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Abstract: We study the renormalization group flow of the velocities in the field theory

describing the coupling of the massless quasi-relativistic fermions to the bosons through

the Yukawa coupling, as well as with both bosons and fermions coupled to a fluctuating

U(1) gauge field in two and three spatial dimensions. Different versions of this theory

describe quantum critical behavior of interacting Dirac fermions in various condensed-

matter systems. We perform an analysis using one-loop ε-expansion about three spatial

dimensions, which is the upper critical dimension in the problem. In two dimensions, we

find that velocities of both charged fermions and bosons ultimately flow to the velocity of

light, independently of the initial conditions, the number of fermionic and bosonic flavors,

and the value of the couplings at the critical point. In three dimensions, due to the

analyticity of the gauge field propagator, both the U(1) charge and the velocity of light flow,

which leads to a richer behavior than in two dimensions. We show that all three velocities

ultimately flow to a common terminal velocity, which is non-universal and different from

the original velocity of light. Therefore, emergence of the Lorentz symmetry in the ultimate

infrared regime seems to be a rather universal feature of this class of theories in both two

and three dimensions.
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1 Introduction

Lorentz invariance appears to be a fundamental symmetry of nature as we know it [1].

Nevertheless, there have been several attempts to understand it as a property that emerges

only at low energies [2–8]. That this is indeed possible in principle has been known for quite

a while in condensed matter physics, where Lorentz symmetry often appears in symmetry-

poor lattice models near the fixed points of the renormalization group flow [9–11].

One such example is the quantum critical point of the Gross-Neveu-Yukawa model of

Dirac fermions coupled to bosonic order parameter via a Yukawa term, which depending

on the precise pattern of symmetry breaking, is believed to describe a variety of zero

temperature phase transitions in Dirac-like condensed matter systems, such as monolayer

graphene and twisted bilayer graphene in two dimensions, or Weyl semimetals in three

spatial dimensions [12–18]. A small difference in the velocities of bosons and fermions in

such a theory is an irrelevant perturbation at the critical point. Another example is the

flow of Fermi velocity towards the fixed velocity of light in graphene, under the influence

of gauge interaction [19]. In this case the velocity of the gauge field cannot renormalize

and stays fixed under the scale transformation, due to the fact that matter is confined to

a space of dimension lower than that in which the gauge field lives. In 3+1 dimensions,

Dirac fermions coupled to the gauge field also ultimately acquire Lorentz symmetry with the

terminal common velocity towards which both the initial velocities of fermions and gauge
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field scale [20]. The scale dependence of the velocity of light stems from the analyticity of

the gauge field propagator in 3+1 dimensions.

Emergence of the Lorentz symmetry at low energies in a boson-fermion coupled theory

has been studied in ref. [5], but only in 3+1 space-time dimensions and assuming the

bosons to be gauge-neutral objects. Moreover, a similar problem has been analyzed in

the context of the purely bosonic [21] and boson-fermion coupled [22] Lifshitz theories and

Lorentz-symmetry breaking quantum electrodynamics [1].

Motivated by these examples, in this paper we study a more general model of Dirac

fermions coupled to O(2) bosonic field via Yukawa term, and with fermions and bosons,

both or separately, additionally coupled to a gauge field, both in 3+1 and lower space-time

dimensions. We assume arbitrary initial velocities of all three fields, and monitor their

change under the scaling transformation. We find that ultimately in the deep infrared

regime the Lorentz symmetry with one common velocity is always established, although

at intermediate scales the flow is rather non-universal, and may even be non-monotonic.

This is a demonstration that in a rather broad class of Lorentz-violating theories with

fermions, charged or charged neutral bosons and gauge fields, different couplings between

these separate sectors yield a universal outcome at low-energies: the Lorentz invariance

with a common velocity established by the interaction.

This paper is organized as follows. In section 2, we introduce the Gross-Neveu-Yukawa

theory and set up the formalism. In section 3, we derive the renormalization group (RG)

flow of the velocity for the matter and gauge fields in both (2+1) and (3+1) dimensions

within the framework of one-loop ε-expansion. In section 4.1, we analyze these RG flows

in (2+1) dimensions, while in section 4.2 a similar analysis has been performed in 3+1

dimensions. As we will show, in both cases the flow of the velocity in the infrared reaches a

terminal velocity, and therefore Lorentz symmetry emerges at low energies. We summarize

the results and discuss related topics in section 5. Details of the calculations of the self-

energy for matter and gauge fields are presented in appendices.

2 Gross-Neveu-Yukawa theory

We consider the system of quasi-relativistic fermions coupled to a fluctuating U(1) gauge

field, as well as to a bosonic order parameter field through the Yukawa coupling (g). The

complex bosonic order parameter field displays the O(2) symmetry and carries NB flavors.

The four-component massless Dirac fermions are enriched by NF copies, and interact with

the gauge field through charge e. In contrast, the bosonic field is assumed to be a composite

object of two fermionic fields and thus carries a charge 2e. The dynamics of the system is

then described by the following imaginary time (Euclidean) action [13]

S =

∫
dDx dτ (LF + LB + LBF + LEM) , (2.1)
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where

LF = Ψ̄

[
γ0(∂0 − ieγ5A0) + γjvF

(
∂j − i

e

c
γ5Aj

)]
Ψ ,

LB = |(∂0 + 2ieA0)Φ|2 + v2
B

∣∣∣∣(∂j + 2i
e

c
Aj

)
Φ

∣∣∣∣2 +m2|Φ|2 +
λ

2
|Φ|4,

LBF = g
[
(Re Φ)Ψ̄Ψ + (Im Φ)Ψ̄iγ5Ψ

]
,

LEM =
1

4
FµνFµν . (2.2)

Here, Ψ̄ ≡ Ψ̄(~x, τ), Ψ ≡ Ψ(~x, τ), Φ ≡ Φ(~x, τ), and Ψ̄ = Ψ†γ0 is an independent Grassmann

variable. The fermionic and bosonic velocities are represented by vF and vB, respectively,

and Fµν is the electromagnetic field strength tensor. The velocity of light is denoted by c.

The γ matrices satisfy the standard anticommutation Clifford algebra {γµ, γν} = 2δµν for

µ, ν = 0, 1, · · · , D, and {γµ, γ5} = 0. Summation over repeated indices is assumed. The

explicit form of LEM in terms of temporal (A0) and spatial components (Aj) of the gauge

fields in real (Minkowski) time and in 3+1 dimensions is given by eq. (C.10).

The above field theory can emerge as an effective description near the quantum phase

(continuous) transitions of massless Dirac fermions towards the formation of an ordered

phase. For instance, if we neglect the coupling between the complex bosonic and the

fluctuating gauge fields, the above effective action describes a quantum phase transition

out of Dirac semimetal into an O(2) symmetry breaking insulating phase. The physical

meaning of the ordered phase depends on the representation of the spinor field. With the

appropriate definition, the above theory can describe the transition into the Kekule valence

bond insulator in graphene [13] and surface (top and bottom)-hybridizing and time-reversal

symmetric insulator in thin topological insulators [23]. When a slightly modified spinor

representation is chosen and the bosonic field is charged, the above field theory captures

the universality class of a phase transition from the Dirac semimetal to a spin-singlet s-

wave superconductor in graphene and surface states of topological insulators [13]. If we

neglect the boson-gauge field coupling, the ordered phase in three dimensional Dirac or

Weyl semimetal represents an axionic insulator, while the complete action in eq. (2.1) is

pertinent near the transition to an s-wave superconductor [18, 24]. When the bosonic field

is assumed to be gauge-neutral, the theory becomes the celebrated Nambu-Jona-Lasinio

model for spontaneous chiral symmetry breaking in 3+1 dimensions [25]. With these

motivations in mind, we will focus here on the flow of three velocities, vF, vB and c in two

and three spatial dimensions, that is in 2+1 and 3+1 space-time dimensions, and establish

the emergence of the Lorentz invariance as the three velocities approach a common terminal

velocity at low energies.

Notice that all coupling constants in the action, namely e, g, and λ are marginal in three

spatial dimensions (D = 3). Therefore, we perform a perturbative ε-expansion around the

upper critical dimension, where ε = 3−D to capture the emergent low-energy phenomena.

– 3 –



J
H
E
P
0
4
(
2
0
1
6
)
0
1
8

The fermionic, bosonic and gauge field propagators read, respectively,

GF(ω,~k) =
i(γ0ω + vFγjkj)

ω2 + v2
Fk

2
, (2.3)

GB(ω,~k) =
1

ω2 + v2
Bk

2 +m2
, (2.4)

Dµν(ω,~k) =
δµν

ε(ω2 + c2k2)
D−1
2

, (2.5)

where ε is the permittivity of the medium. The velocity of light in the medium is c = 1/
√
εµ,

where µ is the permeability of the medium.

The structure of the gauge field propagator Dµν(ω,~k) is such that its inverse is the

usual, analytic, quadratic function of the four-momentum in D = 3 (spatial dimen-

sions). However, when D < 3, D−1
µν (ω,~k) becomes manifestly non-analytic. In particu-

lar, in two spatial dimensions the gauge field propagator is defined here as Dµν(ω,~k⊥) =

1/
(
ε
√
ω2+c2k2

⊥
)
, with ~k⊥ = (k1, k2). This non-analyticity arises from the “projection”

of the gauge-field, which lives in 3+1 dimensions, onto the 2+1-dimensional “brane” to

which the matter fields are confined [26, 27]. This difference in the analyticity of the gauge

field propagator between D = 3 and D < 3 dimensions will prove to be important for the

behavior of the coupling constants under renormalization [28].

We here also choose to work with the Feynman gauge for the sake of simplicity, since the

universal behavior of the theory should not depend on the choice of gauge. As the theory

does not possesses the Lorentz symmetry at the bare level, we also carefully maintain

the distinction between space and time co-ordinates, and show that only inside the deep

infrared regime is the full space-time (Lorentz) symmetry achieved.

3 Renormalization group flow of velocities

Using the ε-expansion as a tool for studying the quantum-critical behavior in the infrared

regime, we obtain the renormalized action SR =
∫
dDxdτLR, where

LR = Ψ̄

[
ZΨγ0(∂0 − ieγ5A0) + ZΨZvFγj

(
∂j − i

e

c
Aj

)]
Ψ + ZΦ|(∂0 + 2ieA0)Φ|2

+ ZΦZ
2
vB
v2

B

∣∣∣∣(∂j + 2i
e

c
Aj

)
Φ

∣∣∣∣2+ Zmm
2|Φ|2 + Zλ

λ

2
|Φ|4 + ZgLB−F + ZALEM , (3.1)

and Zj ’s are renormalization constants. In dimensions D = 3 − ε, for all ε > 0, ZA = 1

exactly. This is a direct consequence of the non-analyticity of the gauge field propagator

below three spatial dimensions, as discussed above: integrating out degrees of freedom

near the UV cutoff cannot produce terms that would be non-analytic in fields or momenta

in the remaining low-energy action [28]. In other words, neither the charge (e) nor the

velocity of light (c) receives any perturbative corrections for ε > 0. The computation of

the self-energy diagrams for Dirac fermion and bosonic field, shown in figure 1(a)–1(e),
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Figure 1. Self-energy diagrams for Dirac fermion [(a) and (b)], bosonic [(c), (d) and (e)] and electro-

magnetic gauge [(f), (g) and (h)] fields. Here solid, dashed and wavy lines represent fermionic,

bosonic and gauge fields, respectively. Diagram (e) only renormalizes the bosonic mass (m). Notice

that diagrams (f), (g) and (h) are pertinent only in three spatial or 3+1 space-time dimensions.

yields the following renormalization factors

ZΨ = 1 +
e2

4π2ε

(
1− 3

v2
F

c2

)
1

c(c+ vF)2

1

ε
− g2

4π2

1

vB(vF + vB)2

1

ε
, (3.2)

ZvF = Z−1
Ψ

[
1− e2

12π2ε

(
1 +

v2
F

c2

)
2c+ vF

(c+ vF)2

1

ε
− g2

12π2

vF + 2vB

vFvB(vF + vB)2

1

ε

]
, (3.3)

ZΦ = 1− g2

8π2

NF

v3
F

1

ε
− e2

π2ε

(
c2 + 2cvB − v2

B

c3vB(c+ vB)

)
1

ε
, (3.4)

ZvB = Z
−1/2
Φ

[
1− g2

16π2

NF

vFv2
B

1

ε
− e2

2π2ε

(
38c3 + 31c2vB − 6cv2

B − 3v3
B

15c3vB(c+ vB)2

)
1

ε

]
. (3.5)

We here used the minimal subtraction scheme, and the divergent part of each diagram is

evaluated by performing the momentum integrals using dimensional regularization, which

preserves the gauge invariance. Details of the calculation of fermionic and bosonic self-

energies are presented in the appendix A and B, respectively. As well known, in this

formalism the poles 1/ε capture the logarithmically divergent contributions.

From the above renormalization factors, we obtain the following flow equations in the

infrared regime for the Fermi velocity (vF) and the bosonic velocity (vB)

βvF =
4αF vF

3
(
1 + vF

c

)2[1 + 2

(
vF

c

)
+

(
vF

c

)2

− 4

(
vF

c

)3]
− 4 g2

3

vF

vB(vF + vB)2

[
1− vB

vF

]
,

(3.6)

βvB =
4αF vF

15
(
1 + vB

c

)2[23− 14

(
vB

c

)
− 21

(
vB

c

)2

+ 12

(
vB

c

)3]
− NF

2
g2 vB

v3
F

[
1−

(
vF

vB

)2]
,

(3.7)

after taking e2/(8π2)→ e2, g2/(8π2)→ g2, and αF = e2/(εc2vF) can be considered as the

fine structure constant in the medium. We are assuming that the Yukawa coupling g is at
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its fixed point value, g2 ∼ ε. In the following sections, we show that terminal velocity of

fermions and bosons is insensitive of the Yukawa coupling (g). Notice that flow equations

are independent of the bosonic vertex coupling λ (see eq. (2.1)).

Although in two spatial dimensions the velocity of light in the medium does not receive

any perturbative corrections, the situation is dramatically different in three dimensions. In

D = 3 the gauge field propagator is an analytic function of the four-momentum. Conse-

quently both permittivity (ε) and permeability (µ) of the medium get renormalized (from

diagrams in figure 1(f)–(h)) due to the coupling of fluctuating gauge field with massless

Dirac fermions and the bosonic field. Detailed analysis of polarization bubbles is shown in

appendix C. Respectively, the flow of the fine structure constant (αF) and the velocity of

light (c) in the medium reads as

βαF = −4

3
α2

F

[
NF +NB

c3vF

v4
B

]
δD,3 , (3.8)

βc = −2

3
αF c

[
NF

(
1−

v2
F

c2

)
+NB

cvF

v2
B

(
c2

v2
B

− 1

)]
δD,3 , (3.9)

where “δ” is the Kronecker delta function. Here flow of the electric charge (e) is captured

by eq. (3.8).

4 Terminal velocity in two and three dimensions

We now proceed with the analysis of the flow equations for vF, vB and c in two and three

spatial dimensions separately.

4.1 Renormalization group flow of the velocities in two dimensions

Let us first focus on two dimensions, where neither the velocity of light nor the U(1) charge

receives any perturbative corrections.

For simplicity, we now neglect the coupling of Dirac fermions and bosonic field with

the fluctuating gauge field. Such situation can be addressed by setting e = 0 in the flow

equations (3.6) and (3.7). We numerically analyze the RG flow equations for vF and vB,

and the results are shown in figure 2, for v0
F > v0

B (figure 2(a)) and v0
B > v0

F (figure 2(b)).

The quantities with superscript “0” denote the bare values. If the bare velocity of fermions

is greater than that of bosons (v0
F > v0

B) during the RG flow these two velocities approach

each other, and at an infrared stable fixed point both fermionic and bosonic degrees of

freedom acquire a unique terminal velocity vF = vB ≡ vt, where v0
B < vt < v0

F, as shown

in figure 2(a) [14, 17]. If, on the other hand, the bare velocity of boson is larger than

that of fermions (v0
B > v0

F), ultimately these two velocities approach an infrared stable

terminal velocity vt, where v0
F < vt < v0

B, as shown in figure 2(b). The dependence of

the terminal velocity on initial velocities (v0
F, v

0
B) may not be too surprising. For fixed v0

B,

the terminal velocity increases monotonically with increasing v0
F, irrespective of whether

v0
F > v0

B or v0
F < v0

B. Furthermore, the terminal velocity is insensitive to the strength of the

Yukawa coupling (g), although the strength of g controls the intermediate speed of these

two species. Therefore, for a fixed number of fermionic and bosonic species, NF and NB,

– 6 –
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>vB
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0
>vF
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(c)

Figure 2. Renormalization group flows of Fermi velocity (red curves) and bosonic velocity (black

curves) when (a) v0F > v0B, and (b) v0B > v0F, for NF = 1. (c) Dependence of the terminal velocity (vt)

on the number of fermion flavors (NF) for v0F = 0.7 and v0B = 0.1 (red dots), and v0F = 0.4, v0B = 0.9

(black dots). Throughout we set the Yukawa coupling g = 1. Here, log[Λ0/Λ] is the renormalization

group time, where Λ0 is the ultraviolet cutoff, and Λ is the running infrared cut-off.

the velocity acquires a universal value independent of the value of the Yukawa coupling at

the quantum-critical point governing the transition into a symmetry-broken state.

The dependence of the terminal velocity vt on fermionic (NF) and bosonic (NB) flavor

number is more interesting. Notice that flow equations for vF and vB do not depend on

NB, and consequently vt is independent of the number of bosonic flavors. However, the

terminal velocity vt → v0
F as NF → ∞, irrespective of whether v0

F > v0
B or v0

F < v0
B, as

shown in figure 2(c). Such behavior can be appreciated from the appearance of NF in the

second term in eq. (3.7), which dictates that with increasing number of fermionic flavors NF,

boson velocity acquires a larger boost (either increasing or decreasing depending on whether

v0
F > v0

B or v0
F < v0

B, respectively) and the terminal velocity asymptotically approaches the

bare fermionic velocity (v0
F) for a large number of fermionic species (NF →∞).

Next we systematically incorporate the coupling of fluctuating gauge fields with fer-

mions and bosons. First, we consider a simple situation, when bosons and fermions are

decoupled (g = 0). Flow equations for vF [19] and vB are then also decoupled, and with

increasing RG time, both of them approach the velocity of light (c), however, at different

rates, as shown in figure 3(a) and figure 3(b), respectively. Notice that if we assume

vF, vB � c and neglect all the higher order terms ∼ (va/c)
n for a = F,B in the flow

equations of vF and vB, these two velocities continue to grow logarithmically with no upper

bound, leading to a catastrophic outcome. However, as va → c, one looses the liberty of

working with only the instantaneous (density-density or Coulomb) interactions with the

gauge field and neglect the current-current interaction, by virtue of which ultimately va → c

and the causality in the system gets restored.

We now focus on the situation when massless fermions are coupled to fluctuating

gauge fields, but the bosonic field is charge neutral. This scenario can be germane in

the vicinity of a quantum phase transition out of Dirac semimetal into an insulating phase

that spontaneously breaks an O(2) rotational symmetry. One prototypical example of such

insulating phase is the Kekule valence bond insulator in monolayer graphene. This situation

can be analyzed by setting e = 0 in eq. (3.7). Numerically solving the flow equations we

– 7 –
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Figure 3. Renormalization group flows for (a) Fermi velocity (for αF = 1), and (b) bosonic

velocity (for αB = 1) for vanishing Yukawa coupling (g = 0). Flows of vF (red) and vB (black)

for g = 1, αF = 1, (c) v0F > vB0 , and (d) v0B < v0F, when the bosonic field is assumed to be charge

neutral. Flows of these two velocities for (e) v0F > v0B, and (f) v0B > v0F, when the bosonic field is

also charged. Various parameters for this set of plots are NF = 1 [(a), (c)–(f)], and g = 1, αF = 1

[(c)–(f)]. Blue dotted lines represent the velocity of light (c = 1), which in two dimensions does not

renormalize.

find that the terminal velocity for fermionic and bosonic excitations is the velocity of light

vt = 1(= c), irrespective of the ratio of the bare velocities, i.e., whether v0
F > v0

B (see

figures 3(c)) or v0
B > v0

F (see figures 3(d)). This outcome can be readily understood as

follows. When fermions are coupled with gauge field, Fermi velocity ultimately approaches

the velocity of light. Meanwhile, fermions give boost to bosonic velocity through Yukawa

coupling (g), so that also vB → vF. Thus, in the deep infrared regime both velocities meet

each other and reach the velocity of light vF, vB → vt = c.

Finally, we delve into the most general scenario, when both fermion and boson are

coupled with the gauge field, and the flow of Fermi and bosonic velocities is thus determined

by eqs. (3.6) and (3.7), respectively. Such field theory describes quantum-critical behavior

near a continuous phase transition out of Dirac semimetal into the spin-singlet s-wave

superconductor in graphene (NF = 2), surface states of a strong Z2 topological insulator

(NF = 1/2) and surface states of a topological crystalline insulator (NF = 2). The RG

flow for vF and vB is shown in figure 3(e) for v0
F > v0

B, and in figure 3(f) for v0
B > v0

F.

Irrespective of their initial values, both vF and vB flow toward the velocity of light as more

and more degrees of freedom are integrated out, and the terminal velocity in the system is

the velocity of light, vt = c = 1.

– 8 –



J
H
E
P
0
4
(
2
0
1
6
)
0
1
8

It is worth pointing out a peculiar feature in the flow of vF and vB, when either only

fermions or both fermion and boson are coupled with the gauge field. Let us consider

the situation when v0
F > v0

B. In the short RG time, while vF decreases, vB continues to

increase monotonically. However, both vF and vB ultimately meet the velocity of light after

sufficiently long RG time, as shown in figure 3(c) (for neutral boson) and figure 3(e) (for

charged boson). A similar behavior in bosonic velocity (vB) is also present when v0
B > v0

F,

as shown in figure 3(d) (for neutral boson) and figure 3(f) (for charged boson). Such

distinct behavior in short and long time scale can be understood in the following way. For

short time scale both vF and vB � c(= 1), and the Yukawa coupling (g) between fermions

and bosons dominates over their coupling with the gauge field. As a result, initially these

two velocities try to meet each other, leading to their short time scale behavior. However,

as one of the velocities grows (depending on weather v0
F > v0

B or vice-versa) the coupling

with the gauge field becomes gradually more important and finally both of them reach a

universal terminal velocity vt = c = 1. Therefore, short length scale physics is governed by

the Yukawa coupling, while coupling with the fluctuating gauge field dominates in the deep

infrared regime. In contrast, in the absence of Yukawa coupling both vF and vB increase

monotonically and meet the velocity of light, once sufficiently large number of degrees of

freedom is integrated out from the system (see figure 3(a) and figure 3(b), respectively).

4.2 Renormalization group flow of velocities in three dimensions

We now proceed with the analysis of the flows of the velocities in three spatial dimensions.

These flows are quite different than in two dimensions, since in D = 3 the gauge field

propagator is analytic, and therefore both permittivity and permeability of the medium

receive perturbative corrections from the diagrams in figure 1(f)–(h). In other words,

both U(1) charge (e) and velocity of light (c) flow in the RG sense, as given by eqs. (3.8)

and (3.9), respectively.

If we neglect the presence of bosonic field, flow of vF and c is shown in figure 4(a).

Corresponding flow of the fine structure constant is shown in figure 4(e) in red. Therefore,

as system approaches deep infrared regime, vF (c) logarithmically increases (decreases),

and ultimately two velocities acquire a common, but non-universal value v0
F < vt < c0,

while αF continues to decrease monotonically [20]. If we neglect the terms ∼ (vF/c)
n

(situation with only the instantaneous piece of the gauge-fermion interaction), the Fermi

velocity continues to increase monotonically [29–31]. However, as vF → c, the retarted

components of the interactions become comparable with the instantaneous one, and the

growth of vF stops. Ultimately the system is described by an unique terminal velocity

(vt), where v0
F < vt < c0. Similar outcome is found if we consider a system of charged

bosons in the absence of fermions. The bosonic velocity and velocity of light meet as the

system approaches infrared, as shown in figure 4(b). Ultimately, the photon and boson are

described by a common non-universal terminal velocity vt, where v0
B < vt < c0. The fine

structure constant in such a system, defined as αB = e2/(εc2vB), decreases monotonically

(see black curve in figure 4(e)).

Finally, we consider the boson-fermion coupled system in three dimensions, when these

two degrees of freedom are also coupled with fluctuating gauge field. The flow of vF
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Figure 4. (a) Flow of vF (red) and c (blue) for v0F < c0, NF = 1 and α0
F = 3 in a pure fermionic

theory. (b) Flow of vB (black) and c (blue) for v0B < c0, NB = 1, and α0
B = e2/(εc2vB) = 3 in a pure

charged bosonic theory. Flow of three velocities for (c) v0B < v0F < c0, (d) v0F < v0B < c0. In these

two plots, we set g = 1, α0
F = 3, and NF = NB = 1. (e) Respective for figure (a)–(d), the flow of fine

structure constant is shown in red (αF), black (αB), blue (αF) and green (αF). (f) Dependence of

the terminal velocity (vt) on fermionic flavor number NF for fixed NB = 1 (red dots), and bosonic

flavor number NB for fixed NF = 1, when v0B < v0F < c0, α0
F = 3, and g = 1.

(red), vB (black) and c (blue) are shown in figure 4(c) and figure 4(d), respectively, for

v0
B < v0

F < c0 and v0
F < v0

B < c0. Therefore, irrespective of the initial velocity of fermionic

and bosonic degrees of freedom, ultimately all three velocities acquire a common, but non-

universal value. In both situations the fermionic fine structure constant, αF, decreases

monotonically as more and more degrees of freedom are integrated out. The flows of αF in

these two situations are shown in blue and green in figure 4(e), respectively. For the sake

of simplicity, we here do not discuss the situation when bosonic field is charge-neutral, but

Dirac fermions are coupled to the gauge field. The outcome, however, remains the same

that all three velocities finally acquires a common value [5].

The terminal velocity in boson-fermion-photon coupled theory displays an interesting

dependence on the fermionic (NF) and the bosonic (NB) flavor numbers. For a fixed NB,

as the number of fermionic degrees of freedom increases, the terminal velocity increases

monotonically, but asymptotically saturates to a value such that v0
F < vt < c0 in the

limit NF → ∞, at least when v0
F > v0

B. Such behavior arises from the fact that with

increasing fermion flavor number, vB receives a larger boost (when v0
B < v0

F), and the

terminal velocity increases monotonically. On the other hand, for fixed NF, when bosonic

flavor number increases, the terminal velocity decreases monotonically and asymptotically

saturates to a value such that v0
B < vt < v0

F, c
0 as NB →∞, for the bare velocities v0

F > v0
B.
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The difference in behaviors originates in the appearance of NB in the flow equation of c

(see eq. (3.9)). With increasing bosonic flavor number the velocity of light decreases faster

in the medium, and consequently the terminal velocity decreases monotonically. In both

cases the velocity of the degree of freedom with the larger number of species sets the lower

bound for the terminal velocity. Such dependence of the terminal velocity on flavor number

(NF and NB) is shown in figure 4(f) for v0
F > v0

B.

Therefore, irrespective of dimensionality of the system and the bare values of the

velocities, in the ultimate infrared regime all degrees of freedom acquire a common velocity,

ensuring the Lorentz symmetric fixed point as the ultimate stable fixed point in the theory.

5 Conclusions

In conclusion, we have here studied the emergence of the Lorentz symmetry in the field

theory describing the coupling of the massless fermions to the bosons through the Yukawa

coupling. These two degrees of freedom, in addition, are coupled to a fluctuating U(1)

gauge field in two and three spatial dimensions. This theory in its different variations

describes quantum-critical behavior of interacting Dirac fermions in various condensed-

matter systems. Our analysis is performed within one-loop ε-expansion about three spatial

dimensions, which is the upper critical dimension in the problem. In two spatial dimensions,

both the charge and the velocity of light are protected against perturbative corrections, due

to the non-analyticity of the gauge field propagator and the gauge symmetry, and we obtain

that both fermionic and bosonic velocities ultimately flow to the velocity of light, albeit at

different rates. Interestingly, even when fermions and bosons are decoupled from the gauge

field, they also reach a common terminal velocity, and Lorentz symmetry is restored in the

infrared in this case as well. The terminal velocity, however, depends on both the bare

velocities and the number of the flavors, and in that sense is non-universal. Therefore,

only when the gauge coupling is turned on, the terminal velocity in 2+1 dimensions is

completely universal and set by the velocity of the U(1) gauge field, i.e., the velocity of

light (c). Finally, we would like to emphasize that the emergence of the Lorentz symmetry

is completely independent of the value of the Yukawa coupling, implying that the strongly

coupled quantum-critical points governing various phase transitions of Dirac fermions are

all Lorentz invariant. This was previously hinted by performing a stability analysis of

the assumed Lorentz symmetry at the quantum-critical points [11, 12], but the analysis

performed here shows that the Lorentz symmetry emerges at such quantum-critical points

for arbitrary values of the bare velocities.

In three spatial dimensions both the charge and the velocity of light flow, and this

leads to a richer behavior of the velocities as compared to the situation in two dimensional

systems. First of all, even in the theory with charged fermions or bosons only, the velocity

flows to a common terminal velocity, which is however, non-universal, as it depends on both

the number of the flavors and the initial conditions. In the theory with both fermions and

bosons charged and also coupled through the Yukawa coupling, all three velocities flow to a

common terminal velocity, which is also non-universal, and with its lower bound set by the

initial velocity of the degrees of freedom (fermions or bosons) with less number of flavors.
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Therefore, emergence of the Lorentz symmetry in the infrared seems to be a universal

feature of this theory in three dimensions, at least within our one-loop RG analysis [11].

Although we have illustrated the universal phenomena regarding the flow of the ve-

locities in a system of interacting massless Dirac fermions residing in the close proximity

to an ordering that breaks continuous O(2) symmetry, the obtained results can be gen-

eralized to various order parameters breaking other symmetries. For example, one can

focus near the quantum phase transition of quasi-relativistic fermions towards the forma-

tion of an ordered state breaking either a discrete Z2 or continuous O(3) symmetry. In

graphene, such theories respectively describe the transition to a charge-density-wave and

Néel antiferromagnetic orderings [12]. When Dirac fermions are additionally coupled with

a U(1) gauge field, while the bosonic field remains charge neutral, our results imply that at

either of these two quantum critical points, the ultimate terminal velocity is the velocity

of light. Our analysis is also germane near multi-critical points in a system of strongly

interacting Dirac fermions [32–34]. At a multi-critical point two distinct order parameter

condense simultaneously and a super-order-parameter with a larger symmetry is realized.

Two bosonic fields then also have different bare velocities. Although we have not carried

out the calculations specific to this situation, the present analysis strongly suggests that

at the multi-critical point two bosonic fields should acquire a common velocity, which due

to the Yukawa coupling to Dirac fermions ultimately flows to the velocity of light.

As the penultimate remark, we should point out that as far as the anisotropy of velocity

of different degrees of freedom is concerned, the outcomes in two and three dimensions are

qualitatively the same. However, the quantum-critical behavior in two and three spatial

dimensions is completely distinct. While the transition out of Dirac semimetal into an

ordered phase in 2+1 dimensions is non-mean-field in nature and generically occurs at

strong coupling, its (3+1)-dimensional counterpart is only Gaussian (mean-field). This

stems from the fact that D = 3 is the upper-critical dimension for the instabilities of

massless Dirac fermions. Hence, correlation length exponent ν acquires a mean-field value

(ν = 1/2) and the hyperscaling hypothesis is violated [35].

Finally, we comment on the crossover behavior of some transport and thermodynamic

quantities when the bare velocities of matter fields (fermionic, bosonic) are different (and

typically much smaller) than the velocity of light. For example, in two and three spatial

dimensions the specific heat of massless Dirac fermions scales as Cv ∼ T 2/v2
F and T 3/v3

F,

respectively. When relativistic fermions are coupled only to photon, vF increases logarith-

mically toward the velocity of light c. Consequently, Cv/T
n suffers a monotonic decrease as

the temperature in gradually decreased. The zero-temperature optical or frequency (Ω) de-

pendent conductivity in three-dimensional quasi-relativistic system scales as σ(Ω) ∼ Ω/v,

which thus also decreases as the frequency in lowered. In contrast, when fermions are cou-

pled to bosonic (either charged or neutral) degrees of freedom, and in particular when their

bare velocities are such that v0
F > v0

B, (figures 3(c) and 3(e) for two dimensional system,

or in figure 4(c) for three dimensional systems), vF displays a nonmonotonic behavior as

system approaches the infrared sector, but ultimately reaches the velocity of light (c). As a

consequence, both thermodynamic (such as specific heat) and transport observables (such

as conductivity in D = 3) display nonmonotonic behavior. For example, specific heat in
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D = 2 and 3 increases initially, but turns around at intermediate (non-universal) temper-

ature to ultimately saturate to a smaller value. Therefore, in a sufficiently clean Dirac or

Weyl materials various measurable quantities can display such crossover phenomena.
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A Fermionic self energy

In this appendix we show the evaluation of self-energy corrections for massless Dirac

fermions due to its coupling with the fluctuating gauge field and the bosonic order parame-

ter field through the Yukawa coupling. To the one-loop order the self energy corrections of

Dirac fermions arise from the diagrams figures 1(a) and (b). Contribution from figure 1(a)

reads as

(1a) = −e
2

ε

∫
dDp

(2π)D

∫ ∞
−∞

dω

2π
γµγ5

i[(ω + ν)γ0 + vF(pj + kj)γj ]

(ω + ν)2 + v2
F(p+ k)2

γνγ5
δµν

ω2 + c2p2

= − ie
2

4ε

∫ 1

0
dx

∫
dDp

(2π)D
γµ

[
(1− x)νγ0 + vF(pj + kj)γj

[c2(1− x) + xv2
F]3/2

]
γν

× 1[(
p+

xv2F
c2(1−x)+xv2F

k
)2

+ k2 x(1−x)c2v2F
[c2(1−x)+xv2F]2

+ ν2 x(1−x)
c2(1−x)+xv2F

]3/2
, (A.1)

after performing the integration over the Matsubara frequency (ω) and introducing

the Feynman parameter (x), where γµ ≡
(
γ0,

vF
c γj

)
. Performing a shift in variable

p +
xv2F

c2(1−x)+xv2F
k → p, and the integral over the momentum (p) in dimensions D = 3 − ε,

we obtain the divergent piece of the fermionic self-energy

(1a) = − e2

4π2ε

[
iνγ0

c(c+ vF)2

(
1− 3

v2
F

c2

)
− ivFγjkj(2c+ vF)

3cvF(c+ vF)2

(
1 +

v2
F

c2

)]
1

ε
+O(1) , (A.2)

after performing the integral over x.

Self-energy correction from figure 1(b) reads

(1b) = g2

∫
dDp

(2π)D

∫ ∞
−∞

dω

2π

[
P+[i(ωγ0 + vFγjpj)]P−

[ω2 + v2
Fp

2][(ν − ω)2 + v2
B(k − p)2 +m2]

+ (P+ ↔ P−)

]

=
g2

4

∫ 1

0
dx

∫
dDp

(2π)D

iγ0xν + iγjvF

(
pj +

xv2B
v2F(1−x)+xv2B

kj

)
[v2

F(1− x) + xv2
B]−3/2[

p2 +
x(1−x)v2Bv

2
F

(v2F(1−x)+xv2B)2
k2 + x(1−x)ν2+(1−x)m2

v2F(1−x)+xv2B

]3/2
,

(A.3)
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where P± = 1
2(1 ± γ5) after completing the integration over the frequency, and shifting

the momentum p − xv2B
v2F(1−x)+xv2B

k → p. Performing the integration over momentum (p) in

D = 3− ε and over x, we obtain

(1f) =
g2

4π2ε

1

vB(vF + vB)2

[
iνγ0 + iγjvFkj

(
1 + 2 vB

vF

3

)]
+O(1) . (A.4)

Combining the expressions from eqs. (A.2) and (A.4), we finally obtain the expressions

for fermionic field renormalization (ZΨ) in eq. (3.2) and renormalization of Fermi velocity

(ZvF) in eq. (3.3).

B Bosonic self-energy

This appendix is devoted to the evaluation of self-energy corrections of bosons carrying

U(1) charge 2e due to their coupling to the fluctuating gauge field and to massless Dirac

fermions through the Yukawa coupling. Correction to the bosonic self-energy due to Yukawa

coupling arise from the diagram shown in figure 1(c) and its contribution is given by

(1c) = 2g2NF

∫
dDq

(2π)D

∫ ∞
−∞

dω

2π

ω(ω + ν) + v2
F~q · (~p+ ~q)

(ω2 + v2
Fq

2)[(ω + ν)2 + v2
F(p+ q)2]

=
g2NF

2

∫ 1

0
dx

∫
dDq

(2π)D

[
v2

Fq
2+x(1−x)(ν2+v2

Fp
2)−x(1−x)ν2+v2

Fq
2−x(1−x)v2

Fp
2

[v2
Fq

2+x(1−x)(ν2+v2
Fp

2)]3/2
,

(B.1)

after completing the frequency integral. Performing the integration over the momentum

we arrive at

(1c) = − g
2NF

8π2v3
F

(ν2 + v2
Fp

2)
1

ε
+O(1) . (B.2)

On the other hand, correction to bosonic self-energy due to the fluctuating gauge field (see

figure 1(d)) is given by

(1d) =
4e2

ε

∫
dDp

(2π)D

∫ ∞
−∞

dω

2π

1

ω2 + c2p2

(2ν + ω)2 + v4
B c
−2(2k + p)2

(ω + ν)2 + v2
B(k + p)2 +m2

=
e2

ε

∫ 1

0
dx

∫
dDq

(2π)D

 [c2(1− x) + xv2
B]−1/2[(

p+
xv2B

c2(1−x)+xv2B
k
)2

+
x(1−x)v2Bc

2

[c2(1−x)+xv2B]2
k2 + x(1−x)ν2+xm2

c2(1−x)+xv2B

]1/2

+

[(
c2(1− x) + xv2

B

)]−3/2
[(2− x)2ν2 + v4

B c
−2(2k + p)2][(

p+
xv2B

c2(1−x)+xv2B
k
)2

+
x(1−x)c2v2B

(c2(1−x)+xv2B)2
k2 + x(1−x)ν2+xm2

c2(1−x)+xv2B

]3/2

 ,
(B.3)

after completing the frequency integral. Taking p +
xv2B

1−x+xv2B
k → p, and performing the

momentum integral in D = 3− ε dimension we obtain

(1d) =
e2

π2ε

[
c2 + 2cvB − v2

B

c3vB(c+ vB)
ν2 +

38c3 + 31c2vB − 6cv2
B − 3v3

B

15c3vB(c+ vB)2
v2

Bk
2

]
1

ε
+O(1) . (B.4)
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Finally, the contribution from figure 1(e) reads

(1e) =
λ

2
(2NB + 2)

∫
dDq

(2π)D

∫ ∞
−∞

dω

2π

1

ω2 + v2
Bq

2 +m2
=
λ(NB + 1)

v3
B

m2 1

ε
+O(1) , (B.5)

after taking λ/(8π2)→ λ, and gives renormalization to bosonic mass only. Upon combining

the contributions from eqs. (B.2) and (B.4), we find the normalization of bosonic field (ZΦ)

(see eq. (3.4)) and bosonic velocity (ZvB) (see eq. (3.5)).

C Self-energy correction of gauge field

This appendix is devoted to the computation of the renormalization of the gauge field

propagator in three spatial dimensions. We first focus on such corrections due to the

gauge-fermion coupling. The contribution from the diagram (f) in figure 1 reads as

(1f) = e2 Tr

∫ ∞
−∞

dω

2π

∫
dDq

(2π)D
γµ(/k + /q)γν/q

(k + q)2q2
=

e2

vDF
Tr

∫
dD+1q

(2π)D+1

γµ(/k + /q)γν/q

(k + q)2q2
. (C.1)

Since

/k + /q = γ0(ω + ν) + vFγj(k + q)j , /q = γ0ω + vFγjqj (C.2)

we perform a change in variable vF qj → qj . After this transformation the frequency and

momentum integrals in eq. (C.1) can be promoted to d = D + 1-dimensions, and we can

extract the divergent piece in the above expression by performing the integration using

d = 4− ε scheme. The result is

(1f) =
4

3
e2NF (k2δµν − kµkν)

(
vF

c

)2−δµ,0−δν,0 kε

v3
Fε

+O(1) , (C.3)

after taking e2/(8π2) → e2, since γµ =
(
γ0,

vF
c γj

)
, where kµ = (k0, vFkj). To extract the

renormalization of permittivity (ε) and permeability (µ) of the medium we need to rescale

the time coordinate as cτ → x0 in the action. Under this rescaling kµ = (k0, vFkj)/c.

Finally promoting the theory from imaginary to real time (Wick rotation), we obtain

(1f) =
1

2
Aµ

[
4

3
e2NF (k2 Gµν − kµkν)

(
vF

c

)2−δµ,0−δν,0 kε

v3
F

]
Aν

1

ε
+O(1) , (C.4)

where Gµν = Diag.(1,−1,−1,−1).

Next we evaluate the renormalization of the gauge field propagator through its coupling

with the bosonic order parameter field. The relevant diagrams to one loop order are shown

in figure 1(g) and (h). Contribution from the diagram (g) reads as

(1g) = NB(2e)2

∫ ∞
−∞

dω

2π

∫
dDq

(2π)D
(k + 2q)µ(k + 2q)ν

(q2 +m2)[(q + k)2 +m2]
, (C.5)

where (k + 2q)µ =
(
ν + 2ω, v2

B(k + 2q)j/c
)
. After taking v2

Bqj/c → qj , we once again can

promote the above integral to d = D + 1 dimensional space-time (imaginary) integration.
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Performing the integral using d = 4− ε scheme we obtain

(1g) =
4NBe

2

(v2
B/c)

3

∫
ddq

(2π)d
(k + 2q)µ(k + 2q)ν

(q2 +m2)[(q + k)2 +m2]

=

[
4NBe

2

3(v2
B/c)

3

[
k2δµν − kµkν

](vB

c

)2−δµ,0−δν,0
+

8NBe
2

(v2
B/c)

3
m2δµν

]
1

ε
, (C.6)

after taking e2/(8π2)→ e2, where kµ = (k0, v
2
Bkj/c). The second term in the last equation

cancels with the contribution from diagram (h) in figure 1 and the gauge field remains

transverse. So, from now on we focus on the first term of eq. (C.6). After rescaling the

imaginary time according to cτ → x0, we obtain kµ = (k0/c, v
2
Bkj/c

2). Finally, changing

the imaginary time to real one (Wick rotation), we obtain

(1g) + (1h) =
1

2
Aµ

[
4

3
e2NB (k2 Gµν − kµkν)

(
vB

c

)2−δµ,0−δν,0 kε

(v2
B/c)

3

]
Aν

1

ε
+O(1) . (C.7)

Hence, the total correction to gauge field propagator reads as

Π2 =
1

µc2

[
A2

1(k2
2 + k2

3) +A2
2(k2

3 + k2
1) +A2

3(k2
1 + k2

2)− 2AjAlkjkl
][vF

c2
ΓµF +

c

v2
B

ΓµB

]
+ ε

[
−A2k

2
0

c2
−A2

0k
2 − 2A0Aj

k0

c
kj

][
1

c2vF
ΓεF +

c

v4
B

ΓεB

]
, (C.8)

where

ΓεF =
4

3ε
NFe

2k
−ε

ε
, ΓµF =

4µ

3
NFe

2k
−ε

ε
, ΓεB =

4

3ε
NBe

2k
−ε

ε
, ΓµF =

4µ

3
NBe

2k
−ε

ε
,

(C.9)

and summation over repeated indices is assumed. In real time the Maxwell Lagrangian

reads as

LEM = εE2 − 1

µ
B2

= ε

[
−A2k

2
0

c2
−A2

0k
2 − 2A0Aj

k0

c
kj

]
− 1

µc2

[
A2

1(k2
2 + k2

3) +A2
2(k2

3 + k2
1) +A2

3(k2
1 + k2

2)− 2AjAlkjkl
]
, (C.10)

since

~E = −1

c

∂ ~A

∂t
− ~∇A0 , ~B =

1

c
~∇× ~A . (C.11)

From the above equations we then arrive at the renormalization conditions for ε and µ

Zε−1 = 1− 4e2

3ε

(
NF

c2vF
+NB

c

v4
B

)
1

ε
, Zµ−1 = 1 +

4e2

3ε

(
NF

vF

c2
+NB

c

v2
B

)
εµ

ε
. (C.12)

Since c2 = 1/(εµ), Zc2 = Zε−1Zµ−1 , yielding

Zc = 1− 2

3

e2

εc2vF

[
NF

(
1−

v2
F

c2

)
+NB

cvF

v2
B

(
c2

v2
B

− 1

)]
1

ε
, (C.13)

from which we arrive at the flow equations for fine structure constant (αF) (see eq. (3.8))

and velocity of light (c) (see eq. (3.9)) in 3+1 dimensions.
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[33] B. Roy and V. Juričić, Strain-induced time-reversal odd superconductivity in graphene,

Phys. Rev. B 90 (2014) 041413(R) [arXiv:1309.0507] [INSPIRE].

[34] L. Classen, I.F. Herbut, L. Janssen and M.M. Scherer, Mott multicriticality of Dirac

electrons in graphene, Phys. Rev. B 92 (2015) 035429 [arXiv:1503.05002] [INSPIRE].

[35] M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: a review,

Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].

– 18 –

http://dx.doi.org/10.1103/PhysRevB.87.174511
http://arxiv.org/abs/1302.5113
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B87,174511"
http://arxiv.org/abs/1511.06367
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06367
http://dx.doi.org/10.1016/0550-3213(94)90410-3
http://arxiv.org/abs/hep-th/9311105
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B424,595"
http://dx.doi.org/10.1103/PhysRevB.86.165127
http://arxiv.org/abs/1205.2427
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B86,165127"
http://dx.doi.org/10.1088/1126-6708/2009/11/019
http://arxiv.org/abs/0907.2647
http://inspirehep.net/search?p=find+J+"JHEP,0911,019"
http://dx.doi.org/10.1103/PhysRevD.85.085018
http://arxiv.org/abs/1107.6040
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D85,085018"
http://dx.doi.org/10.1103/PhysRevLett.103.066402
http://arxiv.org/abs/0902.1147
http://dx.doi.org/10.1103/PhysRevB.65.024512
http://arxiv.org/abs/cond-mat/0112456
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B65,024512"
http://dx.doi.org/10.1103/PhysRev.122.345
http://inspirehep.net/search?p=find+J+"Phys.Rev.,122,345"
http://dx.doi.org/10.1103/PhysRevD.64.105028
http://arxiv.org/abs/hep-ph/0105059
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D64,105028"
http://dx.doi.org/10.1103/PhysRevB.87.205445
http://arxiv.org/abs/1304.1988
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B87,205445"
http://dx.doi.org/10.1103/PhysRevLett.87.137004
http://arxiv.org/abs/cond-mat/0105544
http://dx.doi.org/10.1103/PhysRevLett.107.196803
http://arxiv.org/abs/1101.2210
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,107,196803"
http://dx.doi.org/10.1103/PhysRevB.92.115101
http://arxiv.org/abs/1505.05154
http://dx.doi.org/10.1103/PhysRevB.92.125115
http://arxiv.org/abs/1502.07640
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B92,125115"
http://dx.doi.org/10.1103/PhysRevB.84.113404
http://arxiv.org/abs/1106.1419
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B84,113404"
http://dx.doi.org/10.1103/PhysRevB.90.041413
http://arxiv.org/abs/1309.0507
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B90,041413"
http://dx.doi.org/10.1103/PhysRevB.92.035429
http://arxiv.org/abs/1503.05002
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B92,035429"
http://dx.doi.org/10.1016/S0370-1573(03)00263-1
http://arxiv.org/abs/hep-th/0306133
http://inspirehep.net/search?p=find+J+"Phys.Rept.,385,69"

	Introduction
	Gross-Neveu-Yukawa theory
	Renormalization group flow of velocities
	Terminal velocity in two and three dimensions
	Renormalization group flow of the velocities in two dimensions
	Renormalization group flow of velocities in three dimensions

	Conclusions
	Fermionic self energy
	Bosonic self-energy
	Self-energy correction of gauge field

