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Abstract: In the framework of the QCD light-cone sum rules (LCSRs) we present the

analysis of all B,Bs → η(′) and D,Ds → η(′) form factors (f+, f0 and fT ) by including m2
η(′)

corrections in the leading (up to the twist-four) and next-to-leading order (up to the twist-

three) in QCD, and two-gluon contributions to the form factors at the leading twist. The

SU(3)-flavour breaking corrections and the axial anomaly contributions to the distribution

amplitudes are also consistently taken into account. The complete results for the f0 and

fT form factors of B,Bs → η(′) and D,Ds → η(′) relevant for processes like B → η(′)τντ or

Bs → η(′)l+l− are given for the first time, as well as the two-gluon contribution to the ten-

sor form factors. The values obtained for the f+ form factors are as follows: f+
Bη(0) =

0.168+0.042
−0.047, |f+

Bsη
(0)| = 0.212+0.015

−0.013, f+
Bη′(0) = 0.130+0.036

−0.032, f+
Bsη′

(0) = 0.252+0.023
−0.020 and

f+
Dη(0) = 0.429+0.165

−0.141, |f+
Dsη

(0)| = 0.495+0.030
−0.029, f+

Dη′(0) = 0.292+0.113
−0.104, f+

Dsη′
(0) = 0.558+0.047

−0.045.

Also phenomenological predictions for semileptonic B,Bs → η(′) and D,Ds → η(′) decay

modes are given.

Keywords: QCD Phenomenology, NLO Computations

ArXiv ePrint: 1508.05287

1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2015)138

mailto:gorand@irb.hr
mailto:melic@irb.hr
http://arxiv.org/abs/1508.05287
http://dx.doi.org/10.1007/JHEP11(2015)138


J
H
E
P
1
1
(
2
0
1
5
)
1
3
8

Contents

1 Introduction 1

2 η − η′ mixing schemes and distribution amplitudes 3

2.1 Mixing 3

2.2 Distribution amplitudes 5

3 LCSR for B,Bs → η(′) and D,Ds → η(′) form factors 10

4 LCSR for gluonic contributions to the form factors and consistent treat-

ment of the IR divergences appearing 15

4.1 Explicit results for the leading two-gluon contributions to the f+ and fT

form factors in B,Bs → η(′) and D,Ds → η(′) transitions 17

5 Predictions for B,Bs → η(′) and D,Ds → η(′) form factors (f+, f0 and

fT ) the form factors 18

6 Phenomenological applications 24

7 Summary 28

A Explicit results for f+, f0 and fT form factors at the leading order in

B,Bs → η(′) and D,Ds → η(′) transitions 29

B Parameters used in the calculation 32

1 Introduction

In the view of the numerous precise new measurements of two-body nonleptonic and

semileptonic B,Bs and D,Ds decays to η(′) performed by BaBar and Belle recently [1]

and the upcoming experimental precision in the next-generation experiments it is timely

to provide precise predictions for B,Bs → η(′) and D,Ds → η(′) form factors for analysis

of these decays. The form factors parametrize hadronic matrix elements of quark currents

and describe the long-distance QCD effects in semi-leptonic and non-leptonic decays.

All those decays are important for testing and understanding the Standard Model

flavour interactions, in particular for our understanding of the QCD dynamics in the flavour

physics as well as the flavour mixing given by the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix. The B,Bs and D,Ds decays to η, η′ pseudoscalar mesons can be used to

shed some light on both of these phenomena.
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Specially, the decays B,Bs → Xcc̄P , where Xcc̄ = J/ψ, ψ, η′c, χc0,c1,c2, hc and P is the

light pseudoscalar meson P = π,K, η, η′ are important for our understanding of the factor-

ization hypothesis and of the origin of the nonfactorizable contributions. Namely, there is a

huge discrepancy between the experimental results for some of the decays and the theoreti-

cal predictions based on the factorization. Even the inclusion of calculated nonfactorizable

contributions in some of B → Xcc̄K decays [2, 3] has not shown satisfactory agreement

with the experiment. Recently we have extracted the decay constants of charmonia states

by LCSR and by the lattice calculations [4]. With the determined form factors of tran-

sitions B,Bs → η(′) in this paper it will be possible to analyze consistently nonleptonic

decays to charmonia and to test the factorization hypothesis in such transitions.

Decays Bs → Xcc̄P are also useful to access CP violation in the Bs sector and the

phase of the Bs − B̄s mixing, βs = arg (−VtsV ∗t b/VcsV ∗cb) [5] and in the combination with

the B → Xcc̄η
(′) observables they can be also used for the determination of the η − η′

mixing parameters [6, 7].

By using the huge amount of data it could be possible to make a thorough analysis and

to extract the nonfactorizable contributions of nonleptonic decays from the data. The first

ingredient for the analysis is certainly our knowledge of the B(D) → P and Bs(Ds) → P

form factors. These form factors have been calculated for years by using the QCD light-cone

sum rule (LCSR) method [8–10] and on the lattice, step by step improving the precision

of the results. The form factors for B(D) → π,K and Bs(Ds) → π,K are known now

with quite a remarkable precision due to the consistent inclusion of corrections up to the

twist-four a the LO and up to the twist-3 at the NLO [11–14].

With the recent update on the η, η′ DAs where the SU(3) breaking effects are included

consistently to the power-suppressed twist-four corrections [15], it is possible now to analyze

B(D)→ η(′) and Bs(Ds)→ η(′) form factors to the same precision as for the B(D)→ π,K

and Bs(Ds) → π,K. But, η and η′ mesons exhibit some issues which makes them quite

different form the pion. In the exact SU(3) flavor limit η is a pure flavor-octet state,

while η′ is a pure flavor-singlet. Due to the existence of the axial U(1) anomaly, i.e. the

SU(3) breaking effects which are large and responsible for the heaviness of η′, there is a

mixture between flavour-octet and flavour-singlet states usually described by the mixing

matrix. In addition, the flavour-singlet states can mix with the two-gluon states producing

the large gluonic admixture in η′ mesons (which are primarily flavour-singlet states) and

almost negligible ones in η mesons. These gluonic contributions to the B(D) → η(′) and

Bs(Ds) → η(′) form factors enter at the NLO level which make them quite nontrivial for

calculation. The only existing calculation was done by Ball and Jones [16] for the f+ form

factor of the B → η(′) decay.

We check those results, improve them by including the mη(′) corrections to the both,

the hard scattering amplitude and to the DA of η(′) and consistently combine them inside

the η − η′ mixing schemes with the ‘standard’ quark contributions to predict B → η(′)

but also D → η(′) and Bs(Ds) → η(′) transition form factor f+. In order to calculate

consistently rare semileptonic B(D)→ η(′) and Bs(Ds)→ η(′) decays such as, for example,

Bs → η(′)l+l− and Bs → η(′)νν̄, it is necessary to calculate also other form factors, f0 and

fT (for definitions see (3.2), (3.3), (3.7)) of these decays which is for the first time done in

this paper.
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2 η − η′ mixing schemes and distribution amplitudes

2.1 Mixing

To analyze η and η′ states, we have to deal with several definitions of matrix elements of

the flavour-diagonal axial vector and pseudoscalar current:

〈P (p)|qγµγ5q|0〉 = − i√
2
f qP p

µ, 2mq〈P (p)|qγ5q|0〉 = − i√
2
hqP ,

〈P (p)|sγµγ5s|0〉 = −if sP pµ, 2ms〈P (p)|sγ5s|0〉 = −ihsP , (2.1)

where q = u, d and the isospin limit is taken, mq = 1
2(mu + md). There is also a U(1)A

anomaly,

〈P (p)|αs
4π
GAµνG̃

A,µν |0〉 = aP , (2.2)

which is connected with derivatives of the currents through the equation of motion as

∂µ(qγµγ5q) = 2imqqγ5q −
αs
4π
GAµνG̃

A,µν (2.3)

and included in hq,sP as

aP =
hqP − f

q
Pm

2
P√

2
= hsP − f sPm2

P . (2.4)

In the exact SU(3) flavour-symmetry limit aP = 0.

It is known that the SU(3) breaking corrections for η and η′ are large and that η and

η′ mix since they are not pure flavour-octet and flavour-singlet states, respectively.

The mixing of η and η′ mesons is established in two mixing schemes: the singlet-octet

(SO) and the quark-flavour (QF) scheme. Each of the schemes has some advantages and

some disadvantages.

In the SO scheme the mixing occurs among SU(3)F singlet |η1〉 = 1/
√

3|uū+ dd̄+ ss̄〉
and octet |η8〉 = 1/

√
6|uū+ dd̄− 2ss̄〉 components. By defining the coupling of the axial-

currents to η and η′ mesons as

〈0|J i5ν |η(′)(p)〉 = if i
η(′)pµ , (i = 1, 8) , (2.5)

the decay constants of pure (hypothetical) singlet and octet states fi are related to the f iη′

via two-parameter mixing matrixf8
η f1

η

f8
η′ f

1
η′

 =

(
cos θ8 − sin θ1

sin θ8 cos θ1

)(
f8 0

0 f1

)
. (2.6)

Since only the singlet component mixes with the gluonic contributions, the renormalization

scale dependence of parameters is diagonalized in the SO scheme and therefore is suitable
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for the analysis of the gluon distribution amplitudes [17]. Moreover, f8 is scale independent

and f1 renormalizes multiplicatively:

f8
P (µ) = f8

P (µ0)

f1
P (µ) = f1

P (µ0)

(
1 +

2nf
πβ0

[αs(µ)− αs(µ0)]

)
, (2.7)

where µ0 = 1 GeV is the scale at which the values of the mixing parameters are deter-

mined [18].

The simpler mixing scheme is QF scheme. There the basic components are |ηq〉 =

1/
√

2|uū+ dd̄〉 and |ηs〉 = |ss̄〉 states and the decay constants are defined as

〈0|Jr5ν |η(′)(p)〉 = if r
η(′)pµ , (r = q, s) . (2.8)

Their mixing with the decay constants of pure (hypothetical) non-strange and strange

states, fq and fs respectively, is given byf qη f sη

f qη′ f
s
η′

 =

cos θq − sin θs

sin θq cos θs

fq 0

0 fs

 . (2.9)

The main advantage of this scheme is that the mixing is not governed by the (large, 10–20%)

SU(3)F breaking effects as in the SO scheme, but by the OZI-rule violating contributions

which have be proven to be small [18]. Therefore it is possible to parametrize the mixing

just with one angle φ and the matrix U(φ) given as

U(φ) =

(
cosφ − sinφ

sinφ cosφ

)
(2.10)

which leads to the following expressions(
η

η′

)
= U(φ)

(
ηq

ηs

)
f (q)

η f
(s)
η

f
(q)
η′ f

(s)
η′

 = U(φ)

fq 0

0 fs

 , (2.11)

f (q)
η = fq cosφ =

1√
3

(√
2f1
η + f8

η

)
, f (s)

η = −fs sinφ =
1√
3

(
f1
η −
√

2f8
η

)
,

f
(q)
η′ = fq sinφ =

1√
3

(√
2f1
η′ + f8

η′

)
, f

(s)
η′ = fs cosφ =

1√
3

(
f1
η′ −
√

2f8
η′

)
.

The parameters have been determined by fits in [18] as

fq = (1.07± 0.02)fπ , fs = (1.34± 0.06)fπ , φ = 39.3o ± 1.0o , (2.12)
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and will be also used in this paper.1 These values give for the parameters of the SO basis

the following:

f8 = (1.26± 0.04)fπ , f1 = (1.17± 0.03)fπ , φ8 = −(21.2o ± 1.6o) , φ1 = −(9.2o ± 1.7o) ,

(2.13)

and the decay constants are connected as

f8
η f1

η

f8
η′ f

1
η′

 = U(φ)

fq 0

0 fs



√

1
3

√
2
3

−
√

2
3

√
1
3

 =

(
0.1530 0.0243

−0.0595 0.1506

)
GeV . (2.14)

Due to the mixing of the flavour-singlet and gluonic components, in the QF scheme both

ηq and ηs will get gluonic contributions and therefore also the physical η and η′ states. The

flavour states in QF scheme and in the approximation above can be written as [17]

|ηq〉 =
fq

2
√

2Nc

(
ψq(x, µF)|qq̄〉+

√
2/3ψg(x, µF)|gg〉

)
(2.15)

|ηs〉 =
fs

2
√

2Nc

(
ψs(x, µF)|ss̄〉+

√
1/3ψg(x, µF)|gg〉

)
(2.16)

where |qq̄〉 = (uū+ dd̄)/
√

2 and ψq = 1/3(ψ8 + 2ψ1) and ψs = 1/3(2ψ8 + ψ1).

By combing above information about the nature of η and η′ states one can expect

that gluonic contributions |gg〉 will be larger for η′ mesons, which is confirmed by the final

results.

Until now there is no available QCD sum rule or lattice QCD calculations of Bs to η(′)

transition form factors f+,0,T

Bsη(′) . Since these transitions probe only the |ss̄〉 content, one can

use the approximation in the quark flavour scheme

fBsη = − sinφfBK , fBsη′ = cosφfBK , (2.17)

which neglects completely the gluonic contribution. The calculation presented in this paper

will check for the SU(3)F breaking effects in the above relations.

2.2 Distribution amplitudes

The light-cone distribution amplitudes (DA), giving the momentum fraction distribution

of valence quarks of η and η′ are defined analogously to other meson light-cone DAs, by

expanding the non-local operators on the light-cone in terms of increasing twist, but paying

attention to the specific flavour structure of η(′) mesons.

The twist 2 two-quark DAs φi2,P of P = η(′) mesons are defined as

〈0|Ψ̄(z)Ci�zγ5[z,−z]Ψ(−z)|P (p)〉 = i(pz)f iP

∫ 1

0
duei(2u−1)(pz)φi2,P (u) , (2.18)

1There have been some recent discussions on the η − η′ mixing parameters and all of them are in the

range of φ given by (2.12) [7, 19–21].
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where as usual zµ is the light-like vector and [z,−z] is the path-ordered gauge connection

and u is the momentum fraction of a valence quark. In the SO basis one will have C1 = 1/
√

3

and C8 = λ8/
√

2 ( λ8 is the standard Gell-Mann matrix ), while in QF basis the constants

are Cq = (
√

2C1 +C8)/
√

3 and Cs = (C1−
√

2C8)/
√

3. The twist-2 two-quark DAs of η(′) are

symmetric in their argument and therefore they can be expanded in terms of Gegenbauer

polynomials as usually:

φi2,P (u) = 6u(1− u)

1 +
∑

n=2,4,...

aP,in (µ)C3/2
n (2u− 1)

 (i = 1, 8, q, s) . (2.19)

The coefficients aP,in are the Gegenbauer moments of the quark DA.

The gluonic twist-2 DA φg2,P of P = η(′) mesons are defined by the following matrix

element (for detailed discussion on the derivation of gluonic DA and its mixing with the

quark states in mesons see for example [22]):

nµnν〈0|Gµα(z)[z,−z]G̃να(−z)|P (p)〉 =
1

2

CF√
3

(pz)2f iP

∫ 1

0
duei(2u−1)(pz)φg2,P (u) . (2.20)

It is antisymmetric and therefore

φg2,P (u) = −φg2,P (1− u) , (2.21)

and it is expanded in terms of C
5/2
n Gegenbauer polynomials

φg2,P (u) = u2(1− u)2

 ∑
n=2,4,...

bP,gn (µ)C
5/2
n−1(2u− 1)

 , (2.22)

where the coefficients bP,gn are the Gegenbauer moments of the gluon DA and we take

bη,gn = bη
′,g
n and keep only the first term in the sum, n = 2. Although bη,gn and bη

′,g
n could

differ, this approximation is justified since their values are subject of large uncertainties.

In the calculation we use the following matrix element of the η(′) over two gluon fields

〈0|AAα (z)ABβ (−z)|P (p)〉 =
1

4
εαβρσ

zρpσ

(pz)

CF√
3
f1
P

δAB

8

∫ 1

0
du eiξ(pz)

φg2,P (u)

u(1− u)
. (2.23)

With the above normalization of the DA, the renormalization mixing of twist-2 quark

and gluonic distribution amplitudes is given as

µ
d

dµ

aη(′),1
2

bη
(′),g

2

 = −αs(µ)

4π

 100
9 −10

81

−36 22


aη(′),1

2

bη
(′),g

2

 (2.24)

and it is numerically small. But, the mixing is important for p2 = 0 case, since it verifies

the collinear ‘factorization formula’ for the form factors

F (q2, (p+ q)2) =

∫ 1

0
du
∑
n

T
(n)
H (u, q2, (p+ q)2, µIR)ψn(u, µIR) , (2.25)
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and proves that the separation of the transition form factors in perturbatively calculable

hard-scattering TH part and a nonperturbative DA is essentially independent on the fac-

torization scale µIR [23]. This is an essential step of calculation which is going to be proved

for each of the F -correlation function at the order of twist 2, see discussion in the next

section.

The explicit solutions of (2.24) can be find in [16] and in the appendix B of [15].

In the asymptotic case, when Q2 = −q2 →∞ the twist-2 quark and gluon DAs evolve

to their asymptotic forms

φi2,P (u)|asym = 6u(1− u) ,

φg2,P (u)|asym = 0 . (2.26)

In that case, there is no gluonic contribution at the twist-2 level to the form factors, and the

residual µIR dependence in the twist-2 NLO quark contribution integrates with φi2,P (u)|asym

to zero, which again confirms the µIR independence of the complete result.

To include SU(3) flavour-breaking corrections consistently we keep not only m2
η(′) cor-

rections and quark masses in the hard-scattering amplitudes, but also in the distribution

amplitudes. Therefore we do not use the approximations in the twist-3 and twist-4 contri-

butions employed in the literature where the following replacements are used in DAs:

fπ
m2
π

2mq
→ fq

m2
π

2mq
, fπ

m2
π

2ms
→ fs

2m2
K −m2

π

2ms
(2.27)

for M → ηq and M → ηs decays respectively. Instead we are going to use (in the QF

scheme):

fπm
2
π → hq = fq(m

2
η cos2 φ+m2

η′ sin
2 φ)−

√
2fs(m

2
η′ −m2

η) sinφ cosφ ,

fπm
2
π → hs = fs(m

2
η′ cos2 φ+m2

η sin2 φ)− fq√
2

(m2
η′ −m2

η) sinφ cosφ . (2.28)

Although the above quantities, especially hq, are weakly constrained due to the numerical

cancellations,

hq = 0.0015± 0.0040 GeV3, hs = 0.087± 0.006 GeV3, (2.29)

we use them for the consistency of our calculation. Actually, we will see later that the

approximation in (2.27) for hq is quite bad and causes somewhat large values of form

factors of D,B → η(′).

Distribution amplitudes of higher twist are defined following [15] and [24]. Their

parameter evolutions and definitions include now the anomaly contribution aP with the

following expressions [25]:

aη = − 1√
2

(fqm
2
η − hq) cosφ = −

m2
η′ −m2

η√
2

sinφ cosφ
(
−fq sinφ+

√
2fs cosφ

)
,

aη′ = − 1√
2

(fqm
2
η′ − hq) sinφ = −

m2
η′ −m2

η√
2

sinφ cosφ
(
fq cosφ+

√
2fs sinφ

)
.

(2.30)
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Therefore in [15] the normalizations of two-particle twist-3 DAs φp,σ3 differ from those

in [24]. In [15] one can find a consistent treatment of ms corrections up to twist-4 and of

anomalous contributions to DA and we take definitions and expressions given there.

Then,

2mr〈0|r̄(z2n)iγ5r(z1n)|P (p)〉 =

∫ 1

0
due−i(uz1+ūz2)(pn)φ

(r)p
3P (u) , (2.31)

where r = q, s and

2mr〈0|r̄(z2n)σµνγ5r(z1n)|P (p)〉 =
i(z1 − z2)

6
(pµnν − pνnµ)

∫ 1

0
e−i(uz1+ūz2)(pn)φ

(r)σ
3P (u) .

(2.32)

The normalization is then∫ 1

0
duφ

(r)p
3P (u) =

∫ 1

0
duφ

(r)σ
3P (u) = H

(r)
P , (2.33)

where

H
(r)
P = m2

PF
(r)
P − aP , H

(q)
P =

h
(q)
P√
2
, H

(s)
P = h

(s)
P , (2.34)

and

F
(q)
P =

f
(q)
P√
2
, F

(s)
P = f

(s)
P . (2.35)

By calculating the mixing of twist-4 DAs, some approximations in the twist-3 DA are

made in [15] when compared to the expressions in [24], to keep the same order of calculation

in the conformal spin and the quark masses.

The expressions for the two-particle twist-3 DAs used (contributions of higher confor-

mal spin and O(m2
s) corrections are neglected; see also [24], eqs. (3.25)–(3.26)) are

φp3s = hs + 60msf3sC
1/2
2 (2u− 1) ,

φσ3s = 6u(1− u)
[
hs + 10msf3sC

3/2
2 (2u− 1)

]
. (2.36)

The three-particle quark-gluon-antiquark DA is defined as usual [24]

〈0|r̄(z)σµνγ5gGαβ(vz)r(−z)|P (p)〉 = if3r

(
pαpµg

⊥
νβ − pαpνg⊥µβ − (α↔ β)

)
∫ 1

0
dα1dα2dα3δ(1− α1 − α2 − α3)Φ3r(α1, α2, α3) ,

(2.37)

Φ3r(α) = 360α1α2α
2
3

{
1 + λ3r(α1 − α2) + ω3r

1

2
(7α3 − 3)

}
.

(2.38)

There are two two-particle twist-4 DAs ψ
(r)
4P (u), φ

(r)
4P (u) and four three-particle twist-4

DAs, Ψ
(r)
4P (α), Ψ̃

(r)
4P (α), Φ

(r)
4P (α), Φ̃

(r)
4P (α). All details and subtleties in derivation of these

– 8 –
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improved twist-4 DAs with the corrected mass corrections and inclusion of the anomalous

contribution can be found in appendix A of [15]. Here we just quote the expressions:

ψ
(r)
4P (u) = ψ

(r)tw
4P (u) +m2

Pψ
(r)mass
4P (u)

ψ
(r)tw
4P (u) =

20

3
δ

2(r)
P C

1/2
2 (2u− 1) + 30mr

f
(r)
3P

f
(r)
P

(
1

2
− 10u(1− u) + 35u2(1− u)2

)
,

ψ
(r)mass
4P (u) =

17

12
−19u(1−u)+

105

2
u2(1−u)2+c

(r)
2P

(
3

2
−54u(1−u)+225u2(1−u)2

)
,

φ
(r)
4P (u) = φ

(r)tw
4P (u) +m2

Pφ
(r)mass
4P (u) ,

φ
(r)tw
4P (u) =

200

3
δ2
P (r)u2(1− u)2 + 21δ

2(r)
P ω

(r)
4P [u(1− u)(2 + 3u(1− u))

+2(u3(10− 15u+ 6u2) lnu+ (u↔ (1− u))
]

+ 20mr
f

(r)
3P

f
(r)
P

u(1− u)
(
12− 63u(1− u) + 14u2(1− u)2

)
,

φ
(r)mass
4P (u) = u(1− u)

[
88

15
+

39

5
u(1− u) + 14u2(1− u)2

]
− c(r)

2Pu(1− u)

(
24

5
− 54

5
u(1− u) + 180u2(1− u)2

)
+

(
28

15
− 24

5
c

(r)
2P

)[
u3(10− 15u+ 6u2) lnu+ (u↔ (1− u))

]
, (2.39)

and

Φ
(r)
4P (α) = 120α1α2α3

[
(α1 − α2)φ

(r)
1,P

]
,

Φ̃
(r)
4P (α) = 120α1α2α3

[
φ̃

(r)
0,P + (3α3 − 1)φ̃

(r)
2,P

]
,

Ψ
(r)
4P (α) = −30α2

3(α1 − α2)

[
ψ

(r)
0,P + α3ψ

(r)
1,P +

1

2
(5α3 − 3)ψ

(r)
2,P

]
,

Ψ̃
(r)
4P (α) = −30α2

3

[
(1− α3)ψ

(r)
0,P + (α3(1− α3)− 6α1α2)ψ

(r)
1,P

+

(
α3(1− α3)− 3

2
(α2

1 + α2
2)

)
ψ

(r)
2,P

]
, (2.40)

where

φ
(r)
1,P =

21

8

[
δ

2(r)
P ω

(r)
4P +

2

45
m2
P

(
1− 18

7
a

(s)
2P

)]
,

φ̃
(r)
0,P = −1

3
δ

2(r)
P ,

φ̃
(r)
2,P =

21

8
δ

2(r)
P ω

(r)
4P ,
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ψ
(r)
0,P = −1

3
δ

2(r)
P ,

ψ
(r)
1,P =

7

4

[
δ

2(r)
P ω

(r)
4P +

1

45
m2
P

(
1− 18

7
a

(s)
2P

)
+ 4mr

f
(r)
3P

f
(r)
P

]
,

ψ
(r)
2,P =

7

4

[
2δ

2(r)
P ω

(r)
4P −

1

45
m2
P

(
1− 18

7
a

(s)
2P

)
− 4mr

f
(r)
3P

f
(r)
P

]
. (2.41)

The parameters which appear here are parametrization of various local matrix elements

and their values are taken from [24] and listed in appendix B.

The above twist-4 expressions are valid for flavour-octet contributions where there is

no mixing with the gluonic twist-4 DA. For the flavour-singlet case one has to take this

mixing into account. In the approximation taken in [15] the twist-4 DAs are given by the

replacement

m2
P f

(r)
M → h

(r)
P = m2

P f
(r)
M − aP (2.42)

everywhere at the twist-4 level where the mass m2
P occurs. As it was discussed in [15] this

substitution ensures for the given accuracy the consistent normalization of the twist-3 and

twist-4 DA and ensures that the same mixing FKS scheme applies also for the higher-twist

contributions.

For the values of parameters involved we will use crude estimates in terms of the pion

and kaon DA parameters derived from the sum rules [24], see appendix:

aP,q2,4 ' aP,s2,4 = aπ2,4 ,

f3q ' f3π , f3s ' f3K ,

λ3q ' 0 , λ3s ' λ3K ,

ω3q ' ω3π , ω3s ' ω3K ,

κ4q ' 0 , κ4s ' κ4K ,

δ
2(q)
P ' δ2

π , δ
2(s)
P ' δ2

K ,

while the corresponding η, η′ parameters will be given through the mixing asf (q)
3η f

(s)
3η

f
(q)
3η′ f

(s)
3η′

 = U(φ)

f3q 0

0 f3s

 ,

h(q)
η h

(s)
η

h
(q)
η′ h

(s)
η′

 = U(φ)

(
hq 0

0 hs

)
. (2.43)

3 LCSR for B,Bs → η(′) and D,Ds → η(′) form factors

For calculating the M → η(′) form factors, where M = B,Bs, D,Ds, by using the LCSR

method one considers a vacuum-to-η or vacuum-to-η′ correlation functions of a weak current

and an interpolating current with the quantum numbers of a meson M . For B → η(′), the
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form factors f+
Bη(′) , f

0
Bη(′) and fT

Bη(′) will be defined with the help of the correlator

Fµ(p, q) = i

∫
d4x eiq·x〈η(′)(p)|T {ū(x)Γµb(x), jB(0)} |0〉

=

F (q2, (p+ q)2)pµ + F̃ (q2, (p+ q)2)qµ , Γµ = γµ

F T (q2, (p+ q)2)
[
pµq

2 − qµ(qp)
]
, Γµ = −iσµνqν

(3.1)

for two different b → u transition currents, where jB = mbb̄iγ5u. Analogous formulas are

going to be valid for D → η(′) with the replacements b → c and u → d in the transition

currents and jB → jD = mcc̄iγ5d. For f+,0,T

Bsη(′) form factors we consider the replacement

u → s in (3.1) and jBs = mbb̄iγ5s interpolating current. Again, Ds case is then obtained

trivially by replacing b-quark with the c-quark.

Since we want to explore also the SU(3) symmetry breaking, we will keep the η(′)

masses (p2 = m2
η(′)) in (3.1). The light quark masses will be systematically neglected,

except when they occur in ratios in the distribution amplitudes.

The method of the LCSR is very well know and we will here just briefly outline the

procedure in order to properly define all ingredients necessary for calculating the form

factors. For the large virtualities of the currents above, the correlation function is dom-

inated by the distances x2 = 0 near the light-cone, and factorizes to the convolution of

the nonperturbative, universal part (the light cone distribution amplitude (DA)) and the

perturbative, short-distance part, the hard scattering amplitude, as a sum of contributions

of increasing twist.

We calculate here contributions up to the twist-4 in the leading order, O(α0
s), and up to

the twist-3 in NLO, neglecting the three-particle contributions at this level. Schematically,

the contributions are shown in figure 1 and figure 2. Due to the specific properties of

η and η′ mesons discussed above, there are additional gluonic diagrams contributing to

M → η(′) form factors shown in figure 3. These contribution has only been calculated for

f+
Bη(′) form factor at twist-2 level in [16] and for m2

η(′) = 0. Here we are going to calculate

these contributions for other form factors f0
Mη(′) and fT

Mη(′) by neglecting O(αsmη(′)) effects

in both DAs and the hard-scattering part. This approximation is justified having in mind

that parameters of DA for the gluonic DA of η and η′ are badly known, see the values of

bη
(′),g

2 parameter below.

By using hadronic dispersion relation in the virtuality (p+ q)2 of the current in the B

channel, we can relate the correlation function (3.1) to the B → η(′) matrix elements,

〈η(′)(p)|ūγµb|B̄(p+ q)〉 = 2f+
Bη(′)(q

2)pµ +
(
f+
Bη(′)(q

2) + f−
Bη(′)(q

2)
)
qµ , (3.2)

〈η(′)(p)|ūσµνqνb|B̄(p+ q)〉 =
[
q2(2pµ + qµ)− (m2

B −m2
η(′))qµ

] ifT
Bη(′)(q

2)

mB +mη(′)
. (3.3)

and extract the form factors. In the literature it sometimes appears that the form factors

are defined as above by divided by a factor
√

2 to match the transition form factors of

η, η′ with those of a pion when there is no η − η′ mixing and in the limit of the conserved

SU(3)-flavour symmetry [16].
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b

u

p + q q

η(′)(p)

u

γµ,−iσµνγ
ν

b

u

p + q q

η(′)(p)

u

γµ,−iσµνγ
ν

Figure 1. Diagrams corresponding to the leading-order terms in the hard-scattering amplitudes

involving the two-particle (left) and three-particle (right) η(′) DA’s shown by ovals. Solid, curly and

wave lines represent quarks, gluons, and external currents, respectively. For Bs → η(′) transition,

u is replaced by s. In the case of D → η(′) transitions, u → d and b → c and correspondingly d is

exchanged by s for Ds → η(′).

Figure 2. Diagrams contributing to the quark hard-scattering amplitudes at O(αs).

Inserting hadronic states with the B-meson quantum numbers between the currents

in (3.1), and isolating the ground-state B-meson contributions for all three invariant am-

plitudes F (q2, (p + q)2), F̃ (q2, (p + q)2) and F T (q2, (p + q)2) and using (3.2) and (3.3)

obtains:

f+
Bη(′)

(q2) =
em

2
B/M

2

2m2
BfB

[
F0(q2,M2, sB0 )+

αsCF
4π

(
F1(q2,M2, sB0 )+F gg,+1 (q2,M2, sB0 )

) ]
,

(3.4)

f+
Bη(′)

(q2) + f−
Bη(′)

(q2) =
em

2
B/M

2

m2
BfB

[
F̃0(q2,M2, sB0 ) +

αsCF
4π

F̃1(q2,M2, sB0 )

]
, (3.5)

fTBη(′)(q
2) =

(mB +m
(′)
η )em

2
B/M

2

2m2
BfB

[
FT0 (q2,M2, sB0 )

+
αsCF

4π

(
FT1 (q2,M2, sB0 ) + F gg,T1 (q2,M2, sB0 )

)]
. (3.6)

The scalar B → η(′) form factor is then a combination of the vector form factor (3.4) and
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b

u

p + q q

η(′)(p)

b

u

p + q q

η(′)(p)

b

u

p + q q

η(′)(p)

Figure 3. Diagrams contributing to the gluonic hard-scattering amplitudes at O(αs). The first

diagram is IR divergent and its divergence will be absorbed by the evolution of the gluon DA.

See text.

the form factor from (3.5),

f0
Bη(′)(q

2) = f+
Bη(′)(q

2) +
q2

m2
B −m2

η(′)
f−(q2) (3.7)

and is only present in the semileptonic B(s), D(s) → η(′)lν decays when the lepton mass is

not neglected and in rare Bs, Ds → η(′)l+l− decays. In above, F0(1) and F̃0(1) represent

the LO (NLO) contributions and fB = 〈B̄d|mbb̄iγ5d|0〉/m2
B is the B-meson decay constant.

F
gg,(+,T )
1 are leading order twist-2 two-gluon contributions calculated explicitly in the pa-

per. At the leading twist-2 level there is no gluonic contribution in (3.5). However, note

from (3.7) that this does not mean that twist-2 two-gluon contributions will not appear in

the scalar f0
Mη(′) form factors (3.7).

As usual, the quark-hadron duality is used to approximate heavier state contribution

by introducing the effective threshold parameter sB0 and the ground state contribution of B

meson is enhanced by the Borel-transformation in the variable (p+ q)2 →M2. Completely

analogous relations are valid for Bs → η(′) form factors, with the replacement u→ s in (3.2)

and (3.3) and by replacing mB by mBs , fB by fBs , as well as M2 by M2
s and sB0 by sBs0

in (3.4)–(3.6). In addition, in the derivation of above expressions for Bs, one has to take

into account that 〈Bs|b̄iγ5s|0〉/m2
Bs

= fBs/(mb + ms). The same is valid for D,Ds form

factors with the replacement mb → mc and the appropriate exchanges described before.

The calculation will be performed in MS scheme. The B,Bs andD,Ds decay constants

will be calculated in the MS scheme using the sum rule expressions from [26] withO(αs,m
2
s)

accuracy. In that way we achieve the consistency of the calculation and the cancellation of

uncertainties in the sum rule parameters.

Each form factor can be written in the form of the dispersion relation:

F (q2,M2
(s), s

M
0 ) =

1

π

sM0∫
m2
b

dse
−s/M2

(s) ImsF (q2, s) , (3.8)

where now s = (p+ q)2.

The leading order parts of the LCSR for f+
Mη(′) , f

+
Mη(′) + f−

Mη(′) and fT
Mη(′) form factors

are given in appendix A.

Up to now, SU(3)-violating effects for fD(s)η
(′) , fB(s)η

(′) form factors were not system-

atically studied, since the effects of inclusion of m2
η(′) effects complicate the calculation,
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especially at NLO in the hard-scattering amplitudes. However, while the complete SU(3)-

symmetry breaking corrections in η(′) DAs of twist-3 and twist-4 are now known [15], it

is worth to have a consistent picture of all SU(3)-breaking corrections and we will include

complete SU(3)-breaking effects in both DAs, as well as in the hard scattering amplitudes

at LO. At NLO in the hard-scattering amplitudes, for the cases when the mass of a light

quark cannot be neglected, as for ms, the inclusion of ms and m2
η(′) effects complicate the

calculation. As already known from the analysis of B(s) → K from factors done in [14],

inclusion of quark mass effects leads to the mixing between different twists and the fully

consistent calculation with ms included in the quark propagators is not possible, see dis-

cussion in [14]. However, here we have η′ as a finite-state particle which mass is much

larger than ms and therefore, in the NLO quark and gluonic amplitudes we set ms = 0

and p2 = m2
η′ 6= 0.

Each form factor can be expressed asf+,0,T
Bη

f+,0,T
Bη′

 = U(φ)

f+,0,T
Bηq

f+,0,T
Bηs

 , (3.9)

and

f+,0,T
Bηq = f

(q̄q) +,0,T
Bηq + f

(gg) +,0,T
Bηq , f+,0,T

Bηs = f
(gg) +,0,T
Bηs (3.10)

and explicitly

f+,0,T
Bη =

f
(q)
η√
2

(
F q̄q0 + F q̄q1

)
+ f1

ηF
gg,+,0,T
1 ,

f+,0,T
Bη′ =

f
(q)
η′√
2

(
F q̄q0 + F q̄q1

)
+ f1

η′F
gg,+,0,T
1 ,

f+,0,T
Bsη

= f (s)
η

(
F s̄s0 + F s̄s1

)
+ f1

ηF
gg,+,0,T
1 ,

f+,0,T
Bsη′

= f
(s)
η′
(
F s̄s0 + F s̄s1

)
+ f1

η′F
gg,+,0,T
1 , (3.11)

where F q̄q0 and F s̄s0 (F q̄q1 and F s̄s1 ) are LO (NLO) contributions from quark hard-scattering

amplitudes for each of the form factors and F gg1 is the NLO gluonic contribution propor-

tional to the singlet-flavour decay constants

f1
η =

1√
3

(√
2 cosφfq − sinφfs

)
,

f1
η′ =

1√
3

(√
2 sinφfq + cosφfs

)
. (3.12)

The f
(r)

η(′) decay constants are given in (2.11). Analogous expressions are valid for D(s) → η(′)

decays.

Obviously, for B,D → η(′) transitions the main contribution comes from ηq me-

son states and ηs contributes only through suppressed gluonic contributions, while for
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Bs, Ds → η(′) transitions the leading ηs meson state contribution will receive, through the

gluonic diagrams, a small mixture with ηq state. Also, implicitly there will be mixing with

among twist-2 quark and gluonic distribution amplitudes eq. (2.24), which will bring bη
(′),g

2

dependence in the twist-2 quark LO (F q̄q0 and F s̄s0 ) and NLO contributions (F q̄q1 and F s̄s1 )

and aη
(′),1

2 dependence to the gluonic contributions F gg1 .

Since η and η′ are mixtures of the |q̄q〉, |s̄s〉 in the calculation of the quark contributions

we will use (with appropriate substitutions) our NLO results for the hard-scattering part

for B → π [13] and B(s) → K form factors [14] with the p2 effects included at the LO

(up to twist-4) and NLO level (up to twist-3) and will imply recently derived DAs of η

and η′ with the SU(3)-breaking effects and the axial anomaly contributions included up

to twist-4. The gluonic contributions, which are already NLO effect, will be calculated

for p2 = m2
η(′) = 0.

4 LCSR for gluonic contributions to the form factors and consistent

treatment of the IR divergences appearing

The gluonic contributions at the O(αs) to the B(D)→ η(′) and Bs(Ds)→ η(′) form factors

come from the diagrams in figure 3. The results for the form factors f+,0,T

Mη(′) are presented

in subsection 4.1. They are added to the quark contributions (3.11) to get the complete

result at the order O(αs).

The first diagram is figure 3 is IR (collinear) divergent. This divergence has to disap-

pear for the general collinear factorization formula used here

F (q2, (p+ q)2) =
∑
n

T
(n)
H (u, q2, (p+ q)2, µF) ⊗ Φn,P (u, µF) , ⊗ =

∫ 1

0
du . (4.1)

be valid. The scale µF is the factorization scale. At the twist n = 2 level, as already

mentioned, there will be mixing of quark and gluonic contributions and the hard-scattering

(perturbative part) T
(2)
H and the distribution amplitude Φ2 can be represented as

T
(2)
H =

Tqq̄
Tgg

 , Φ2,P =

φq2,P
φq2,P

 . (4.2)

In order to consistently treat this mixing we have to examine the evolution of the DAs,

at the same O(αs) as the calculation of the perturbative part TH . Due to the mixing the

standard Brodsky-Lepage (BL) evolution equation [27–30]

µF
∂

∂µF
ψ(u, µF) = V (u, v, µF) ⊗ ψ(v, µF) , (4.3)

will be a matrix equation now, where V (u, v, µF) is the perturbatively calculable evolution

kernel

V (u, v, µF) =
αS(µF)

4π
V1(u, v) +

α2
S(µF)

(4π)2
V2(u, v) + · · · , (4.4)
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with the LO kernel of our interest of the form

V1(u, v) =

Vqq Vqg

Vgq Vgg

 (4.5)

and Vij are well-know evolution kernels [17, 22, 31] which we cite here for convenience:

Vqq(u, v) = 2CF

{
u

v

[
1 +

1

v − u

]
Θ(v − u) +

(
u→ 1− u
v → 1− v

)}
+

,

Vqg(u, v) = −2
√
nfCF

{
u

v2
Θ(v − u)−

(
u→ 1− u
v → 1− v

)}
,

Vgq(u, v) = 2
√
nfCF

{
u2

v
Θ(v − u)−

(
u→ 1− u
v → 1− v

)}
,

Vgg(u, v) = 2Nc

{
u

v

[(
Θ(v − u)

v − u

)
+

+
2u− 1

v
Θ(v − u)

]
+

(
u→ 1− u
v → 1− v

)}
+ β0δ(u− v) .

(4.6)

These evolution kernels are exactly those which govern the renormalization of the DAs

Φ(u) = Zφ,ren(u, v, µ2
R) ⊗ Φ(v, µ2

R) . (4.7)

The connection between Z and the evolution kernel V is given as

V (µ2
R) = −Z−1

φ,ren(µ2
R)

(
µ2
R

∂

∂µ2
R

Zφ,ren(µ2
R)

)
,

Zφ,ren(µ2
R) = 1 +

αS(µR)

4π

1

ε
V1(u, v) + · · · .

(D = 4 − 2ε). On the other hand, by calculating the hard-scattering part TH , owing to

the fact that final-state quarks are taken to be massless and on-shell (for the case p2 = 0),

the amplitude contains collinear singularities. Since TH is a finite quantity by definition,

collinear singularities have to be subtracted. Therefore, T factorizes as

T (u,Q2) = TH(v,Q2, µF) ⊗ ZT,col(v, u;µF) , (4.8)

with collinear singularities being subtracted at the scale µF and absorbed into the constant

ZT,col. As usual The UV singularities are removed by the renormalization of the fields and

by the coupling-constant renormalization at the (renormalization) scale µR. Now, in order

that the factorization formula is valid, the following has to be satisfied

ZT,col(u, v;µF)⊗ Zφ,ren(v, ω;µF) = δ(v − ω) . (4.9)

The divergences of T (u,Q2) and Φ(u) in (4.1) then cancel and at the end we are left with

the finite perturbative expressions for all form transition factors

F (q2, (p+ q)2) = TH(u,Q2, µF) ⊗ Φ(u, µF) . (4.10)
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It is worth pointing out that the scale µF representing the boundary between the low- and

high-energy parts in (4.1) plays the role of the separation scale for collinear singularities in

T (u,Q2), on the one hand, and of the renormalization scale for UV singularities appearing

in the perturbatively calculable part of the distribution amplitude Φ(u), on the other hand.

The general discussion and all details of the proof of the cancellation of the factorization

scale dependence in the collinear factorization formula (4.1) at all orders of calculation can

be found in [23, 32].

In our case of calculating the heavy-to-light transition form factors f+,0,T we face the

following situation. The hard-scattering, perturbatively calculable pieces coming from the

diagrams from figure 2 have UV and infra-red singularities at O(αs). We have already

proven in [13, 14, 33] for B → π and B(s) → K form factors that the IR divergences of the

quark contributions at twist 2 level cancel exactly with those coming from the evolution

kernel Vqq. Here, due to the mixing with the twist 2 gluonic contributions, the convolution

of Vqg of the TH LO will exactly cancel the IR divergence in the first gluonic diagram in

figure 3. At the twist 3 level of O(αs) the IR divergences of quark diagrams mutually

cancel, as shown before in [13, 14]. This gives the final proof of the collinear factorization

formula at the given order for the heavy-to-light M → η′ transition form factors.

4.1 Explicit results for the leading two-gluon contributions to the f+ and fT

form factors in B,Bs → η(′) and D,Ds → η(′) transitions

In the calculation of the gluonic contributions to the form factors we have faced the problem

of the consistent treatment of the γ5 in the dimensional regularization. Leading order for

the gluonic amplitude is given by one-loop Feynman diagrams in figure 3 and we have

to deal with IR divergence which is a consequence of having massless quarks propagating

through the loops. In the calculation of the gluonic contributions to the form factors it

appears a Levi-Civita tensor in the projector of the twist-2 two-gluon DA (2.23) and a

single γ5 matrix in the trace which are both quantities with well-defined properties only

in D = 4 space-time dimensions. Generalization of these quantities in D dimensions is

problematic and different approaches to avoid resulting ambiguities can be found in the

literature. Moreover, in our case there is no gluonic contributions which appear at LO of

αs that would greatly help in resolving the γ5 problem at NLO level. The problem was not

addressed in the paper where the gluonic amplitude was evaluated for the first time [16]

and it is not clear how they resolved the ambiguities.

In the case of the interest it is possible to completely avoid γ5 problem and all connected

complications since the IR divergence is direct consequence of the massless quark lines and

putting a small mass m in massless quark propagators regularizes (removes) the divergence.

As a consequence, we are not forced to use dimensional regularization and calculation can

be performed in four dimensions without any problem. Note that putting mass in quark

propagators doesn’t spoil any of properties and symmetries of the amplitude contrary to the

case when, so called, mass regularization is used on gluon propagators. At the very end of

calculation it is necessary to expand final result around zero for the small introduced quark

mass m. The IR divergence will now reappear as ln(m2) term and it is straightforward to

connect it with 1/(D − 4) term in the framework of dimensional regularization.
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The obtained expressions are as follows:

F gg,i1 (q2,M2, sM0 ) = f1
η(′)b

η(′),g
2

1

CF

∫ sM0

m2

exp−s/M
2
fgg,i(s, q2) , (4.11)

where the gluonic contribution to f+ form factors is

fgg,+ = 20m2 (s−m2)

27
√

3(s− q2)5

(
3(m2 − q2)(5m4 − 5m2(q2 + s) + q4 + 3q2s+ s2)(

2 ln

(
s−m2

m2

)
− ln

(
µ2

m2

))
−
(
37m6−m4

(
56q2+55s

)
+m2

(
18q4+76q2s+17s2

)
+3q6−27q4s−11q2s2−2s3

))
(4.12)

and the corresponding contribution to fT form factors has the following form

fgg,T = 5m
s−m2

27
√

3(s− q2)5

(
12q2 s

s−m2

(
q4 + 3q2s+ s2

)
ln
( s

m2

)
+6(m2−q2)

(
5m4−5m2(q2+s)+q4+3q2s+s2

)(
2 ln

(
s−m2

m2

)
−ln

(
µ2

m2

))
−
(
59m6 −m4(72q2 + 85s) +m2s(84q2 + 23s) + 3(6q6 + 6q4s+ 6q2s2 − s3)

))
(4.13)

with m = mc,b.

With respect to the fact there is no LO O(α0
s) twist-2 gluon contributions and following

the discussions at the beginning of section 4, obviously there is no gluonic contributions to

f+ + f− form factors at this order of calculation.

The result for the gluonic O(αs) contribution to f+ form factors was first given in

the appendix of [16]. Our result (4.12) does not completely agree with the one presented

there. While we agree in the part being proportional to the logarithmic terms, there is a

disagreement between the coefficients in the second line of (4.12) and the expression (A.1)

from [16]. Since those terms are exactly those which change with the different treatment

of γ5, and the authors of [16] have not placed any comment how they have resolved the

γ5 ambiguities in the calculation of fgg,+, we assume that the difference comes from the

improper treatment of the γ5 in [16].

The result for the gluonic O(αs) contribution to fT , eq. (4.13) is a new result.

5 Predictions for B,Bs → η(′) and D,Ds → η(′) form factors (f+, f0

and fT ) the form factors

The prediction for B,Bs → η(′) and D,Ds → η(′) form factors (f+, f0 and fT ) the form

factors will be given in the MS scheme by using the input parameters listed in appendix B.
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From expressions (3.5), (3.6), (3.7) we see that we need the heavy-meson decay con-

stants of B(s) and D(s) in the calculation. As usually done, to achieve partial cancellation

of the uncertainties in the calculation the two-point QCD sum rules for the decay constants

fB, fBs and fD, fDs is used in the same scheme, with O(αs,m
2
s) corrections included [26].

We have used the same level of accuracy as in the calculation of the form factors, i.e

O(αs) in both, the perturbative and nonperturbative (quark condensate) part and in the

determination of the sum rules parameters s
B(s)

0 and M
2
(s) have used the usual consistency

conditions in the sum rule calculations.

The resulting predictions for fM , together with the fitted sum rule parameters for each

of the mesons are given in the appendix B, tables 2–4. Here we quote the calculated values

from table 4:

fD = 191± 9 MeV, fDs = 219± 7 MeV ,

fB = 215± 7 MeV, fBs = 246± 8 MeV , (5.1)

where the quoted error intervals are coming from the variation of sM0 and M
2
M only since

other uncertainties are canceled in ratios in eqs. (3.5), (3.6), (3.7). By comparing our results

with the previous LCSR results and the most recent determinations from [34], where in

the perturbative part the higher order corrections were included, we see a good agreement.

The results are also within uncertainties of the lattice QCD calculations of the same decay

constants [35–37].

For the fD and fDs the experiment gives somewhat lower values [1],

fD = 204.6± 5.0 MeV, fDs = 257.5± 4.6 MeV ,

but still consistent within uncertainties of the complete LCSR results [34].

The renormalization scale is given by the expression µB(s)
=
√
m2
B(s)
−m2

b and simi-

larly for D(s) → η(′) transitions. Therefore, for the renormalization scale we use µ = 3 GeV,

for the f0,+,T

Bη(′) form factors and µs = 3.4 GeV for f0,+,T

Bsη(′) and for µD = 1.4 GeV and

µDs = 1.5 GeV. As usual, we will check the sensitivity of the results on the variation

of above scales and will include it in the error estimation.

The method of extraction of the Borel parameters M and the effective thresholds s0

for f+,0,T

Mη(′) form factors is the same as described in [13]. It relies on the requirement that

the derivative over −1/M2 of the expression of the complete LCSR for a particular form

factor, which gives heavy-meson masses m2
M , does not deviate more than 0.5–2.5% from the

experimental values for those masses. Additional requirements such as that the subleading

twist-4 terms in the LO, are small, less than 10% of the LO twist-2 term, that the NLO

corrections of twist-2 and twist-3 parts are not exceeding 30% of their LO counterparts, and

that the subtracted continuum remains small, are also satisfied. These demands provide

us the central values for the LCSR parameters listed in table 5.

The estimated form factors for B(s) → η(′) are as follows:

f+
Bη(0) = 0.168+0.041

−0.047 = 0.168± 0.003 (bη,g2 )± 0.002(s0,M)±0.041
0.047 (mix)±0.005

0.003 (rest) ,

f+
Bη′(0) = 0.130+0.036

−0.032 = 0.130± 0.020 (bη
′,g

2 )± 0.002(s0,M)±0.030
0.032 (mix)±0.005

0.002 (rest) ,
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|f+
Bsη

(0)| = 0.212+0.015
−0.013 = 0.212± 0.003 (bη,g2 )± 0.003(s0,M)± 0.012(mix)±0.008

0.003 (rest) ,

f+
Bsη′

(0) = 0.252+0.023
−0.020 = 0.252± 0.019 (bη

′,g
2 )± 0.004(s0,M)± 0.005(mix)±0.011

0.002 (rest) ,

(5.2)

fTBη(0) = 0.173+0.041
−0.035 = 0.173± 0.002 (bη,g2 )± 0.003(s0,M)±0.040

0.035 (mix)±0.007
0.003 (rest) ,

fTBη′(0) = 0.141+0.032
−0.030 = 0.141± 0.015 (bη

′,g
2 )± 0.002(s0,M)±0.028

0.026 (mix)±0.006
0.003 (rest) ,

|fTBsη(0)| = 0.225+0.019
−0.014 = 0.225± 0.002 (bη,g2 )± 0.004(s0,M)±0.014

0.013 (mix)±0.012
0.002 (rest) ,

fTBsη′(0) = 0.280+0.022
−0.016 = 0.280± 0.014 (bη

′,g
2 )± 0.004(s0,M)±0.006

0.007 (mix)±0.015
0.002 (rest) ,

(5.3)

and for D(s) → η(′):

f+
Dη(0) = 0.429+0.165

−0.141 = 0.429± 0.009 (bη,g2 )±0.004
0.001 (s0,M)±0.164

0.141 (mix)±0.013
0.008 (rest) ,

f+
Dη′(0) = 0.292+0.113

−0.104 = 0.292± 0.045 (bη
′,g

2 )±0.009
0.007 (s0,M)±0.099

0.091 (mix)±0.015
0.011 (rest) ,

|f+
Dsη

(0)| = 0.495+0.030
−0.029 = 0.495± 0.007 (bη,g2 )±0.004

0.002 (s0,M)±0.027
0.024 (mix)±0.016

0.009 (rest) ,

f+
Dsη′

(0) = 0.557+0.048
−0.045 = 0.557± 0.041 (bη

′,g
2 )±0.011

0.008 (s0,M)±0.010
0.008 (mix)±0.022

0.014 (rest) ,

(5.4)

fTDη(0) = 0.435+0.115
−0.107 = 0.435± 0.008 (bη,g2 )±0.005

0.003 (s0,M)±0.112
0.106 (mix)±0.177

0.151 (rest) ,

fTDη′(0) = 0.337+0.118
−0.147 = 0.337± 0.055 (bη

′,g
2 )±0.013

0.051 (s0,M)±0.100
0.101 (mix)±0.080

0.077 (rest) ,

|fTDsη(0)| = 0.441+0.091
−0.087 = 0.441± 0.007 (bη,g2 )±0.052

0.005 (s0,M)±0.030
0.031 (mix)±0.068

0.082 (rest) ,

fTDsη′(0) = 0.655+0.072
−0.065 = 0.655± 0.050 (bη

′,g
2 )±0.015

0.014 (s0,M)±0.036
0.030 (mix)±0.034

0.026 (rest) .

(5.5)

These results are predictions given with bη
(′),g

2 = 0 and then varied within the interval

∆bη
(′),g

2 = ±20, which dependence is explicitly displayed in the errors. The errors are

compilation of the variation of parameters added in quadratures. In the errors we explicitly

stress SR parameter dependence (s0, M), η − η′ mixing parameter dependence (mix) and

dependences coming from the variation of the rest of parameters (rest = {µ, mc,b, a2, a4}).
The errors of the results are much larger for the transitions B,D → η(′) where B,D →

ηq dominates then for Bs, Ds → ηs decays since the error in the parameter hq (2.29) is

huge, of O(200%) depending not on η − η′ mixing parameters but exhibiting a numerical

cancellation among terms. If one would use approximation (2.27) applied in [38] instead,

the (rest)-errors would be almost an order of magnitude lower and the mean values would

be somewhat larger for those decays, which we assume is the main reason, apart from the

rest of SU(3)F approximations used there, of the discrepancies with some of the results

presented in [38]. We see that the dominant errors in M → η′ form factors is coming

from the variation of bη
(′),g

2 and it amounts to about 15%, while in M → η decays come

to 2%. Our findings for calculated B → η(′) form factors agree very well with those

from [16, 39–41].
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Figure 4. Form factors for D(s) → η(′) decays and their ratios. Solid lines represent f+
D(s)η(′)

form

factors, dashed-dotted line fT
D(s)η(′)

and dashed line f0
D(s)η(′)

form factors.

Their q-dependence of the form factors and their ratios is shown in figures 4–9.

From figure 5 and figure 8 we see that the gluonic corrections are much larger for

B(s), D(s) → η′ decays then for M → η, as expected. Also the gluonic corrections are larger

in D(s) decays. It is obvious that even in ratios of form factors the gluonic contributions give

main error and that it would be difficult to constrain b2, unless all M → η(′) semileptonic

transitions are measured, figure 6 and 9.
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Figure 5. Gluonic dependence of f+
D(s)η(′)

form factors. Shaded areas show change of the form

factors under the variation of bη
(′),g

2 = 0 ± 20. Solid line denotes the result for bη
(′),g

2 = 0, dashed-

dotted for bη
(′),g

2 = 20 and dashed line for bη
(′),g

2 = −20.

We can now investigate SU(3)F approximations from (2.17). By using the obtained

results and the result for fBK from [14] we obtain

|f+
Bsη
|calc = 0.212+0.015

−0.013 vs |f+,approx
Bsη

| = 0.225+0.032
−0.026 ,

f+,calc
Bsη′

= 0.252+0.023
−0.020 vs |f+,approx

Bsη′
| = 0.278+0.038

−0.031 .

(5.6)

We can note that the approximation works quite well although somewhat better for M → η

decays than for M → η′ transitions.

There exists LCSR calculations of f+
Dsη

form factor [42, 43]. In these papers the f+
Dsη′

form factor is then obtained by using the relation

f+
Dsη′

f+
Dsη

= cotφ . (5.7)

While their predictions for f+
Dsη

agree with ours, the use of the above approximative relation

which neglects the gluonic contributions gives somewhat larger f+
Dsη′

form factor then the

one obtained here, (5.2), (5.4).

There exist also recent lattice results on Ds → η(′) form factors [44]. These transitions

at the lattice are challenging due to the presence of disconnected quark-line contributions

and in [44] only the scalar f0
Dsη(′) form factors are calculated, which at q2 = 0 are equal to

the f+. By comparing the results one can see that the lattice predictions give f+
Dsη′

< f+
Dsη

,
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Figure 6. Gluonic dependence of ratios of D(s) → η(′) form factor ratios. Shaded areas show

change of the form factors under the variation of bη
(′),g

2 = 0 ± 20. Solid line denotes the result for

bη
(′),g

2 = 0, dashed-dotted for bη
(′),g

2 = 20 and dashed line for bη
(′),g

2 = −20.

which is just opposite in LCSR for all Ms → η(′) transitions. The tendency f+
Mη′ < f+

Mη in

LCSR is established for non-strange meson decays, see results in (5.2), (5.4).
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Figure 7. Form factors for B(s) → η(′) decays and their ratios. Solid lines represent f+
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form

factors, dashed-dotted line fT
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form factors.

6 Phenomenological applications

In this section we comment on some phenomenological results for semileptonic D(s) → η(′)

and B(s) → η(′) decays which include the calculated from factors. To be able to calculate
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Figure 8. Gluonic dependence of f+
B(s)η(′)

form factors. Shaded areas show change of the form

factors under the variation of bη
(′),g

2 = 0 ± 20. Solid line denotes the result for bη
(′),g

2 = 0, dashed-

dotted for bη
(′),g

2 = 20 and dashed line for bη
(′),g

2 = −20.

the branching ratio we need the form factor extracted in whole accessible kinematical

regions. For D(s) decays the LCSR are applicable only in the region q2 � m2
c and for B(s)

the region is 0 < q2 < 12 GeV.

The are many parametrization for calculating the shape of form factors at q2 6= 0. All

of them work equally well and therefore we decided to use the most simplest one [45]:

f+,T

Mη(′)(q
2)|fit = f

(+,T )

Mη(′) (0)
1

(1− q2/m2
H∗)(1− α+,T q2/m2

H∗)

f0
Mη(′)(q

2)|fit = f0
Mη(′)(0)

1

(1− α0 q2/m2
H∗)

(6.1)

where the extrapolation of the form factors is performed just by fitting one parameter αi

for each of the decays and using the appropriate vector meson resonances m∗H , table 6,

while the normalization is given by the form factors at q2 = 0. The fitted parameters αi

for D(s) form factors are

α+
Dη = 0.165± 0.006 , α+

Dη′ = 0.19± 0.05

α+
Dsη

= 0.198± 0.005 , α+
Dsη′

= 0.20± 0.03 (6.2)

while for B(s) are as follows:

α+
Bη = 0.462± 0.002 , α0

Bη = 1.00± 0.01 , αTBη = 0.494± 0.005

α+
Bη′ = 0.45± 0.02 , α0

Bη′ = 1.00± 0.09 , αTBη′ = 0.47± 0.04

– 25 –



J
H
E
P
1
1
(
2
0
1
5
)
1
3
8

0 2 4 6 8 10 12
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

q2(GeV2)

|f B
η
/+
(q

2
)/
f B

η
+
(q

2
)|

0 2 4 6 8 10 12
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

q2(GeV2)

|f B
η
/T
(q

2
)/
f B

η
T
(q

2
)|

0 2 4 6 8 10 12
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

q2(GeV2)

|f B
η

/0
(q

2
)/
f B

η
0
(q

2
)|

0 2 4 6 8 10 12
0.8

0.9

1.0

1.1

1.2

1.3

1.4

q2(GeV2)

|f B
s
η
/+
(q

2
)/
f B

s
η
+
(q

2
)|

0 2 4 6 8 10 12
1.0

1.2

1.4

1.6

1.8

2.0

q2(GeV2)

|f B
s
η
/T
(q

2
)/
f B

s
η
T
(q

2
)|

0 2 4 6 8 10 12

0.6

0.8

1.0

1.2

1.4

q2(GeV2)

|f B
s
η
/0
(q

2
)/
f B

s
η
0
(q

2
)|

Figure 9. Gluonic dependence of ratios of B(s) → η(′) form factor ratios. Shaded areas show

change of the form factors under the variation of bη
(′),g

2 = 0 ± 20. Solid line denotes the result for

bη
(′),g

2 = 0, dashed-dotted for bη
(′),g

2 = 20 and dashed line for bη
(′),g

2 = −20.
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α+
Bsη

= 0.505± 0.003 , α0
Bsη = 1.08± 0.01 , αTBsη = 0.193± 0.002

α+
Bsη′

= 0.433± 0.003 , α0
Bsη′ = 1.09± 0.05 , αTBsη′ = 0.51± 0.02 . (6.3)

The semileptonic D(s) → η(′)eνe and B → η(′)eνe decay rates are calculated by

Γ(H → η(′)lν̄l) =
G2
F |VQq|2

192π3m3
H

∫ (mH−mη(′) )2

m2
l

dq2λ3/2(q2)|f+
Hη(′)(q

2)|2 , (6.4)

where H = D,Ds, B and λ(q2) = (m2
H + m2

η(′) − q2)2 − 4m2
Hm

2
η(′) and VQq = Vcd, Vcs, Vub

depending if D+, D+
s or B+ meson is decaying, respectively. Values for the CKM matrix

elements are taken from [1]: Vcd = 0.225, Vcs = 0.973, Vub = 0.0035, Vts = 0.0405, Vtb =

0.999. (For Vub we used newly determined average value also from [1].)

For the rare Bs → η(′)l+l−(νν̄) decays we use the effective Standard Model hamiltonian

for b→ sl+l−(νν̄) transitions [46] and calculate decay rates as [47]

Γ(Bs → η(′)l+l−) =
G2
F |VtbV ∗ts|2α2

512π5m3
Bs

∫ (mBs−mη(′) )2

4m2
l

dq2λ1/2(q2)

√
1− 4m2

l

q2

1

3q2
Iη(′)(q2) (6.5)

where

Iη(′)(q2) = 6m2
l (m

2
Bs −m2

η(′))
2|C10(µ)f0

Bsη(′)(q
2)|2 + (q2 − 4m2

l )λ(q2)|C10(µ)f+
Bsη(′)(q

2)|2

+(q2 + 2m2
l )λ(q2)|C9(µ)f+

Bsη(′)(q
2)− 2

mb +ms

mBs +mη(′)
C7(µ)fT

Bsη(′)(q
2)|2 ,

and

Γ(Bs → η(′)νν̄) = 3
|CL|2

96π3m3
Bs

∫ (mBs−mη(′) )2

0
dq2λ3/2(q2)|f+

Bsη(′)(q
2)|2 , (6.6)

where CL = GF /
√

2α/(2π sin2 θW )VtbV
∗
tsηXX(xt) [47]. For the Wilson coefficients we use

the following values

C7 = −0.3031 , C9 = 4.1696 , C10 = −4.4641 , CL = 2.74 · 10−9 . (6.7)

Our predicted branching ratios for various M → η(′) decays are given in table 1. By

comparing with the existing calculations performed in different models [47, 52–54] we agree

quite well, expect that we predict somewhat larger branching ratios for Bs → η(′)τ+τ−

decays.

Because of the larger errors in B,D → η(′) decays, Ms → η(′) would be better for

extraction of the unknown bη
(′),g

2 parameter, but measurements of Ms decays still have

to achieve sufficient precision, in particular Br(Bs → η′l+l−) and Br(Bs → ηl+l−) are

challenging with the branching ratio of O(10−7–10−8) but they could be measured at

future SuperB and SuperKEK experiments.

– 27 –



J
H
E
P
1
1
(
2
0
1
5
)
1
3
8

Branching ratio Predicted value Experiment

Br (D+ → η e+νe) (14.24± 10.98) · 10−4 (11.4± 0.9± 0.4) · 10−4 [48]

Br (D+ → η′e+νe) (1.52± 1.17) · 10−4 (2.16± 0.53± 0.07) · 10−4 [48]

Γ
(
D+ → η′e+νe

)
Γ
(
D+ → η e+νe

) 0.10± 0.11 0.19± 0.09 [49]

Br (D+
s → η e+νe) (2.40± 0.28)% (2.48± 0.29)% [49]

Br (D+
s → η′e+νe) (0.79± 0.14)% (0.91± 0.33)% [49]

Γ
(
D+
s → η′e+νe

)
Γ
(
D+
s → η e+νe

) 0.33± 0.07 0.36± 0.14 [48]

Br (B+ → η e+νe) (0.44± 0.25) · 10−4 (0.44± 0.23± 0.11) · 10−4 [50]

(0.36± 0.05± 0.04) · 10−4 [51]

Br (B+ → η′e+νe) (0.19± 0.11) · 10−4 (2.66± 0.80± 0.56) · 10−4 [50]

(0.24± 0.08± 0.03) · 10−4 [51]

Γ
(
B+ → η′e+νe

)
Γ
(
B+ → η e+νe

) 0.43± 0.34 0.67± 0.24± 0.1 [51]

Br (Bs → η l+l−)l=e,µ (2.80± 0.36) · 10−7

Br (Bs → η τ+τ−) (1.53± 0.18) · 10−7

Br (Bs → η′l+l−)l=e,µ (2.85± 0.48) · 10−7

Br (Bs → η′τ+τ−) (0.75± 0.14) · 10−7

Br (Bs → η νν̄) (20.5± 2.8) · 10−7

Br (Bs → η′ νν̄) (14.8± 2.0) · 10−7

Table 1. Predicted branching fractions of various D(s), B(s) → η(′) semileptonic decays.

7 Summary

We have investigated B,Bs → η(′) and D,Ds → η(′) form factors (f+, f0 and fT ) by

including m2
η(′) corrections in the leading (up to the twist-four) and next-to-leading order

(up to the twist-three) in QCD, as well as gluonic contributions to the form factors at

the leading twist in the framework of the QCD light-cone sum rules and have also taken

SU(3)-flavour breaking corrections and the axial anomaly contributions to the distribution

amplitudes consistently into account. The two-gluon twist-2 contributions are calculated

for all f+, f0 and fT form factors.

We have given the values and shapes at q2 6= 0 of all calculated form factors and have

shown predicted ratios for some semileptonic B,Bs → η(′) and D,Ds → η(′) decay modes.

With the determined form factors of transitions B,Bs → η(′) it will be possible to ana-

lyze consistently nonleptonic decays to charmonia and to test the factorization hypothesis

in such transitions which we be a subject of the future investigations.
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A Explicit results for f+, f0 and fT form factors at the leading order in

B,Bs → η(′) and D,Ds → η(′) transitions

The leading O(αs) part of the f+
B(s)η

(′) LCSR, (3.4), has the following expression (P = η, η′;

r = q for Bq → P and r = s for Bs → P ; for D,Ds the same expressions are valid with

the replacement mb → mc):

F0,Br→P (q2,M2, sB0 ) =

m2
b

1∫
u0

du e−
m2
b−q

2ū+m2
P uū

uM2

{
F

(r)
P ϕ

(r)
2P (u)

u

+
1

2mrmb

[
φ

(r)p
3P (u) +

1

6

(
2
φ

(r)σ
3P (u)

u
− 1

m2
b − q2 + u2m2

P

(
(m2

b + q2 − u2m2
P )
dφ

(r)σ
3P (u)

du

− 4um2
Pm

2
b

m2
b − q2 + u2m2

P

φ
(r)σ
3P (u)

))]

+
F

(r)
P

m2
b − q2 + u2m2

P

[
uψ

(r)
4P (u) +

(
1− 2u2m2

P

m2
b − q2 + u2m2

P

) u∫
0

dvψ
(r)
4P (v)

− m2
b

4

u

m2
b − q2 + u2m2

P

(
d2

du2
− 6um2

P

m2
b − q2 + u2m2

P

d

du
+

12um4
P

(m2
b − q2 + u2m2

P )2

)
φ

(r)
4P (u)

−
(
d

du
− 2um2

P

m2
b − q2 + u2m2

P

)((
F

(r)
3P

mbF
(r)
P

)
I3r(u) + I

(r)
4P (u)

)

− 2um2
P

m2
b − q2 + u2m2

P

(
u
d

du
+

(
1− 4u2m2

P

m2
b − q2 + u2m2

P

))
I

(r)
4P (u)

+
2um2

P (m2
b − q2 − u2m2

P )

(m2
b − q2 + u2m2

P )2

(
d

du
− 6um2

P

m2
b − q2 + u2m2

P

)∫ 1

u
dξI

(r)
4P (ξ)

]}

+
m4
bF

(r)
P e−

m2
b

M2

4(m2
b − q2 +m2

P )2

(
dφ

(r)
4P (u)

du

)
u→1

, (A.1)

where ū = 1 − u, u0 =
(
q2 − sB0 +m2

P +
√

(q2 − sB0 +m2
P )2 − 4m2

P (q2 −m2
b)
)/

(2m2
P ),

F
(q)
η = cosφfq/

√
2, F

(q)
η′ = sinφfq/

√
2, F

(s)
η = − sinφfs, F

(s)
η′ = cosφfs, and similarly
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for the two-particle twist-three DAs φp,σ3P : φ
(q)p,σ
3η = cosφφp,σ3q /

√
2, φ

(q)p,σ
3η′ = sinφφp,σ3q /

√
2,

φ
(s)p,σ
3η = − sinφφp,σ3s , φ

(s)p,σ
3η′ = cosφφp,σ3s . Also,

ψ
(r)
4P (u) = ψ

(r)tw
4P (u) +

hr
fr
ψ

(r)mass
4P (u) ,

φ
(r)
4P (u) = φ

(r)tw
4P (u) +

hr
fr
φ

(r)mass
4P (u) . (A.2)

In the case of the twist-2 DA, we will express the decay constants F
(q)
P in the SO basis

and take the different evolution of f
(1)
P and f

(8)
P into account:

f
(1)
P (µ) = f

(1)
P (µ0) ,

f
(8)
P (µ) = f

(8)
P (µ0)

[
1 +

2nf
πβ0

(αs(µ)− αs(µ0))

]
,

(A.3)

at m0 = 1 GeV, the energy at which the FKS parameters are determined, and

F
(q)
P φ

(q)
2P = CqP

1√
3

(√
2f1 + f8

)
φ2P ,

F
(s)
P φ

(q)
2P = CsP

1√
3

(
f1 −

√
2f1 + f8

)
φ2P ,

(A.4)

with Cqη = cosφ/
√

2, Cqη′ = sinφ/
√

2, Csη = − sinφ, Csη′ = cosφ and

φ2η = φ2η′ = 6u(1− u)

1 +
∑
i=2,4

aiC
3/2
i (2u− 1)

 . (A.5)

Numerically,

f1(µ0) = (1.17± 0.03)fπ ,

f8(µ0) = (1.26± 0.04)fπ .

The short-hand notations introduced for the integrals over three-particle DA’s are:2

I3r(u) =

u∫
0

dα1

1∫
(u−α1)/(1−α1)

dv

v

[
4vp · q − 3(1− 2v)um2

P

]
Φ3r(αi)

∣∣∣∣∣α2=1−α1−α3,
α3=(u−α1)/v

,

I
(r)
4P (u) =

u∫
0

dα1

1∫
(u−α1)/(1−α1)

dv

v

[
2Ψ

(r)
4P (αi)− Φ

(r)
4P (αi) + 2Ψ̃

(r)
4P (αi)− Φ̃

(r)
4P (αi)

]∣∣∣∣∣α2=1−α1−α3,
α3=(u−α1)/v

.

I
(r)
4P (u) =

u∫
0

dα1

1∫
(u−α1)/(1−α1)

dv

v

[
Ψ

(r)
4P (αi) + Φ

(r)
4P (αi) + Ψ̃

(r)
4P (αi) + Φ̃

(r)
4P (αi)

]∣∣∣∣∣α2=1−α1−α3,
α3=(u−α1)/v

.

(A.6)

2In the paper [14], dealing with B(s) → K form factors, in eq. (A.2) there was a misprint in the function

I3K(u), the factor of 3 was missing. The correct expression has the same form as I3r(u) given here in (A.6).
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The leading order LCSR for f+
BK + f−BK , (3.5), has the form

F̃0,Br→P (q2,M2, sB0 ) =

m2
b

1∫
u0

du e−
m2
b−q

2ū+m2
P uū

uM2

{
1

2mrmb

(
φ

(r)p
3P (u)

u
+

1

6u

dφ
(r)σ
3P (u)

du

)

+
F

(r)
P

m2
b − q2 + u2m2

P

[
ψ

(r)
4P (u)− 2um2

P

m2
b − q2 + u2m2

P

∫ u

0
dvψ

(r)
4P (v)

+m2
P

(
d

du
− 2um2

P

m2
b − q2 + u2m2

P

)(
F

(r)
3P

mbF
(r)
P

)
Ĩ3r(u)

+
2um2

P

m2
b−q2+u2m2

P

(
d2

du2
− 6um2

P

m2
b−q2+u2m2

P

d

du
+

12u2m4
P

(m2
b−q2+u2m2

P )2

)∫ 1

u
dξI

(r)
4P (ξ)

]}
.

(A.7)

where

Ĩ3r(u) =

u∫
0

dα1

1∫
(u−α1)/(1−α1)

dv

v
[(3− 2v)] Φ3r(αi)

∣∣∣∣∣α2=1−α1−α3,
α3=(u−α1)/v

. (A.8)

Finally, the leading order LCSR for the penguin form factor, (3.6), reads:

F T0,Br→P (q2,M2, sB0 ) =

mb

1∫
u0

du e−
m2
b−q

2ū+m2
P uū

uM2

{
F

(r)
P φ

(r)
2P (u)

u

− mb

6mr(m2
b − q2 + u2m2

P )

(
dφ

(r)σ
3P (u)

du
− 2um2

P

m2
b − q2 + u2m2

P

φ
(r)σ
3P (u)

)

+
F

(r)
P

m2
b − q2 + u2m2

P

[(
d

du
− 2um2

P

m2
b − q2 + u2m2

P

)(
1

4
φ

(r)
4P (u)− I(r)T

4P (u)

)

− m2
b u

4(m2
b−q2+u2m2

P )

(
d2

du2
− 6um2

P

m2
b−q2+u2m2

P

d

du
+

12um4
P

(m2
b−q2+u2m2

P )2

)
φ

(r)
4P (u)

]}

+
m3
bF

(r)
P e−

m2
b

M2

4(m2
b − q2 +m2

P )2

(
dφ

(r)
4P (u)

du

)
u→1

(A.9)
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and

I
(r)T
4P (u) =

u∫
0

dα1

1∫
(u−α1)/(1−α1)

dv

v

[
2Ψ

(r)
4P (αi)− (1− 2v)Φ

(r)
4P (αi)

+ 2(1− 2v)Ψ̃
(r)
4P (αi)− Φ̃

(r)
4P (αi)

]∣∣∣∣∣α2=1−α1−α3,
α3=(u−α1)/v

. (A.10)

The expressions for f+,0,T
D(s)

from factors follows from above, by replacing mb by mc.

B Parameters used in the calculation

In this appendix we summarize the parameters used in the calculation of fMη(′) form factors

as well as in the calculation of fM decay constants, tables 2–5. In table 6 we summarize

meson masses, lifetimes and vector resonances used in the calculation of phenomenological

predictions for semileptonic M → η(′) decays.

Parameter Value at µ = 1 GeV

aπ2 0.17± 0.08 [55]

aπ4 0.06± 0.10 [55]

aπ>4 0

f3π 0.0045± 0.0015 GeV2

ω3π −1.5± 0.7

δ2
π 0.18± 0.06 GeV2

ω4π 0.2± 0.1

f3K 0.0045± 0.0015 GeV2

ω3K −1.2± 0.7

λ3K 1.6± 0.4

δ2
K 0.20± 0.06 GeV2

ω4K 0.2± 0.1

κ4K −0.09± 0.02

Table 2. Input parameters in DA’s [13, 24].
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Parameter Value

mb(mb) 4.18± 0.03 GeV

mc(mc) 1.275± 0.025 GeV

mu(2 GeV) 2.3+0.7
−0.5 MeV

md(2 GeV) 4.8+0.5
−0.3 MeV

m(2 GeV) = mu+md
2 3.5+0.7

−0.2 MeV

ms(2 GeV) 95± 5 MeV

〈q̄q〉(1 GeV) −(246+18
−19 MeV)3

〈s̄s〉/〈q̄q〉 0.8± 0.3

〈αs/π GG〉 0.012+0.006
−0.012 GeV4

m2
0 0.8± 0.2 GeV2

αs(Mz) 0.1176± 0.002

Table 3. Quark masses and additional input parameters for the fB(s)
and fD(s)

sum rules.

Decay constant LCSR [34] This work Fitted M2 and s0 (GeV2)

fπ 130.7

fK 155

fD 201+12
−13 191± 9 M2 = 2, s0 = 5

fDs 238+13
−23 219± 7 M2 = 2, s0 = 6.3

fB 207+17
−09 215± 7 M2 = 5, s0 = 35.6

fBs 242+17
−12 246± 8 M2 = 5.1, s0 = 35.5

fDs
fD

1.15+0.04
−0.05 1.15± 0.05

fBs
fB

1.17+0.04
−0.03 1.16± 0.05

Table 4. Decay constants used in the paper, the values are in MeV. The decay constants of heavy

mesons are obtained from the two-point SR at O(αs) and agree with those from [13, 14, 34]. The

quoted errors are coming only from the variation of s0 and the Borel parameter M , since other

errors will cancel in the calculation of the form factors. For comparison the recent more complete

LCSR results from [34] are given.
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Transition Fitted M2 and s0 parameters of LCSR for f+,0,T

B → η(′) M2
B = 18± 2 GeV2, sB0 = 37± 0.5 GeV2,

Bs → η M2
Bsη

= 17± 1 GeV2, sBsη0 = 37.5± 0.5 GeV2

Bs → η′ M2
Bsη′

= 18± 2 GeV2, sBsη
′

0 = 38± 0.5 GeV2

D → η M2
Dη = 5.2± 0.8 GeV2, sDη0 = 7± 0.2 GeV2

D → η′ M2
Dη′ = 5± 1 GeV2sDη

′

0 = 5.5± 0.3 GeV2

Ds → η M2
Dsη

= 8± 0.2 GeV2, sDsη0 = 7.8± 0.2 GeV2

Ds → η′ M2
Dsη′

= 6± 1 GeV2, sDsη
′

0 = 7.5± 0.5 GeV2

Table 5. Fitted Borel parameters M2 and the continuum thresholds s0 for each of the decays used

to obtain the predicted form factors in the text.

Mass Value (GeV) Resonance Mass value (GeV) Lifetime Value (ps)

mB+ 5.2792 mB∗(1
−) 5.3252 τB+ 1.638± 0.004

mBs 5.3667 mB∗s (1−) 5.4154 τBs 1.512± 0.007

mD+ 1.8696 mD∗(1
−) 2.0102 τD+ 1.040± 0.007

mD+
s

1.9685 mD∗s (1−) 2.1121 τD+
s

0.500± 0.007

mπ0 0.1359

mK0 0.4976

mη 0.5478

mη′ 0.9577

Table 6. Meson masses and lifetimes. The vector meson resonances m∗H are used in the extrapo-

lation formula for q2-dependence of the form factors (6.1).
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[23] B. Melić, B. Nizic and K. Passek, A Note on the factorization scale independence of the

PQCD predictions for exclusive processes, Eur. Phys. J. C 36 (2004) 453 [hep-ph/0107311]

[INSPIRE].

[24] P. Ball, V.M. Braun and A. Lenz, Higher-twist distribution amplitudes of the K meson in

QCD, JHEP 05 (2006) 004 [hep-ph/0603063] [INSPIRE].

[25] M. Beneke and M. Neubert, Flavor singlet B decay amplitudes in QCD factorization, Nucl.

Phys. B 651 (2003) 225 [hep-ph/0210085] [INSPIRE].

[26] M. Jamin and B.O. Lange, fB and fBs from QCD sum rules, Phys. Rev. D 65 (2002)

056005 [hep-ph/0108135] [INSPIRE].

[27] G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics: Evolution

Equations for Hadronic Wave Functions and the Form-Factors of Mesons, Phys. Lett. B 87

(1979) 359 [INSPIRE].

[28] G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum

Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

[29] A.V. Efremov and A.V. Radyushkin, Factorization and Asymptotical Behavior of Pion

Form-Factor in QCD, Phys. Lett. B 94 (1980) 245 [INSPIRE].

[30] A.V. Efremov and A.V. Radyushkin, Asymptotical Behavior of Pion Electromagnetic

Form-Factor in QCD, Theor. Math. Phys. 42 (1980) 97 [Teor. Mat. Fiz. 42 (1980) 147]

[INSPIRE].

[31] M.V. Terentev, Factorization In Exclusive Processes. Form-factor Of Singlet Mesons In

Quantum Chromodynamics (in Russian), Sov. J. Nucl. Phys. 33 (1981) 911 [Yad. Fiz. 33

(1981) 1692] [INSPIRE].
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