 (>299
pmol/L), tHcy concentrations are lower in individuals
homozygous for occurrence of proline259 (259PP) in
TCNII protein compared to those with 259PR and 259RR.
Therefore, 259PP individuals may be more susceptible to
reduction of plasma tHcy in response to increase in vita-
min B12 levels [130].

Polymorphism in genes is population dependent. Thus, it
might be important to study the status of all these poly-
morphism in different cohorts to evaluate the importance
of each of these polymorphisms with respect to hyperho-
mocysteinemia.
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Conclusion
The challenges of understanding the molecular etiology of
complex diseases is in designing a comprehensive analysis
of genetic and epigenetic factors that contribute to quan-
titative differences in the levels of proteins coded by genes
in pathways relevant the disease phenotype. The source of
data to derive a rational list of genes for analysis is the lit-
erature where interactions and functional relationships
between individual gene products have been elucidated.
The present study is aimed at generating a resource for
selection of genes for polymorphism screening and analy-
sis of mutations as well as epigenetic modification in rela-
tion to hyperhomocysteinemia.

We have compiled a gene-list for researchers interested in
deciphering the molecular basis of the role of homo-
cysteine as an independent risk factor in cardiovascular
diseases and other complex diseases. Among the variety of
pathways that are modulated directly or indirectly by the
levels of homocysteine, endoplasmic reticulum stress or
ER stress emerges as a common pathway affecting differ-
ent complex diseases. The data compiled here would assist
the selection of genes for analysis based on the disease of
interest and/or pathways of interest. Presently we are
using the gene list for population specific frequency of
known SNP and for discovery of new SNP.

It is noted that the levels of Homocysteine may be closely
linked to epigenetic effects both as post-replication and
post-translation modification. Methylation of histones
plays an important role in chromatin remodeling and
maintenance of the remodeled state through mitosis.
With reference to post-replication modification of CpG
sequences homocysteine pathway can function as a auto-
regulatory process with reference to methylation of
5'upstream sequences of genes central to its own metabo-
lism: while it can also influence the expression of other
genes by regulation of levels of SAM for methylation of 5'
upstream sequences. Thus a pathway related analysis of
SNP as well as variation at epigenetic level is necessary for
complete understanding of the molecular mechanisms
relating homocysteine levels and complex disorders.
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