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1 Introduction

Parton shower algorithms with hadronization models provide a way of generating simu-

lated events according to approximations based on QCD. Since complete final states are

generated, one can generate completely exclusive cross sections in this way. By summing

over variables that one chooses not to examine, one can also make predictions for inclusive

observables. Of special interest are predictions that, in a perturbative expansion, involve

large logarithms of ratios of different momentum scales in the physical problem.

An important example is the distribution of the transverse momentum p⊥ of Z-bosons

produced in hadron-hadron collisions at some fixed rapidity Y , dσ/(dp⊥ dY ). When p2
⊥ ≪

M2
Z , the perturbative expansion of this cross section contains two powers of the large

logarithm log(p2
⊥/M2

Z) per power of αs. The large logarithms spoil the usefulness of fixed

order perturbation theory for this observable and for observables that contain similar large

logarithms. A parton shower algorithm sums contributions to the desired cross section that

contain arbitrarily high powers of αs; thus it sums the accompanying logarithms. For this

reason, one can hope that a parton shower calculation will do better than a fixed order

perturbative calculation in the region p2
⊥ ≪ M2

Z and analogous regions for other processes.

Indeed, the basic approximation in a parton shower is that one parton splits into two

daughter partons with a probability that matches the singularities of the QCD matrix

element when the two daughter partons are collinear or one of them is soft. It is just these

soft/collinear configurations that give rise to the large logarithms. Thus one can hope that

the cross section generated by a parton shower will be a good approximation to the true

QCD result.

In many cases, including the Z-boson transverse momentum distribution, there are

predictions based on the full field theory. That is, we know that the cross section “ex-

ponentiates” in a sense that one can state precisely and we know some of the leading

coefficients that appear in the exponent of the formula that expresses the QCD result.
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When, for a particular process, one knows the summation of large logarithms in full

QCD, then it is of significant interest to investigate whether a given shower algorithm

produces matching results. To do this, one needs to derive the corresponding summation

in the shower model, deriving the appropriate evolution equation for the observable in

question from the general evolution equation for the shower algorithm.

We have argued above that, because parton shower algorithms are generally based

on parton splitting probabilities that have the proper soft/collinear singularities, these

algorithms may provide good approximations to the full QCD result in particular cases

involving summing large logarithms. However, a parton shower algorithm contains several

ingredients beyond the parton splitting probabilities. Among theses are the momentum

mapping, the color and spin treatment, and the choice of evolution variable. Depending on

the choice of these ingredients, one may obtain agreement with full QCD for a particular

observable or one may fail to obtain agreement. Certainly, it is widely understood that

a virtuality ordered parton shower without a proper inclusion of the effects of quantum

interference can get results for some observables that do not match QCD. In contrast,

there is an extensive body of literature [1–11] that suggests that parton showers based

on ordering in parton emission angles does better for many observables. In this paper,

we will indeed see that, for the Z-boson transverse momentum distribution, the choice of

ingredients matters.

Because the choice of ingredients matters, we think it important to validate shower

evolution schemes against known results for summations of large logarithms. We believe

that such a validation program could be useful for understanding the range of validity

of current parton shower event generators and could provide important guidelines for the

current and future development of such programs.

In ref. [12], in response to ref. [13], we investigated the parton energy distribution in

electron-positron annihilation as predicted by the virtuality ordered, color-dipole based par-

ton shower algorithm of refs. [14–16] and by kT-ordered variants of this. We concluded that

the predictions of these parton shower algorithms are consistent with the field theory re-

sult represented by the well know DGLAP evolution equation [17–19]. This conclusion was

confirmed by ref. [20], which included numerical studies. The parton energy distribution is

an example of the general program of summing large logarithms, namely the logarithm of

the resolution scale for finding the partons (∼ jets) divided by the electron-positron energy.

However, this is a rather simple example in that there is only one logarithm per power of

αs. Observables for which there are two logarithms per power of αs present a much more

subtle problem.

In this paper we investigate the transverse momentum distribution of a Z-boson pro-

duced in hadron-hadron collisions, the Drell-Yan process. Here, there are two logarithms

per power of αs. We use a slightly modified version1 of the shower evolution of ref. [14].

This evolution equation describes the evolution of the partonic states in a fully exclusive

way. We manipulate the shower equation to produce an evolution equation for the trans-

1We change the momentum mapping for initial state radiation from that of ref. [14]. In addition, one of

the choices given in ref. [16] for a certain function A′

lk that was left unspecified in ref. [14] gives a satisfactory

result, but another of the choices does not work.
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verse momentum distribution of the Z-boson and we compare the result to the well known

field theory prediction that is given in ref. [21]. We find that the virtuality ordered shower

works well in reproducing the full QCD result.

The shower evolution equation of ref. [14] includes quantum interference among colors

and spins. We note that this shower evolution equation is not directly practical for gener-

ating events. A simple approximation to this evolution equation is to average over spins

and take the leading color approximation, which yields an evolution equation [15] that

can be written as a Markov process and is thus directly practical for generating events.

We treat the full evolution equation, but we will see that the same results with some

small adjustments hold for the Z-boson transverse momentum distribution produced by

the spin-averaged, leading-color shower evolution.

The investigation that we carry out in this paper, and that we believe would be useful

for other observables and other shower algorithms, is analytical. That is, we want to

test whether the transverse momentum distribution produced by the shower algorithm

has the proper exponential form and, if so, whether the coefficients in the exponent are

correct. A followup study, not addressed in this paper, would be numerical: how well

does an actual implementation of the parton shower algorithm produce results that match

numerical results given by the QCD formula. In this case, the summed QCD results,

including nonperturbative parameters that are fit to experiment, could be obtained from

the Resbos code [22]. We believe that one should start with an analytical study rather

than a numerical study for the following reason. The parton shower, for the case of the

production a Z-boson with small p⊥, represents the physics on “hard” scales from MZ to

a few GeV. This is perturbative physics that is adjustable only to a limited extent. In

particular, one can modify the parton splitting probabilities in a fashion that does not

change them in the soft and collinear limits.2 A full parton shower event generator also

contains elements, such as a hadronization model and a model for the underlying event,

that represent soft scale physics. One can adjust the models for the soft physics by tuning

various parameters. For very large M2
Z/Λ2

QCD and M2
Z/p2

⊥, only the part of the shower

algorithm that cannot be tuned should matter. However, for realistic values of these

parameters, the tunable parts of the parton shower can make a numerical difference. One

would not want to tune the parameters in order to repair a numerical disagreement that

was actually caused by a mismatch between the parton shower and full QCD with respect

to the hard scale physics that is fixed. The way to check the match of hard scale physics

is to compare analytically. Once this is checked, the numerical comparison is appropriate

and needed.

We organize this paper as follows. In sections 2, 3, and 4, we review briefly the needed

features of the shower evolution of ref. [14] and set up the notation for our analysis. Then

in section 5 we outline the derivation to come and state the nature of the approximations

that we will need. The derivation is given in sections 6, 7, 8, 9, and 10. The solution of

the evolution equations is given in section 11 and the result is compared to the full QCD

result in section 12. We discuss what one would get with other sorts of shower evolution in

2The Vincia parton shower algorithm [23] takes advantage of this flexibility.
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section 13 and summarize the results in section 14. In appendix A, we summarize results

from refs. [14–16] that are used in this paper. In appendix B we prove a certain property

of integrals of the J0 Bessel function.

2 Shower states and shower evolution

We analyze the transverse momentum distribution of a Z-boson as generated by the parton

shower evolution equations of ref. [14]. The organizing principle of the shower is that one

starts at the hard interaction q + q̄ → Z and moves to softer interactions, always factoring

the softer interaction from previous harder interactions.

In the notation of ref. [14], states in the sense of statistical mechanics are repre-

sented by ket vectors
∣

∣ρ
)

, while possible measurements are represented by bra vectors
(

F
∣

∣. Thus
(

F
∣

∣ρ
)

is the cross section that one obtains a particular result F from a mea-

surement on an ensemble of systems represented by
∣

∣ρ
)

. We use basis states labelled by

lists {p, f, s′, c′, s, c}m of parton quantum numbers for two initial state partons and m final

state partons. As the shower progresses, m increases. The momenta of the final state

partons are {p1, . . . , pm}. The first final state parton is the Z-boson, with momentum

p1 ≡ pZ . The momenta of the initial state partons are specified by giving their momentum

fractions, ηa and ηb. Then their momenta are

pa = ηapA ,

pb = ηbpB ,
(2.1)

where pA and pB are the momenta of the incoming hadrons, treated as massless. The

flavors g, u, ū, d, d̄, . . . of the final state partons are {f1, . . . , fm}, while the flavors of the

initial state partons are denoted by a and b. The spins are specified by

{s′, s}m = {sa, sb, s1, . . . , sm, s′a, s
′
b, s

′
1, . . . , s

′
m} , (2.2)

with two spin labels for each parton because we use the quantum density matrix in spin

space in order to represent possible interference among spin states. The colors are simi-

larly specified by {c′, c}m. Quantum spin and color states are represented by bra and ket

vectors with angle brackets, as in the quantum spin inner product
〈

{s′}m

∣

∣{s}m

〉

. The lists

{p, f, s′, c′, s, c}m include all of these parton quantum numbers. The unit operator in the

space of statistical states can be written as

1 =
∑

m

1

m!

∫

[

d{p, f, s′, c′, s, c}m

] ∣

∣{p, f, s′, c′, s, c}m

)(

{p, f, s′, c′, s, c}m

∣

∣ , (2.3)

where
[

d{p, f, s′, c′, s, c}m

]

indicates integrating and summing over all of the quantum

numbers. A much more detailed specification of our notation is provided in ref. [14]. In

ref. [14], the quarks can have non-zero masses, but in this paper we take all of the partons

except for the Z-boson to be massless.

Let
∣

∣ρ(t)
)

= U(t, 0)
∣

∣ρ(0)
)

be the statistical state at shower time t. Here t = 0 at the

beginning of the shower, which starts with the hard process q + q̄ → Z, and t = tf gives
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the statistical state at the end of the shower, before hadronization. (We do not discuss

a hadronization model in this paper.) The total cross section for producing a Z-boson is

expressed using the vector
(

1
∣

∣, which represents the totally inclusive measurement,

σZ =
(

1
∣

∣ρ(t)
)

=
∑

m

1

m!

∫

[

d{p, f, s′, c′, s, c}m

]

×
(

1
∣

∣{p, f, s′, c′, s, c}m

)(

{p, f, s′, c′, s, c}m

∣

∣ρ(t)
)

=
∑

m

1

m!

∫

[

d{p, f, s′, c′, s, c}m

] 〈

{s′}m

∣

∣{s}m

〉 〈

{c′}m

∣

∣{c}m

〉

×
(

{p, f, s′, c′, s, c}m

∣

∣ρ(t)
)

.

(2.4)

Here we use the definition

(

1
∣

∣{p, f, s′, c′, s, c}m

)

=
〈

{s′}m

∣

∣{s}m

〉 〈

{c′}m

∣

∣{c}m

〉

. (2.5)

The total Z-production cross section is independent of t: the shower evolution maintains
(

1
∣

∣U(t, 0) =
(

1
∣

∣.

We are interested in the differential cross section dσ/(dp⊥ dY ) as obtained in the

shower at the shower final time tf ,

dσ

dp⊥ dY
=
(

p⊥, Y
∣

∣ρ(tf)
)

. (2.6)

Here, the measurement function
(

p⊥, Y
∣

∣ measures the cross section for the Z-boson to have

transverse momentum p⊥ and rapidity Y .3 The definition is

(

p⊥, Y
∣

∣ρ(t)
)

=
∑

m

1

m!

∫

[

d{p, f, s′, c′, s, c}m

]

×
(

p⊥, Y
∣

∣{p, f, s′, c′, s, c}m

)(

{p, f, s′, c′, s, c}m

∣

∣ρ
)

=
∑

m

1

m!

∫

[

d{p, f, s′, c′, s, c}m

]〈

{s′}m

∣

∣{s}m

〉 〈

{c′}m

∣

∣{c}m

〉

× δ(pZ,⊥ − p⊥) δ

(

1

2
log

(

pZ ·pB

pZ ·pA

)

− Y

)

×
(

{p, f, s′, c′, s, c}m

∣

∣ρ(t)
)

.

(2.7)

The starting point of shower evolution is the Born cross section,
[

dσ

dp⊥ dY

]

Born

=
(

p⊥, Y
∣

∣ρ(0)
)

, (2.8)

which is proportional to δ(p⊥). (See eq. (4.17) in section 4.5 for details.)

The shower evolution is specified in ref. [14] in the form

d

dt

∣

∣ρ(t)
)

= [HI(t) − V(t)]
∣

∣ρ(t)
)

. (2.9)

3In general, we denote vectors in two transverse dimensions by boldface letters like p⊥. The transverse

part of a four-vector p is p⊥. Then p2
⊥ = −p2

⊥ < 0; however, to avoid confusion, we avoid writing p2
⊥.

– 5 –
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Here HI(t) is the splitting operator, which takes a basis state with m final state partons

and changes it to a state with m + 1 final state partons. Next, V(t) is a “virtual splitting”

operator that leaves number of partons and their momenta, flavors, and spins unchanged.4

The operator V(t) is determined from HI(t) in such a way that

(

1
∣

∣V(t) =
(

1
∣

∣HI(t) . (2.10)

With this condition,
d

dt

(

1
∣

∣ρ(t)
)

= 0 , (2.11)

so that the total cross section to produce a Z-boson remains the Born cross section, even

though the Z-boson momentum changes as a result of recoils against parton splittings in

the shower. In particular, the Z-boson transverse momentum distribution broadens as the

shower develops from t = 0 to t = tf . We need to follow the shower evolution to find how

the transverse momentum distribution broadens.

3 Initial state splitting kinematics

We will first need some kinematics for the description of an initial state splitting. For

notational convenience, we suppose that it is parton “a” that splits.

The initial state parton with momentum pa splits, in backward evolution, to a new

initial state parton with momentum p̂a and a final state parton with momentum p̂m+1, as

illustrated in figure 1. The other initial state parton has momentum pb before the splitting

and momentum p̂b, equal to pb, after the splitting. In this paper,5 we describe the splitting

using splitting variables (y, z, φ) or, alternatively, (y,k⊥), defined by

p̂m+1 =
1 − z

z
(1 + y) pa + z

y

1 + y
pb + k⊥ ,

p̂a =
1 + y

z
pa ,

p̂b = pb .

(3.1)

Here k⊥ is the part of p̂m+1 that is orthogonal to both pa and pb.

Virtuality. The variable y is

y =
2 p̂m+1 ·p̂a

2 pa ·pb
. (3.2)

We will use a shower time t based on virtuality,6

t = log

(

M2

2 p̂m+1 ·p̂a

)

, (3.3)

4In general, the operator V(t) is a non-trivial operator on the partonic color space. In the leading color

approximation, valid for Nc → ∞, it is diagonal in the color space, as described in ref. [15]. The derivation

in this paper is given for the exact treatment of color, but works also in the leading color approximation.
5In ref. [14], the splitting operator is expressed in terms of momenta rather than splitting variables y, z, φ

and we did not specify a choice of splitting variables. In ref. [15], we did make a choice, but that choice is

not the same as the choice used here.
6For a final state splitting of parton l, the shower time is t = log(M2/(2 p̂m+1 ·p̂l)).
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Figure 1. Illustration of the kinematics for an initial state splitting.

where M is the Z-boson mass. We will typically use t as our virtuality variable instead of

y, so that y is

y =
M2

2 pa ·pb
e−t . (3.4)

(See also eq. (3.23) below.)

Momentum fraction. The fraction of the momentum p̂a in the direction of pa that is

carried away by the emitted final state parton m + 1 is

p̂m+1 ·pb

p̂a ·pb
= 1 − z . (3.5)

The variable z must be in the range 0 < z < 1. The momentum fraction ηa of parton “a”

has a new value after the splitting. From eqs. (2.1) and (3.1), we have, using 2 pa ·pb = ηaηbs

with s = 2 pA ·pB,

η̂a =
1 + y

z
ηa =

1

z

[

ηa +
M2

ηbs
e−t

]

,

η̂b = ηb .

(3.6)

These are the exact relations. In our applications, we will generally neglect M2e−t com-

pared to ηaηbs. That is, we consider the virtuality M2e−t of a splitting to be small com-

pared to the momentum scale of the hard process, M2, which, in turn, is always smaller

than ηaηbs.

Transverse momentum. The angle φ is the azimuthal angle of k⊥. The magnitude of

k⊥ is related to z and y:

0 = p̂2
m+1

= (1 − z)y 2 pa ·pb − k2
⊥

= (1 − z)M2e−t − k2
⊥ .

(3.7)

Thus

k2
⊥ = (1 − z)M2e−t . (3.8)

– 7 –
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If we use z and φ (along with y or t) as our splitting variables, then k2
⊥ is a derived

variable. Alternatively, we can use k⊥ (and thus k2
⊥ and φ) as splitting variables. Then z

is a derived variable.

Lorentz transformation. If y 6= 0, momentum difference p̂a− p̂m+1 is not exactly equal

to pa. In order to maintain momentum conservation at each step in the shower, we must,

therefore, take some momentum from the partons in the final state at the time of the

splitting. Each parton, with momentum pj, j ∈ {1, 2, . . . ,m}, then gets a new momentum

p̂j after the splitting. This includes the momentum pZ ≡ p1 of the Z-boson. Following the

shower algorithm of ref. [14], the momenta p̂j are determined by a Lorentz transformation,

p̂j = Λpj with the property

p̂a + p̂b − p̂m+1 = Λ(pa + pb) . (3.9)

However, we use a different Lorentz transformation from that chosen in ref. [14].7 If

p = α pa + β pb + p⊥ , (3.10)

then p̂ = Λp is given by

p̂ = (1 + y)α pa

+
1

1 + y

[

β −
2p⊥ ·k⊥

2 pa ·pb
+ α

k2
⊥

2 pa ·pb

]

pb

+ p⊥ − αk⊥ .

(3.11)

An equivalent form that is useful if α 6= 0 is

p̂ = (1 + y)α pa

+
p2 + (p⊥ − αk⊥)2

(1 + y)α 2 pa ·pb
pb

+ p⊥ − αk⊥ .

(3.12)

The momenta p̂a and p̂b are not the Lorentz transformed versions of pa and pb. It is,

however, of interest to know what the Lorentz transformation does to pa and pb. We have

Λpa = (1 + y) pa +
1

1 + y

k2
⊥

2 pa ·pb
pb − k⊥ ,

Λpb =
1

1 + y
pb .

(3.13)

The important feature of this is that the emitted parton m + 1 has transverse momentum

k⊥ and the momentum Λpa of parton “a” caries the recoil transverse momentum −k⊥.

7The choice of Lorentz transformation in ref. [14] does not distribute the recoil transverse momentum,

−k⊥, in the physically most sensible way. The transformation defined here allocates the recoil transverse

momentum to each final state particle proportionally to the share of the total momentum in the direction of

pa that is carried by that parton. One could use the momentum mapping from ref. [14], but the argument

of this paper would then need some additional steps.
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We can understand what happens to this recoil transverse momentum by thinking of the

shower as proceeding forward in time (oppositely to the way it is generated). Initial state

parton “a” with momentum Λpa can emit more daughter partons. But a share of the

transverse momentum −k⊥ is finally transmitted to the Z-boson.

Let us now look directly at the transformation of the momentum pZ of the Z-boson.

We start with

pZ =

√

M2 + p2
Z,⊥

s
eY 1

ηa
pa +

√

M2 + p2
Z,⊥

s
e−Y 1

ηb
pb + pZ,⊥

= xapA + xbpB + pZ,⊥ ,

(3.14)

with

xa =

√

M2 + p2
Z,⊥

s
eY ,

xb =

√

M2 + p2
Z,⊥

s
e−Y .

(3.15)

Then

p̂Z =

√

M2 + p̂2
Z,⊥

s
eŶ 1

ηa
pa +

√

M2 + p̂2
Z,⊥

s
e−Ŷ 1

ηb
pb + p̂Z,⊥ . (3.16)

Here

p̂Z,⊥ = pZ,⊥ −
xa

ηa
k⊥ . (3.17)

Thus the Z-boson gets a share xa/ηa of the recoil transverse momentum. The new rapid-

ity is

Ŷ = Y + log(1 + y) −
1

2
log

(

M2 + p̂2
Z,⊥

M2 + p2
Z,⊥

)

. (3.18)

This transformation law is complicated. However it simplifies in the limit that we need

for this paper. Let us denote by P the Z-boson momentum without its transverse part,

P = xapA + xbpB . (3.19)

We are interested in the development of the Z-boson transverse momentum in the region

p2
Z,⊥ ≪ M2. Therefore we take

P 2 = M2 . (3.20)

Furthermore, the development of the Z-boson transverse momentum distribution is con-

trolled by splittings with y ≪ 1. Therefore, we neglect p2
Z,⊥/M2, p̂2

Z,⊥/M2, and y compared

to 1 in eq. (3.18), giving

Ŷ = Y (3.21)

in each splitting. With these approximations, xa and xb are fixed:

xa =

√

M2

s
eY ,

xb =

√

M2

s
e−Y .

(3.22)
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With the approximations eq. (3.22), we have

y =
xaxb

ηaηb
e−t . (3.23)

Although xa and xb are fixed, the momentum fractions ηa and ηb can change if there is a

collinear splitting of an initial state parton.8

Although we neglect the transverse momentum of the Z-boson in computing its mass,

we track changes in the transverse momentum as the Z-boson recoils against emissions

from the initial state partons. For an emission from initial parton “a”, the new Z-boson

transverse momentum is

p̂Z,⊥ = pZ,⊥ −
xa

ηa
k⊥ , (3.24)

as stated in eq. (3.17).

4 Analysis framework

The equations of ref. [14] specify quite precisely the evolution of a certain kind of parton

shower. In order to analyze what the parton shower thus defined produces for the transverse

momentum distribution of a Z-boson, we develop in this section some theoretical structures

beyond those presented in ref. [14].

4.1 Measurement operators Q

We are interested in the differential cross section as obtained in the shower at the shower

final time tf ,
dσ

dp⊥ dY
=
(

p⊥, Y
∣

∣ρ(tf)
)

. (4.1)

In this paper, we will find it useful to represent the desired measurement with the aid

of an operator Q on the space of statistical states,

(

p⊥, Y
∣

∣ρ(t)
)

=
(

1
∣

∣Q(p⊥, Y )
∣

∣ρ(t)
)

. (4.2)

Here Q(p⊥, Y ) is defined by

Q(p⊥, Y )
∣

∣{p, f, s′, c′, s, c}m

)

= δ(pZ,⊥ − p⊥) δ

(

1

2
log

(

pZ ·pB

pZ ·pA

)

− Y

)

∣

∣{p, f, s′, c′, s, c}m

)

.
(4.3)

In the subsequent subsections, we will extend this notation in which an operator Q deter-

mines a measurement on the statistical state.

8We will see, however, that the real emissions that we need to analyze to follow the development of the

Z-boson transverse momentum distribution have (1− z) ≪ 1. For these emissions, the change in ηa and ηb

is negligible.
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4.2 Fourier transformation

As was noted by Parisi and Petronzio [24], it is useful to analyze the evolution of the

Fourier transform of the transverse momentum distribution. Thus we study
∫

dp⊥

(2π)2
e−ib·p⊥

(

p⊥, Y
∣

∣ρ(t)
)

=
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

, (4.4)

where9

Q(b, Y )
∣

∣{p, f, s′, c′, s, c}m

)

= (2π)−2 e−ib·pZ,⊥ δ

(

1

2
log

(

pZ ·pB

pZ ·pA

)

− Y

)

∣

∣{p, f, s′, c′, s, c}m

)

.
(4.5)

We will refer to
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

as the b-space hadronic cross section.

4.3 Tracking the momentum fractions and parton flavors

For our analysis, we will want to keep track of the parton momentum fractions, ηa and ηb,

and the flavors, a and b, of the incoming partons. Thus we consider the function

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρ(t)
)

,

where

Q(b, Y ; η̃a, η̃b, ã, b̃)
∣

∣{p, f, s′, c′, s, c}m

)

= (2π)−2 e−ipZ,⊥·b δ

(

1

2
log

(

pZ ·pB

pZ ·pA

)

− Y

)

× δa,ã δb,b̃ δ(ηa − η̃a) δ(ηb − η̃b)
∣

∣{p, f, s′, c′, s, c}m

)

.

(4.6)

4.4 Evolution of the perturbative statistical state

The statistical state vector
∣

∣ρ(t)
)

according to our definition contains a factor

fa/A(ηa,M
2e−t)fb/B(ηb,M

2e−t)

4nc(a)nc(b) 2ηaηb pA ·pB
. (4.7)

This factor gives the parton-parton luminosity. Here fa/A(ηa, µ
2) and fb/B(ηb, µ

2) are

parton distribution functions and nc(a) and nc(b) are the number of colors carried by

partons of flavors a and b, namely 3 for quarks and 8 for gluons. We define an alternative

state vector
∣

∣ρpert(t)
)

in which this non-perturbative factor is removed:

(

{p, f, s′, c′, s, c}m

∣

∣ρ(t)
)

=
fa/A(ηa,M

2e−t)fb/B(ηb,M2e−t)

4nc(a)nc(b) 2ηaηbpA ·pB

(

{p, f, s′, c′, s, c}m

∣

∣ρpert(t)
)

.
(4.8)

A convenient notation for this is

∣

∣ρ(t)
)

= F(t)
∣

∣ρpert(t)
)

, (4.9)

9We use the same letter, Q, for three different operators, Q(p⊥, Y ), Q(b, Y ) defined here, and, in the

following subsection, Q(b, Y ; ηa, ηb, a, b). It should be clear from the context which operator is intended.
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where F(t) multiplies by the parton distribution factor,

F(t)
∣

∣{p, f, s′, c′, s, c}m

)

=
fa/A(ηa,M

2e−t)fb/B(ηb,M2e−t)

4nc(a)nc(b) 2ηaηbpA ·pB

∣

∣{p, f, s′, c′, s, c}m

)

. (4.10)

The evolution equation for
∣

∣ρpert(t)
)

can be determined from the evolution equa-

tion (2.9) for
∣

∣ρ(t)
)

. We have

[

d

dt
F(t)

]

∣

∣ρpert(t)
)

+ F(t)
d

dt

∣

∣ρpert(t)
)

= [HI(t) − V(t)]F(t)
∣

∣ρpert(t)
)

, (4.11)

so

d

dt

∣

∣ρpert(t)
)

= F(t)−1[HI(t) − V(t)]F(t)
∣

∣ρpert(t)
)

−F(t)−1

[

d

dt
F(t)

]

∣

∣ρpert(t)
)

.
(4.12)

We can write this as

d

dt

∣

∣ρpert(t)
)

= [Hpert
I (t) − Vpert(t)]

∣

∣ρpert(t)
)

. (4.13)

Here the revised real and virtual splitting operators are

Hpert
I (t) = F(t)−1HI(t)F(t) ,

Vpert(t) = F(t)−1V(t)F(t) + F(t)−1

[

d

dt
F(t)

]

= V(t) + F(t)−1

[

d

dt
F(t)

]

.

(4.14)

In the last line here, we have noted that F(t) commutes with V(t) since V(t) does not

change momenta or flavors.

For the perturbative real splitting operator, we have

(

{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣

∣HI(t)
∣

∣{p, f, s′, c′, s, c}m

)

=
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a,M
2e−t)fb̂/B(η̂b,M2e−t)

fa/A(ηa,M2e−t)fb/B(ηb,M2e−t)

×
(

{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣

∣Hpert
I (t)

∣

∣{p, f, s′, c′, s, c}m

)

.

(4.15)

The factors in the second line appear in the definition of the matrix element of HI in

ref. [14]. Thus to obtain the corresponding matrix element of Hpert
I (t), we simply omit

these factors. We will present detailed formulas for Hpert
I (t) and Vpert(t) at the point that

we need them.

4.5 The function to study

The physics that we want to study is contained in the function defined in section 4.3, in

which b and Y are measured and, in addition, we measure ηa, ηb, a and b. As noted in
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the previous subsection, this function contains a nonperturbative factor that specifies the

parton luminosity. We remove this factor and study

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

We will refer to this function as the b-space partonic cross section. Once we have the b-space

partonic cross section, we can obtain the b-space hadronic cross section
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

by convolving it with parton distribution functions according to

(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

=
∑

a,b

∫ 1

0
dηa

∫ 1

0
dηb

fa/A(ηa,M
2e−t)fb/B(ηb,M2e−t)

4nc(a)nc(b) 2ηaηbpA ·pB

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

(4.16)

This relation is obtained using eqs. (2.3), (4.5), (4.6), and (4.8).

Our aim is to study how the b-space partonic cross section develops as the shower time

t increases. At shower time 0, it is determined from the Born cross section, as in eq. (2.8),

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(0)
)

= 12α Qab xaxb δ(ηa − xa) δ(ηb − xb) , (4.17)

with

xa =

√

M2

s
eY , xb =

√

M2

s
e−Y , (4.18)

and

Qab = 0 a = g or b = g ,

Qab = δa,b̄

[1 − 4 |ea| sin
2(θW)]2 + 1

16 sin2(θW) cos2(θW)
a 6= g and b 6= g .

(4.19)

Note that the partonic cross section at t = 0 vanishes unless a is a quark or antiquark flavor

and b is the corresponding antiflavor. There is no dependence on b because the correspond-

ing transverse momentum dependent cross section is proportional to a delta function of the

transverse momentum. As the shower evolves, we expect
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

to

develop some dependence on b.

We begin the study of the evolution of this function in the next subsection by outlining

some key ideas that will go into the derivation.

5 Outline of the derivation

We are now in a position to outline the derivation that follows, leaving out most of the

details and certain subtle points. One of the subtle points is the running of αs. For the

purposes of this section, we consider αs to be constant.
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5.1 Emission kinematics

We will find that the transverse momentum of the Z-boson is the primarily the result of

recoils against emission of soft gluons from an initial state quark or antiquark. As we

saw in section 3, an initial state splitting can be described by splitting variables {t, z, φ}.

The shower time t gives the virtuality of the splitting. The momentum fraction of the

emitted gluon is (1 − z), so that for soft gluon emission we have (1 − z) ≪ 1. The

transverse momentum k⊥ of the emitted gluon has azimuthal angle φ and magnitude given

by eq. (3.8), k2
⊥ = (1 − z)M2e−t.

It is useful to represent splittings by points in the plane of t and log(k2
⊥/M2), as in

figure 2. An allowed splitting has (1 − z) ≤ 1, so log(k2
⊥/M2) ≤ −t. That is, allowed

splittings are represented by points below the line labelled “(1 − z) ∼ 1” in figure 2. One

should view this line as having a thickness of order 1. As we will discuss in some detail,

for a given t, the splitting probability dP from ref. [14] has a term with

dP ∼ 4CF
αs

2π
dt

dz

1 − z + e−t
, (5.1)

including a factor 2 due to having two incoming partons that can radiate. This means that

splittings are not simply concentrated along the line (1 − z) ∼ 1, but are spread over the

region below this line. In fact, a splitting probability proportional to dt dz/(1 − z) would

give splittings uniformly distributed in log(k2
⊥/M2) and t. However, there is an effective

cutoff at the line (1 − z) ∼ e−t. Thus the splitting probability is approximately constant

in the region e−t < (1 − z) < 1 indicated in figure 2.

We are interested in the partonic b-space cross section. For this quantity, a real emission

produces a factor exp(ik⊥ ·b), which simply comes from taking the Fourier transform to get

to b-space. For this reason, the line k2
⊥ ∼ 1/b2 in figure 2 is significant. If we integrate the

real emission probability over an interval of k⊥ in the region k2
⊥ ≫ 1/b2, the factor exp(ik⊥·

b) averages to zero. That is to say, maintaining a non-zero
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

requires not emitting gluons with k2
⊥ ≫ 1/b2. In the region k2

⊥ . 1/b2, gluons can be

freely emitted into the final state. We represent gluons that might be emitted in a typical

event contributing to
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

by filled circles in figure 2.

Of course, if there is an approximately uniform probability of emitting gluons in any

differential unit of area d log(k2
⊥/M2) dt, then the probability that no gluons are emitted

for k2
⊥ ≫ 1/b2 is small when b2 is large. It is approximately

e−S ≈ exp
(

−4CF
αs

2π
A
)

, (5.2)

where A is the area of the triangle in figure 2. This Sudakov factor gives, approximately, the

b-dependence of the partonic b-space cross section that we seek. In the following sections,

we fill in the details of this argument and make it more precise. We will find that the more

precise analysis leads to a Sudakov factor similar to that in eq. (5.2), but with running

coupling effects included and an extra “subleading” term.
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Figure 2. Integration region for initial state gluon emissions. The horizontal axis is the shower

time; thus emissions are generated from left to right. The vertical axis is log(k2
⊥

/M2). The leading

region for emissions lies between the lines labelled (1 − z) ∼ 1 and (1 − z) ∼ e−t. The partonic

b-space cross section for emissions with k2
⊥

≫ 1/b2 approximately vanishes. Thus real gluon

emissions, indicated by small circles, occur near or below the horizontal line k2
⊥
∼ 1/b2.

5.2 Strategy

We study the evolution of the b-space partonic cross section defined in section 4.5. Using

eq. (4.13), the b-space partonic cross section evolves according to

d

dt

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

=
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)[Hpert
I (t) − Vpert(t)]

∣

∣ρpert(t)
)

.
(5.3)

Our aim is to use suitable approximations to turn this equation into a differential equation

of the form

d

dt

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ −K(t, b)
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

. (5.4)

This differential equation has the solution
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ exp

(

−

∫ t

0
dτ K(τ, b)

)

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(0)
)

.
(5.5)

Here the initial b-space partonic cross section has the simple b-independent form given

in eq. (4.17). We will see that the evolution of
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

stops for t > tc ≡

log
(

b2M2 e2γE/4
)

, where γE is the Euler γ. Here tc is approximately the shower time

at which the lines (1 − z) ∼ 1 and k2
⊥ ∼ 1/b2 in figure 2 meet; we will see later the reason

for the adjustment factor e2γE/4. Then

e−S = exp

(

−

∫ tc

0
dτ K(τ, b)

)

(5.6)

is the Sudakov factor, for which eq. (5.2) is a simple approximation.
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5.3 Approximations

We will need certain approximations to turn eq. (5.3) into the differential equation (5.4).

We describe these approximations in general terms here.

First, we note that the behavior of the Z-boson p⊥ distribution for p2
⊥ ≪ M2 is

controlled by the b-space partonic cross section for large b2. Thus we are interested in the

b-space partonic cross section in the region 1/(b2M2) ≪ 1. Therefore, we simply neglect

1/(b2M2) compared to 1 everywhere.

Second, we neglect e−t compared to 1. To justify this, imagine letting the system evolve

from time 0 to a time t1 and then from t1 to tc. Let t1 be large enough so that e−t1 ≪ 1, but

small enough that we can treat t1 as not being a large logarithm. Then evolution from 0 to

t1 is an approximate version of perturbation theory and gives order αn
s corrections to the

Born cross section with no large logarithms. We ignore these corrections. For the evolution

from t1 to tc, the approximation e−t ≈ 0 is justified. Furthermore, we can add back the

evolution from 0 to t1 using the approximation e−t ≈ 0, adding more order αn
s corrections

with no large logarithms. Then we have evolution from 0 to tc with the approximation

e−t ≈ 0 at the cost of changing the result by αn
s terms with no large logarithms.

For the same reason, we neglect y, eq. (3.4), compared to 1 and k2
⊥/M2 compared to 1.

Finally, in section 9.2, we will analyze the structure of the splitting function near the

line k2
⊥ = 1/b2. For this analysis, we will make what might be called a low density ap-

proximation. For initial state emissions, according to eq. (5.1), the density of emission

points per unit dt and d log(k2
⊥/M2) is proportional to αs. We treat αs as small. Con-

sider, then, two emissions, one with parameters {t1, log(k2
⊥,1/M

2)} and the other with

parameters {t2, log(k2
⊥,2/M

2)}. Suppose that t2 > t1 and that each of these emissions

is not far from the line k2
⊥ = 1/b2. Since the density of points is small, the distance in

the {t, log(k2
⊥/M2)} plane between any two points is typically large. This suggests that

we can neglect e−(t2−t1) compared to 1. To see whether this is justified, suppose that we

modify the shower algorithm so that it is not allowed to have two splittings be close to the

line k2
⊥ = 1/b2 and close to each other. More precisely, choose a distance parameter d0

and require that no two splittings have | log(k2
⊥b2)| < d0 and simultaneously t2 − t1 < d0.

Choose d0 such that e−d0 is small enough to be neglected but d0 is not so large that it

constitutes a large logarithm. Then it is valid to replace e−(t2−t1) by zero for any splittings

that are not excluded.

The exclusion prescription can be constructed in a different way. Generate 1 → 2

splittings without restriction, but add a new splitting function that describes a 1 → 3

splitting: incoming parton “a” emits partons 1 and 2 in the region | log(k2
⊥b2)| < d0 and

t2 − t1 < d0. The probability for this new splitting should be negative and just big enough

to cancel the probability for parton “a” to first emit parton 1 and then emit parton 2 in

this region. One then needs to add similar 1 → n + 1 splittings for n > 2 to cancel the

probabilities to have more than two splittings that are to close the line k2
⊥ = 1/b2 and

to one another, but we limit this discussion to the simple 1 → 3 case. The new 1 → 3

splitting probability is proportional to α2
s and the excluded area, d2

0. With our choice of

d0, this area is not large.
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The new splitting function will modify the Sudakov exponent by adding a term pro-

portional to α2
s and to the length of the line k2

⊥ = 1/b2 between the two limits in figure 2,

namely ∆t ≈ log(b2M2)/2.

We conclude that replacing iterated splittings by zero in the region in which the ap-

proximation e−(t2−t1) ≈ 0 is not good results in modifying the Sudakov exponent by terms

of order α2
s log(b2M2). What we actually do is to replace these splittings by what the

inaccurate approximation e−(t2−t1) ≈ 0 gives. As long as this approximation results in a

fractional change of order 1 in the iterated splitting probability, we also modify the Sudakov

exponent by terms of order α2
s log(b2M2).

The true QCD Sudakov exponent, as discussed in section 12, has an expansion in

powers of αs. In the coefficient of α2
s , the term with the most powers of log(b2M2) is a

constant times α2
s log3(b2M2). The next-to-leading term is a constant times α2

s log2(b2M2).

Thus terms of order α2
s log(b2M2) are third-to-leading. The low density approximation

discussed here changes these terms in an uncontrolled way.

We have not analyzed here the effect of 1 → n+1 splittings for n > 2 that are induced

by this approximation. However, it should be clear that these induce αn
s log(b2M2) changes

in the Sudakov exponent.

6 Evolution of the partonic cross section

We can now begin to simplify eq. (5.3), which gives the evolution of the b-space partonic

cross section.

The operator Vpert(t) acting on a partonic basis state
∣

∣{p, f, s′, c′, s, c}m

)

does not add

a new parton or change the parton momenta or flavors. For this reason, Q(b, Y ; ηa, ηb, a, b)

commutes with Vpert(t). Thus eq. (5.3) becomes

d

dt

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

=
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)Hpert
I (t)

− Vpert(t)Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.
(6.1)

The operator Hpert
I (t) does add a new parton and does change the parton momenta.

Thus it does not commute with Q. To analyze what happens, we break Hpert
I (t) into

three parts:

Hpert
I (t) = HFS(t) +

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

Hpert
a (t; z, φ, f ′)

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

Hpert
b (t; z, φ, f ′) .

(6.2)

Here HFS(t) is the part of Hpert
I (t) that generates the splittings of final state particles.

We have dropped the “pert” notation here because, in the definition of ref. [14], a final

state splitting does not involve a factor of ratios of parton distributions, so that the part

of Hpert
I (t) that creates a final state splitting is the same as the part of HI(t) that creates

the same final state splitting. In the second term in eq. (6.2), we let Hpert
a (t) be the
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part of Hpert
I (t) that generates the splittings of the incoming parton from hadron A. We

have decomposed this operator further as an integral and sum of Hpert
a (t; z, φ, f ′), which

generates the splittings of the incoming parton from hadron A in which the momentum

fraction and azimuthal angle of the splitting are z and φ, respectively and the flavor of the

emitted parton is f ′. (For our analysis, f ′ = g is the most important choice.) Similarly,

Hpert
b (t; z, φ, f ′) generates the splittings of the incoming parton from hadron B. In a similar

way, we can divide the virtual splitting operator into three parts,

Vpert(t) = VFS(t) +

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

Vpert
a (t; z, φ, f ′)

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

Vpert
b (t; z, φ, f ′) .

(6.3)

6.1 Final state splittings

Consider first the effect of a final state splitting. Using the definitions of ref. [14], we find

that a final state splitting replaces one final state parton by two daughter partons, but its

effect on the rapidity and transverse momentum of the Z-boson is negligible. When parton

l with momentum pl splits to form daughter partons l and m + 1 with momenta p̂l and

p̂m+1, an amount of momentum ∆p = p̂l+p̂m+1−pl must be taken from the other final state

partons. The splitting can be characterized by the virtuality variable y = p̂l ·p̂m+1/pl ·Q,

where Q = pa + pb. With the splitting kinematics of ref. [14], the needed momentum is

∆p = −(1 − λ) pl + (1 − λ + y)
pl ·Q

Q2
Q , (6.4)

where

λ =

√

(1 + y)2 − y
2Q2

pl ·Q
∼ 1 − y

(

Q2

pl ·Q
− 1

)

+ · · · . (6.5)

Note that 1 − λ ∝ y for y ≪ 1. The momentum ∆p is supplied by applying a Lorentz

transformation to each final state parton i with i /∈ {l,m+1}: p̂µ
i = Λµ

ν pν
i . In particular, the

momentum pZ of the Z-boson is transformed with p̂µ
Z = Λµ

ν pν
Z . The Lorentz transformation

Λ is defined in ref. [14]. It transforms pa +pb−pl into pa +pb− p̂l− p̂m+1, leaving invariant

vectors that are orthogonal to these two vectors.

As discussed in section 5.3, it suffices to consider only splittings with y ≪ 1. For y ≪ 1,

∆p is proportional to y and hence Λµ
ν − δµ

ν is also proportional to y. Thus the change in

the Z-boson momentum is small. In particular, the rapidity of the Z-boson changes very

little, by an amount proportional to y. We can neglect this small change.

Evidently, the change in the Z-boson transverse momentum must also be small, but

this statement is not helpful because we are trying to track small changes in the Z-boson

transverse momentum. To see what happens, we note that the needed transverse momen-

tum is

∆p⊥ = −(1 − λ)pl,⊥ . (6.6)

A fraction of this transverse momentum will come from the Z-boson. Now, we are studying

the evolution of the probability that the Z-boson transverse momentum pZ,⊥ is small and
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remains small. For this to happen, the transverse part of pl must be small, of order pZ,⊥

or smaller.10 Thus, recalling that (1 − λ) is of order y, we have

p̂Z,⊥ − pZ,⊥ ∼ C y pZ,⊥ , (6.7)

where C is of order 1 or smaller. That is, the fractional change in the Z-boson transverse

momentum due to a final state splitting is negligible.

This discussion can be summarized by saying that, to a sufficient approximation,

Q(b, Y ; ηa, ηb, a, b)HFS(t) ≈ HFS(t)Q(b, Y ; ηa, ηb, a, b) . (6.8)

This gives

d

dt

(

1
∣

∣Q(b, Y ;ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈
(

1
∣

∣[HFS(t) − VFS(t)]Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)Hpert
a (t; z, φ, f ′)

− Vpert
a (t, z, φ, f ′)Q(b, Y ; ηa, ηb, a, b)

∣

∣ρpert(t)
)

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)Hpert
b (t; z, φ, f ′)

− Vpert
b (t; z, φ, f ′)Q(b, Y ; ηa, ηb, a, b)

∣

∣ρpert(t)
)

.

(6.9)

This is useful because the definition of VFS(t) is based on the requirement, designed to

insure that the shower conserves probabilities, that
(

1
∣

∣[HFS(t) − VFS(t)] = 0 . (6.10)

Thus the first term in eq. (6.9) vanishes. We must analyze initial state splittings, but we

can ignore final state splittings entirely.

6.2 Initial state splittings

We now turn to initial state splittings. We relate Q applied after the splitting to Q applied

before the splitting. The relation is

Q(b, Y ; η̂a, ηb, â, b)Hpert
a (t; z, φ, f ′) ≈ Hpert

a (t; z, φ, f ′) exp

(

i
xa

zη̂a
b·k⊥

)

× zQ(b, Y ; zη̂a, ηb, â − f ′, b) .

(6.11)

To understand this, first look at the b dependence, using the definition (4.6) of Q. When

we apply the operator Q after the splitting, it produces a factor exp(−ib·p̂Z,⊥) where

p̂Z,⊥ is the Z-boson transverse momentum after the splitting, which is related to the Z-

boson transverse momentum after the splitting, pZ,⊥, and the transverse momentum in

the splitting, k⊥, by eq. (3.24),

p̂Z,⊥ = pZ,⊥ −
xa

ηa
k⊥ . (6.12)

10We discuss this in section 9.1.
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Recall that k⊥ is specified by z and φ: it has azimuthal angle φ and square k2
⊥ = (1 −

z)M2e−t. Thus

exp(−ib·p̂Z,⊥) = exp(−ib·pZ,⊥) exp

(

i
xa

ηa
b·k⊥

)

. (6.13)

The factor exp(−ib·pZ,⊥) is generated by the Q operator before the splitting but the

second factor in eq. (6.13) must be supplied. The dependence on the momentum fractions

is simple. According to eq. (3.6), the momentum fraction ηb is unchanged by the splitting,

while he momentum fraction η̂a after the splitting is related to the momentum fraction ηa

before the splitting by ηa ≈ zη̂a. Thus the ηa argument of Q before the splitting is zη̂a and

there is a jacobian factor z because Q is defined with a delta function. Finally, the flavor

â after the splitting is related to the flavor a before the splitting by a = â − f ′, where we

use the notation u − g = u, g − ū = u, etc.

With these observations, our equation for the variation b-space partonic cross section

with shower time is

d

dt

(

1
∣

∣Q(b, Y ;η̃a, η̃b, ã, b̃)
∣

∣ρpert(t)
)

≈

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ; η̃a, η̃b, ã, b̃)
∣

∣ρpert(t)
)

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

(

1
∣

∣Kb(t; z, φ, f ′; b, Y ; η̃a, η̃b, ã, b̃)
∣

∣ρpert(t)
)

,

(6.14)

where Ka describes a splitting of an initial state parton “a” from hadron A and is given by

(

1
∣

∣Ka(t; z, φ, f ′;b, Y ; η̃a, η̃b, ã, b̃)
∣

∣ρpert(t)
)

=
(

1
∣

∣Hpert
a (t; z, φ, f ′) exp

(

i
xa

zη̃a
b·k⊥

)

zQ(b, Y ; zη̃a, η̃b, ã − f ′, b̃)

− Vpert
a (t; z, φ, f ′)Q(b, Y ; η̃a, η̃b, ã, b̃)

∣

∣ρpert(t)
)

.

(6.15)

The operator Kb for a splitting of the initial state parton from hadron B is the same with

the roles of “a” and “b” are interchanged.

7 The real splitting function

At this point, we need to know some details about the operation of Hpert
a (t; z, φ) on a

general partonic state
∣

∣{p, f, s′, c′, s, c}m

)

. Fortunately, we need only the inclusive split-

ting probability
(

1
∣

∣Hpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

. (7.1)

Formulas from refs. [14–16] for this quantity are reviewed in appendix A. The most im-

portant case to consider is that of a q → q + g splitting or a q̄ → q̄ + g splitting. However,

we include all flavor choices. We treat separately two kinematic regimes: (1 − z) ≪ 1 and

(1 − z) ∼ 1 since the results in these two regimes have rather different structures. Our

subsequent analysis of evolution will make use of the results in these two regions.
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The operator Hpert
a contains a factor αs. In ref. [14], the argument of αs was denoted

by µ2
R and left unspecified. In general, µ2

R can be a function µ2
R(z, t) of the kinematic

variables that describe the splitting. Our default choice in this paper is

µ2
R = λR(1 − z + y)M2e−t , (7.2)

where

λR = exp

(

−
CA

[

67 − 3π2
]

− 10nf

3 (33 − 2nf)

)

. (7.3)

Except when (1 − z) is very small, this is approximately the constant λR times k2
⊥ =

(1 − z)M2e−t. In section 12, we will see why choosing µ2
R approximately proportional

to k2
⊥ is useful and we will see why the choice given in eq. (7.3) for the proportionality

constant is also useful.

Leaving these points for later, we can immediately understand why a factor (1− z +y)

in eq. (7.2) is preferable to the simpler choice (1 − z). As we will see, having a running

scale µ2
R as in eq. (7.2) with either a factor (1 − z + y) or a factor a factor (1 − z) affects

the Sudakov exponent that we obtain in section 12. When αs(µ
2
R) is expanded in powers

of αs(M
2) one obtains terms proportional to logarithms of (1 − z + y) or (1 − z) times

extra powers of αs. These terms improve the matching between the Sudakov exponent

obtained with the shower and the true QCD Sudakov exponent. We will find that, with

the accuracy of matching that we can obtain, logarithms of (1 − z + y) or of (1 − z) are

equivalent. However, we can still ask which is more desirable in general. The running

αs(µ
2
R) incorporates some features of the singularity structure of higher order graphs into

the leading order splitting. We note that the leading order splitting kernel from ref. [14]

has a singularity 1/(1 − z + y). This suggests that the higher order contributions might

naturally contain a logarithm of this same variable, (1 − z + y). In contrast, the leading

order splitting kernel does not have a singularity when (1 − z) → 0 at fixed y, so it would

not be natural to introduce a logarithm of (1−z) into the expansion of αs(µ
2
R). Indeed, soft

gluon emissions correspond to y → 0 and (1 − z) → 0 together, while (1 − z) → 0 at fixed

y corresponds to an anticollinear emission in which incoming parton “a” emits a gluon in

the direction of incoming parton “b”. There are such singularities, but they are associated

with emissions from incoming parton “b” rather than from incoming parton “a”. For this

reason, our default choice (7.2) for µ2
R has a factor (1 − z + y) rather than (1 − z).

7.1 (1 − z) ≪ 1

We use the splitting operator for an initial state splitting from ref. [14], using the splitting

variables t, z, φ defined in section 3 of this paper. When the emitted parton is a gluon, the

splitting probability has a “soft gluon emission” singularity that corresponds to a factor

1/(1 − z) when y ≪ (1 − z) ≪ 1. In this section, we extract the terms that have this soft

gluon factor; other terms will be included in the following subsection, where we study the

regime (1− z) ∼ 1. We note, in particular, that contributions in which the emitted parton

is not a gluon do not give a 1/(1 − z) contribution.
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To determine the inclusive splitting probability in the soft region (1 − z) ≪ 1, we use

the results from ref. [14] in the limit (1 − z) ≪ 1 and y ≪ 1 but not assuming anything

about the relative sizes of (1− z) and y. There are quite a number of steps involved, so we

outline the steps in appendix A.

The splitting operator depends on a function A′
lk, the dipole partitioning function.

When a soft gluon with label m+1 is emitted, it can be emitted from any of the previously

existing partons. If we pick any two partons l and k, then there is a contribution to the total

splitting function that corresponds to emission from l or from k in the quantum amplitude

and from l or from k in the conjugate amplitude, including the l-k interference diagrams.

Thus we consider partons l and k to be a dipole that can coherently emit a soft gluon. The

emission probability is proportional to the familiar eikonal factor p̂l · p̂k/(p̂m+1 · p̂l p̂m+1 · p̂k).

We partition this emission probability into two pieces using a dipole partitioning function

A′
lk. With probability A′

lk the emission is treated as an emission from parton l. Then the

momentum mapping for an emission from parton l applies. With probability A′
kl = A′

lk −1

the emission is treated as an emission from parton k. Here A′
lk should approach 1 when

p̂m+1 becomes parallel to p̂l and A′
kl should approach 1 when p̂m+1 becomes parallel to p̂k.

In this paper, we use the definition in eq. (7.12) of ref. [16],

A′
lk =

p̂m+1 ·p̂k p̂l ·(p̂a + p̂b)

p̂m+1 ·p̂k p̂l ·(p̂a + p̂b) + p̂m+1 ·p̂l p̂k ·(p̂a + p̂b)
. (7.4)

The choice of A′
lk matters. We discuss other choices in section 13.2.

After some calculation, we find in appendix A that

(

1
∣

∣zHpert
a (t; z, φ; f ′))

∣

∣{p, f, s′, c′, s, c}m

)

≈ δf ′,g

∑

k 6=a

〈

{s′}m

∣

∣{s}m

〉

(−1)
〈

{c′}m

∣

∣Tk ·Ta

∣

∣{c}m

〉

×
αs

(

µ2
R

)

2π

2

1 − z + y
f(z, y, φ; rk) .

(7.5)

Here rk is the rapidity of the helper parton k relative to the rest frame of pa + pb and φk

is its azimuthal angle; then f is

f(z, y, φ; rk) ≈

[

1 − erk
2
√

(1 − z)y

1 − z + y
cos(φ − φk) + e2rk

2y

1 − z + y

]−1

. (7.6)

Because we are calculating an inclusive splitting probability, indicated by the measurement

function
(

1
∣

∣, there is a quantum inner product
〈

{s′}m

∣

∣{s}m

〉

between the spin states in

the amplitude and the conjugate amplitude.11 There is also a color inner product, which

is non-trivial because it contains a color matrix T c
a for emitting a gluon from line “a” and

a color matrix T c
k for emitting the gluon from line k, summed over the eight colors c of

the emitted gluon. This same factor appears in the Catani-Seymour dipole subtraction

formalism for next-to-leading order perturbative calculations [25].

11In a spin averaged shower, {s′}m = {s}m at every step and this factor is 1.
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This splitting function is complicated because of the function f . To understand f ,

denote the rapidity of the emitted gluon relative to the rest frame of pa + pb by r. For a

soft gluon, (1 − z) ≪ 1 and y ≪ 1, we have

(1 − z) ≈ e2ry . (7.7)

For a given splitting time t, y is fixed and we integrate over z. There is a near singularity

in this integral for (1 − z) → 0, but this near singularity is cut off when (1 − z) becomes

comparable to y. That is, r & 1 is favored in the integration. Writing e2ry for (1 − z) in

f(z, y, φ; rk) gives

f(z, y, φ; rk) =

[

1 − erk−r 2

1 + e−2r
cos(φ − φk) + e2(rk−r) 2

1 + e−2r

]−1

. (7.8)

We see that when r ∼ rk, all three terms in f(z, y, φ; rk) are comparable, so that we have

quite a complicated function. However,

f(z, y, φ; rk) ∼ 1 when r ≫ rk . (7.9)

We thus see that when the rapidity of the emitted gluon is large compared to the

rapidities of previously emitted gluons, the splitting function simplifies to

(

1
∣

∣zHpert
a (t; z, φ; f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈ δf ′,g

∑

k 6=a

〈

{s′}m

∣

∣{s}m

〉

(−1)
〈

{c′}m

∣

∣Tk ·Ta

∣

∣{c}m

〉 αs

(

µ2
R

)

2π

2

1 − z + y
.

(7.10)

Now the only dependence on the helper parton index k is through the color factor. This

enables us to perform the color sum as described in ref. [14],

−
∑

k 6=a

〈

{c′}m

∣

∣Tk ·Ta

∣

∣{c}m

〉

=
〈

{c′}m

∣

∣Ta ·Ta

∣

∣{c}m

〉

= Ca

〈

{c′}m

∣

∣{c}m

〉

, (7.11)

where

Ca =

{

CF a 6= g

CA a = g
. (7.12)

Thus

(

1
∣

∣zHpert
a (t; z, φ; f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈ δf ′,g

〈

{s′}m

∣

∣{s}m

〉〈

{c′}m

∣

∣{c}m

〉 αs

(

µ2
R

)

2π
Ca

2

1 − z + y
.

(7.13)

That is, using eq. (2.5),

(

1
∣

∣zHpert
a (t; z, φ; f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈ δf ′,g
αs

(

µ2
R

)

2π
Ca

2

1 − z + y

(

1
∣

∣{p, f, s′, c′, s, c}m

)

.
(7.14)
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7.2 (1 − z) ∼ 1

Now consider the collinear limit (1 − z) ∼ 1. We use the general result from ref. [14],

reviewed in appendix A. We neglect e−t compared to 1 as discussed in section 5.3. As

described in appendix A, the result is a simple color structure that multiplies the standard

(unregulated) DGLAP splitting kernels Pa,a′(z) and the ratio of the number of colors for

parton flavor a′ = a + f to the number of colors for parton flavor a,

(

1
∣

∣zHpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈
nc(a + f ′)

nc(a)

αs

(

µ2
R

)

2π

1

z
Pa,a+f ′(z)

(

1
∣

∣{p, f, s′, c′, s, c}m

)

.
(7.15)

8 The virtual splitting function

We now look at the virtual splitting function. We need

(

1
∣

∣Vpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

. (8.1)

Eq. (4.14) gives

(

1
∣

∣Vpert(t) =
(

1
∣

∣

[

V(t) + F(t)−1 d

dt
F(t)

]

. (8.2)

Following ref. [14], we define the virtual splitting operator V(t) from the requirement

(

1
∣

∣V(t) =
(

1
∣

∣HI(t) , (8.3)

which guarantees that shower evolution does not change the cross section when we integrate

over all final states that start from the hard scattering. We break HI into pieces as in

eq. (6.2),

HI(t) = HFS(t) +

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

[

Ha(t; z, φ, f ′) + Hb(t; z, φ, f ′)
]

. (8.4)

This differs from eq. (6.2) in only one respect: the parton distribution factors that were

omitted in the pieces of Hpert
I (t) are included in the pieces of HI(t), as indicated in eq. (4.15);

for a splitting of parton “a”, using η̂a ≈ ηa/z and â = a + f ′, the relation is

(

1
∣

∣Ha(t; z, φ, f ′)
∣

∣{p, f, s′, c′, s, c}m

)

=
nc(a) f(a+f ′)/A(ηa/z,M2e−t)

nc(a + f ′) fa/A(ηa,M2e−t)

(

1
∣

∣zHpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

.
(8.5)

We can similarly write V(t) as a sum and integral in the form

V(t) = VFS(t) +

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

[

Va(t; z, φ, f ′) + Vb(t; z, φ, f ′)
]

. (8.6)
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With this notation, the definition in ref. [14] is
(

1
∣

∣Va(t; z, φ, f ′) =
(

1
∣

∣Ha(t; z, φ, f ′) . (8.7)

The needed matrix element involving the derivative of F(t) is

(

1
∣

∣F(t)−1 d

dt
F(t)

∣

∣{p, f, s′, c′, s, c}m

)

=

[

d
dt fa/A(ηa,M

2e−t)

fa/A(ηa,M2e−t)
+

d
dt fb/B(ηa,M

2e−t)

fb/B(ηa,M2e−t)

]

×
(

1
∣

∣{p, f, s′, c′, s, c}m

)

.

(8.8)

The parton distribution functions obey the DGLAP equation12

d

dt
fa/A(ηa,M

2e−t) = −

∫ 1

0
dz
∑

f ′

αs

(

µ2
R

)

2π

{

1

z
Pa,a+f ′(z) f(a+f ′)/A(ηa/z,M2e−t)

− δf ′,g

[

2Ca

1 − z
− γa

]

fa/A(ηa,M
2e−t)

}

+ O(α2
s) .

(8.9)

Here Pa,â(z) are the standard (unregularized) DGLAP kernels, Ca is either CF or CA as in

eq. (7.12), and

γa =

{

3
2 CF a 6= g

1
6 [11CA − 2nf ] a = g

. (8.10)

Following our default choice (7.2) for the argument of αs, we have used

αs

(

µ2
R

)

= αs

(

λR(1 − z + y)M2e−t
)

in the evolution equation for the parton distribution functions. This is not the standard

choice, but it can be accommodated without changing the parton distribution functions

by modifying the evolution kernel at next-to-leading order and beyond. That is, the terms

indicated by O(α2
s) are modified from what they would have been had we used αs

(

M2e−t
)

.

These terms do not affect our analysis.

With these results, we can write the complete Vpert(t) as a sum and integral in the

form used in eq. (6.3),

Vpert(t) = Vpert
FS (t) +

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

[

Vpert
a (t; z, φ, f ′) + Vpert

b (t; z, φ, f ′)
]

. (8.11)

For Vpert
a (t; z, φ, f ′), we have
(

1
∣

∣Vpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈
nc(a) f(a+f ′)/A(ηa/z,M2e−t)

nc(a + f ′) fa/A(ηa,M2e−t)

(

1
∣

∣zHpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

−
αs

(

µ2
R

)

2π

{

Pa,a+f ′(z)
f(a+f ′)/A(ηa/z,M2e−t)

z fa/A(ηa,M2e−t)
− δf ′,g

[

2Ca

1 − z
− γa

]}

×
(

1
∣

∣{p, f, s′, c′, s, c}m

)

.

(8.12)

This simplifies in two limits, which we now discuss.

12If the parton distributions used in shower generation obey the second or higher order DGLAP equation,

then there are more terms with extra powers of αs. We do not display possible higher order terms in order to

keep the notation from becoming complicated, but in the end we will find that their inclusion would change

the Z-boson transverse momentum distribution at a level that is beyond the accuracy that we aim for.
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8.1 (1 − z) ≪ 1

Consider the limit (1−z) ≪ 1. Then the leading terms in Vpert
a contain a factor that equals

1/(1 − z) as long as 1 − z ≫ y; contributions without this factor can be neglected. There

is no such factor unless f ′ = g. Thus only f ′ = g is important. In the factors with ratios

of parton distributions, a+ f ′ = a and ηa/z ≈ ηa; thus these factors are well approximated

by 1. This gives
(

1
∣

∣Vpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈ δf ′,g

(

1
∣

∣zHpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

− δf ′,g
αs

(

µ2
R

)

2π

{

Pa,a(z) −
2Ca

1 − z
+ γa

}

(

1
∣

∣{p, f, s′, c′, s, c}m

)

.

(8.13)

In the second line on the right hand side of this equation, Pa,a(z) contains a term pro-

portional to 1/(1 − z). Other terms, which do not contain this factor, can be ignored.

Similarly, we can ignore the term −γa since it has no 1/(1− z). In fact, the term in Pa,a(z)

proportional to 1/(1− z) is 2Ca/(1− z), which cancels the term −2Ca/(1− z). This leaves

the very simple result,
(

1
∣

∣Vpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈ δf ′,g

(

1
∣

∣zHpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

.
(8.14)

8.2 (1 − z) ∼ 1

Now consider the collinear limit (1− z) ∼ 1. For the matrix element of Hpert
a in this limit,

we use eq. (7.15). This gives
(

1
∣

∣Vpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈
f(a+f ′)/A(ηa/z,M2e−t)

zfa/A(ηa,M2e−t)

αs

(

µ2
R

)

2π
Pa,a+f ′(z)

(

1
∣

∣{p, f, s′, c′, s, c}m

)

−
αs

(

µ2
R

)

2π

{

Pa,a+f ′(z)
f(a+f ′)/A(ηa/z,M2e−t)

z fa/A(ηa,M2e−t)
− δf ′,g

[

2Ca

1 − z
− γa

]}

×
(

1
∣

∣{p, f, s′, c′, s, c}m

)

.

(8.15)

The two terms involving ratios of parton distributions cancel, leaving the very simple result,
(

1
∣

∣Vpert
a (t; z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

≈ δf ′,g
αs

(

µ2
R

)

2π

[

2Ca

1 − z
− γa

]

(

1
∣

∣{p, f, s′, c′, s, c}m

)

.
(8.16)

9 Evolution for t < tc

The lines k2
⊥b2 ∼ 1 and (1 − z) ∼ 1 in figure 2 cross at a shower evolution time given

approximately by t = log(b2M2). At this time, the nature of the evolution of the b-space

partonic cross section changes. We define a critical shower evolution time tc by

tc = log

(

1

4
b2M2 e2γE

)

. (9.1)
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Here γE is the Euler constant. We will see later the reason for the factor exp(2γE)/4. In

this section, we make use of the results from the previous section to analyze the evolution

before tc, e−t ≫ e−tc .

Recall from eq. (6.14) that that the evolution is specified by operators that we called

Ka and Kb,

d

dt

(

1
∣

∣Q(b, Y ;ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

+ (b splitting term) .

(9.2)

The operator Ka is defined in eq. (6.15). We will analyze Ka; the analysis of Kb is the same.

In the end, Ka is very simple. However, we will have to analyze it in stages, pruning

away complications at each stage.

9.1 Distribution of final state partons

We are concerned with the evolution of the b-space partonic cross section,

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

This is an inclusive quantity, but we first note something about the structure of the partonic

final states that contribute to it. Recall from its definition (4.6) that Q contains a factor

e−ipZ,⊥·b =
∏

j>1

eipj,⊥·b , (9.3)

where pj,⊥ is the transverse momentum of the jth final state parton (other than the Z-

boson). When we form the b-space partonic cross section, we integrate over all of these

transverse momenta. The integration region in which one or more partons have p2
j,⊥ ≫ 1/b2

gives a negligible contribution because the exponential factor exp(ipj,⊥ · b) averages to

zero. It is as if Q contained a factor
∏

j θ(p2
j,⊥ < C/b2), where C is a constant that is

large compared to 1 but with log C not large. That is, Q effectively projects onto partonic

final states in which no partons have been emitted in the region above the line k2
⊥ ∼ 1/b2

in figure 2.

One simple consequence of this concerns any real parton splitting that has the potential

to change the flavor a or momentum fraction ηa of parton “a”. Such a splitting must be

close to the line (1− z) ∼ 1 in figure 2. To see this, note first that in order to significantly

change ηa it is necessary that (1−z) not be tiny compared to 1. Second, in order to change

the flavor a, the parton emitted into the final state must not be a gluon, but the splitting

functions for these splittings do not have (1−z) → 0 singularities and hence have negligible

probabilities of occurring with (1 − z) ≪ 1.

We now note from eqs. (3.8) and (9.1) that

k2
⊥ = 4e2γE

1 − z

b2
etc−t . (9.4)
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Thus any emission with (1 − z) ∼ 1 and e−t ≫ e−tc has k2
⊥ ≫ 1/b2. We conclude that all

emissions that contribute to the b-space partonic cross section for t < tc leave the flavor a

of parton “a” unchanged and leave its momentum fraction ηa approximately unchanged.

Thus the initial conditions

ηa = xa , ηb = xb (9.5)

remain (approximately) true and the flavors a and b of the incoming partons do not change.

With eq. (9.5), eq. (3.23) for the splitting variable y reads

y = e−t . (9.6)

In the following section, we note another consequence of the fact that Q effectively

projects onto partonic final states in which no partons have been emitted with k2
⊥ ≫ 1/b2.

9.2 Angular ordering

In the range e−t ≫ e−tc and k2
⊥ ∼ 1/b2, both real and virtual emissions contribute to the

evolution. For e−t ≫ e−tc and k2
⊥ ≫ 1/b2, only virtual emissions contribute. In either

case, it appears that the analysis of the evolution will be very complicated. The virtual

emission operator Vpert
a (t; z, φ, g) is given in eq. (8.12) in terms of the real emission operator

Hpert
a (t; z, φ, g). The real emission operator is given in eqs. (7.5), (7.14), and (7.15). Here

is where the complications are. There is a certain algebraic complexity and there is a

non-trivial color structure. Worse, there is a sum over helper partons with labels k, with a

different splitting function for each k. Thus, in order follow the evolution of the inclusive

quantity
(

b, Y
∣

∣ρpert(t)
)

, it appears that we need to track the structure of the complete

partonic state.13

Fortunately, there is a simplification available. We consider the real or virtual emission

of a gluon with k2
⊥ & 1/b2 at shower time t with e−t ≫ e−tc . The rapidity r in the Z-boson

rest frame of the gluon is approximately given by

r = t +
1

2
log

(

k2
⊥

M2

)

+ log

(

ηa

zxa

)

(9.7)

as long as e−t ≪ 1. Using eq. (9.5), this becomes

r = t +
1

2
log

(

k2
⊥

M2

)

+ log

(

1

z

)

. (9.8)

Curves of constant r are shown in figure 3.

The rapidity of a previously emitted gluon (that is, a real gluon in the final state) is

rk = tk +
1

2
log

(

k2
⊥,k

M2

)

. (9.9)

13This would not be quite so bad in the leading color approximation generally used for parton showers.

Then, we would need only the momentum of the parton that is color connected to the incoming quark or

antiquark, which would generally be the gluon previously emitted from that incoming parton line.
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Figure 3. Integration region for initial state gluon emissions, as in figure 2. The slightly curved

lines indicate lines of constant rapidity for the emitted gluon, with rapidity near 0 at the left and

large rapidity on the right.

Here we have omitted the log (1/zk) because any previously emitted gluon would have had

(1 − zk) ≪ 1, so log (1/zk) ≈ 0. Since the gluon was previously emitted, we have tk < t.

Since it was a real emission, the transverse momentum satisfied k2
⊥,k . 1/b2. On the other

hand, k2
⊥ & 1/b2. Additionally, log(1/z) ≥ 0. From these inequalities, we conclude that

rk . r . (9.10)

If either k2
⊥ ≫ b2 or k2

⊥,k ≪ b2, we have

e2r ≫ e2rk . (9.11)

In the event that k2
⊥ and k2

⊥,k are both of order 1/b2, this strong inequality may not hold.

However, the emission probability per unit t and per unit log(k2
⊥/M2) is small, of order

αs. Thus we can apply the low density approximation developed in section 5.3 to conclude

that in this event we can approximate

e2t ≫ e2tk (9.12)

at the cost of affecting terms in the Sudakov exponent that we will obtain at the level of

third-to-leading terms and beyond. Eq. (9.12) then implies eq. (9.11).

For this reason, we can make the approximation eq. (9.11) in the expression (7.5) for

Hpert
a (t; z, φ, g). This gives the much simpler formula eq. (7.14), for which the details of

the state of the shower at time t are not needed.

We are now prepared to write an evolution equation for
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

for t < log(b2M2). We consider first z ≪ 1, then z ∼ 1. Then we combine these two cases.

9.3 Contribution from (1 − z) ≪ 1

In this subsection, we consider Ka in the region

1 − z ≪ 1 , e−t ≫ e−tc . (9.13)
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That is, we consider splittings that are represented by points well below the line (1−z) ∼ 1

in figure 2 and well to the left of t = tc that passes through the lower right vertex of the

triangle. In this region, gluon emission from line “a” is important because the splitting

function has a term with a 1/(1−z) factor. However, splittings with f ′ 6= g lack this factor

and may be omitted. With this approximation, eq. (6.15) becomes

(

1
∣

∣Ka(t;z, φ, f ′; b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ δf ′,g

(

1
∣

∣Hpert
a (t; z, φ, g) exp

(

i
xa

zηa
b·k⊥

)

zQ(b, Y ; zηa, ηb, a, b)

− Vpert
a (t; z, φ, g)Q(b, Y ; ηa, ηb, a, b)

∣

∣ρpert(t)
)

.

(9.14)

Since 1− z ≪ 1, we can also replace z by 1 in the exponential factor and in the argument

of Q(b, Y ; zηa, ηb, a, b). We can also use eq. (9.5) to replace xa/ηa in the exponent by 1.

Finally, we use eq. (8.14) for Vpert
a . With these changes, we have

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

a,b6=g

≈ δf ′,g

(

1
∣

∣zHpert
a (t; z, φ, g)Q(b, Y ; ηa, ηb, a, b)

∣

∣ρpert(t)
)

[exp(i b·k⊥) − 1] .
(9.15)

We can make one more simplification. The right hand side of eq. (9.15) vanishes when

k2
⊥ ≪ 1/b2. In the alternative case that k2

⊥ & 1/b2, we can apply the lesson of section 9.2

so as to use the simple form of
(

1
∣

∣zHpert
a given in eq. (7.14),

(

1
∣

∣zHpert
a (t; z, φ; g)

∣

∣{p, f, s′, c′, s, c}m

)

≈
αs

(

µ2
R

)

2π
Ca

1

1 − z + e−t

(

1
∣

∣{p, f, s′, c′, s, c}m

)

.
(9.16)

Here we have replaced y by e−t according to eq. (9.6). Thus

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ;ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ δf ′,g
αs

(

µ2
R

)

2π
Ca

1

1 − z + e−t
[exp(i b·k⊥) − 1]

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

(9.17)

Of course, the expression that we have used for
(

1
∣

∣zHpert
a is not accurate in the region

k2
⊥ ≪ 1/b2; nevertheless, both the exact form and the new form vanish in this region, so

this inaccuracy is not a problem. We can use eq. (9.17) for both k2
⊥ ≪ 1/b2 and k2

⊥ & 1/b2

so long as (1 − z) ≪ 1 and e−t ≫ e−tc .

Notice the key feature of eq. (9.17) that the object for which we seek an evolution

equation,
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

,

appears on the right hand side of this result.

We can make one more simplification in this. Recall that we need the average over the

emission angle φ of
(

1
∣

∣Ka

∣

∣ρpert(t)
)

. The only φ dependence is in the factor exp(i b·k⊥).
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When we take the average over φ, we get a Bessel function:

∫ π

−π

dφ

2π

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ;ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ δf ′,g
αs

(

µ2
R

)

2π
Ca

1

1 − z + e−t
[J0(|k⊥||b|) − 1]

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

(9.18)

We will want to integrate this over z. Consider the integral between limits z1 and

z2, with e−t ≪ (1 − z1) < (1 − z2) ≪ 1. The denominator (1 − z + e−t) can then be

approximated by simply (1− z). Similarly, the argument of αs is, using eq. (9.6) and then

e−t ≪ (1 − z),

µ2
R = λR(1 − z + e−t)M2e−t ≈ λR(1 − z)M2e−t = λRk2

⊥ . (9.19)

Using k2
⊥ = (1 − z)M2e−t, we can change the integration variable to k2

⊥. This gives

∫ z2

z1

dz

∫ π

−π

dφ

2π

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ;ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ δf ′,g Ca

∫ Q2
2

Q2
1

dk2
⊥

k2
⊥

αs

(

λRk2
⊥

)

2π
[J0(|k⊥||b|) − 1]

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

(9.20)

Thus we encounter an integral of the form

F (Q2
2, Q

2
1) =

∫ Q2
2

Q2
1

dk2
⊥

k2
⊥

f(k2
⊥) [J0(|k⊥||b|) − 1] , (9.21)

where the function f(k2
⊥) allows for the dependence of αs on k2

⊥. As we have previously

argued, if Q2
1 and Q2

2 are both much smaller than 1/b2, then we can replace [J0(|k⊥||b|)−1]

by zero since J0(|k⊥||b|) ∼ 1 for |k⊥||b| → 0. Similarly, we have argued that if Q2
1 and

Q2
2 are both much larger than 1/b2, then we can replace [J0(|k⊥||b|) − 1] by −1 because

J0(|k⊥||b|) is a rapidly oscillating function in the integration range. But what happens if

Q2
1 ≪ 1/b2 while Q2

2 ≫ 1/b2? There is a simple approximation that is accurate provided

that f(k2
⊥) is a slowly varying function. We can replace [J0(|k⊥||b|) − 1] by −θ(|k⊥||b| >

2e−γE ), where γE is the Euler constant. Thus the integral becomes

F (Q2
2, Q

2
1)approx = −

∫ Q2
2

4e−2γE /b2

dk2
⊥

k2
⊥

f(k2
⊥) . (9.22)

The integrals in eq. (9.21) and (9.22) differ by terms proportional to a power of 1/(Q2
2b

2)

or a power of Q2
1b

2 and by a term proportional to the second derivative of f(k2
⊥) with

respect to log(k2
⊥) in the region near k2

⊥ ∼ 1/b2. The exact statement can be found in

appendix B. Note that the second derivative of αs

(

λRk2
⊥

)

with respect to log(k2
⊥) is of

order αs

(

λRk2
⊥

)3
, so that this is a good approximation for our purposes.
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With this approximation,

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

∼ − δf ′,g
αs

(

µ2
R

)

2π
Ca

1

1 − z + e−t
θ(k2

⊥b2 > 4e−2γE )

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

,

(9.23)

where the ∼ in this case indicates that this approximation works inside the integration

over φ and z.

Specifically, the derivation so far covers a range of z between limits e−t ≪ (1 − z1) <

(1−z2) ≪ 1. We have in mind that (1−z2) is chosen small enough that the approximation

(1−z) ≪ 1 applies within the integration range. The region (1−z) ∼ 1 is treated separately

in the following section.

Similarly, we choose (1− z1) = C1e
−t, where C1 ≫ 1 but log C1 is not large. Then the

integration range 0 < (1 − z) < C1e
−t needs a separate treatment, which we now provide.

For that range, the denominator 1− z + e−t in eq. (9.18) provides a lower cutoff on (1− z)

at around (1 − z) ≈ e−t. Thus the integration range that needs a separate treatment is

really e−t . (1−z) < C1e
−t. What happens here depends on the factor [J0(|k⊥||b|) − 1] in

eq. (9.18). Since k2
⊥ = (1 − z)M2e−t, define the value (1 − zb) of (1 − z) that corresponds

to |k⊥||b| = 1 by

(1 − zb)M
2b2e−t = 1 . (9.24)

If (1 − zb) ≪ e−t, then |k⊥||b| ≫ 1 in the integration range e−t . (1 − z) < C1e
−t and

we can approximate [J0(|k⊥||b|) − 1] → −1. If (1 − zb) ≫ C1e
−t, then |k⊥||b| ≪ 1 in the

integration range e−t . (1 − z) < C1e
−t and we can approximate [J0(|k⊥||b|) − 1] → 0.

Both cases are covered by the approximation

[J0(|k⊥||b|) − 1] → θ(k2
⊥b2 > 4e−2γE ) . (9.25)

In the remaining case, e−t . (1 − zb) . C1e
−t, we will use this same replacement. This

is not an accurate approximation. However, this inaccuracy occurs only near the point at

the intersection of the line (1 − z) = e−t and the line k2
⊥ = 1/b2 in figure 2. Following

an argument like that in section 5.3, we recognize that this inaccuracy does not matter

because it does not lead to contributions with a large logarithm in the Sudakov exponent.

Thus eq. (9.23) is also a sufficient approximation when applied inside an integration over

z that includes (1 − z) → 0.

9.4 Contribution from (1 − z) ∼ 1

The approximations in the previous section cover the integration region (1 − z) ≪ 1 for

e−t ≫ e−tc . For the integration region (1 − z) ∼ 1 with e−t ≫ e−tc , only virtual split-

tings contribute:

(

1
∣

∣Ka(t;z, φ, f ′; b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ −
(

1
∣

∣Vpert
a (t; z, φ, f ′)Q(b, Y ; ηa, ηb, a, b)

∣

∣ρpert(t)
)

.
(9.26)
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For the matrix element of Vpert
a , we can use eq. (8.16). This gives

(

1
∣

∣Ka(t;z, φ, f ′; b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ − δf ′,g
αs

(

µ2
R

)

2π

[

2Ca

1 − z
− γa

]

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.
(9.27)

As in the previous section, we notice that the object for which we seek an evolution equa-

tion,
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

, appears on the right hand side of this result.

9.5 Evolution for all z

Compare eq. (9.23), which applies for (1 − z) ≪ 1, with eq. (9.27), which applies for

(1− z) ∼ 1. Notice that the theta function θ(k2
⊥b2 > 4e−2γE ) is always 1 when (1− z) ∼ 1

and e−t ≫ e−tc , that (1 − z + e−t) is the same as (1 − z) when (1 − z) ∼ 1 and e−t ≪ 1,

and that the term −γa with no 1/(1 − z) factor is negligible (compared to 1/(1 − z)) for

(1 − z) ≪ 1. Thus these two forms match and we can combine them in the form

(

1
∣

∣Ka(t; z, φ, f ′; b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

∼ − δf ′,g
αs

(

µ2
R

)

2π

[

2Ca

1 − z + e−t
− γa

]

θ(k2
⊥b2 > 4e−2γE )

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

(9.28)

This gives the evolution equation, for e−t ≫ e−tc and assuming that parton “b” caries the

opposite flavor from parton “a”, b = ā,

d

dt

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

≈ −

∫ 1

0
dz

αs

(

µ2
R

)

2π
2

[

2Ca

1 − z + e−t
− γa

]

θ(k2
⊥b2 > 4e−2γE )

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

(9.29)

There is a factor 2 here because emissions from both initial state lines contribute equally

when b = ā.

This analysis could apply when a = b = g, which would be relevant for computing

the transverse momentum distribution in Higgs boson production. However, the case of

interest in this paper is that a is a quark flavor and b is the corresponding antiquark flavor,

or vice versa. In this case, Ca = CF and γa = (3/2)CF. Then

d

dt

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

a,b6=g

≈ −

∫ 1

0
dz

αs

(

µ2
R

)

2π
2CF

[

2

1 − z + e−t
−

3

2

]

θ(k2
⊥b2 > 4e−2γE )

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

.

(9.30)
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10 Evolution for t > tc

After shower time tc, the evolution changes character. To see what happens, it is simplest

to consider
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

instead of
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

. We have

d

dt

(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

=
(

1
∣

∣Q(b, Y )[HI(t) − V(t)]
∣

∣ρ(t)
)

≈
(

1
∣

∣Q(b, Y )HI(t) − V(t)Q(b, Y )
∣

∣ρ(t)
)

.
(10.1)

Consider the relation of Q(b, Y )HI(t) with HI(t)Q(b, Y ). As we have noted in our previous

analysis, each emission from an initial state line with transverse momentum k⊥ produces

a phase factor exp(ib·k⊥) in the result of applying Q(b, Y ) after the splitting; this phase

factor is not present in the result of applying Q(b, Y ) before the splitting. However, all

emissions for e−t ≪ e−tc have k2
⊥ ≪ 1/b2. Thus this phase factor is simply 1. Thus

Q(b, Y )HI(t) ≈ HI(t)Q(b, Y ) . (10.2)

This result gives

d

dt

(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

≈
(

1
∣

∣[HI(t) − V(t)]Q(b, Y )
∣

∣ρ(t)
)

= 0 .
(10.3)

Thus
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

stops evolving at t = tc. The b-space partonic cross section,
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(t)
)

, does evolve for t > tc because initial state emissions can be

collinear and thus change the momentum fractions and flavors ηa, ηb, a, b. What happens

is that the partonic cross section evolves and the parton distribution functions evolve with

opposite evolution kernels, so that the net change of
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

with t vanishes.

11 Solution at t = tc

We can solve eq. (9.30) for the b-space partonic cross section with initial condition (4.17),

evolving from shower time t = 0 to shower time t = tc. This gives

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(tc)
)

= 12α Qab xaxb δ(ηa − xa) δ(ηb − xb)

× exp(−S0(M
2,b2)) ,

(11.1)

where the Sudakov exponent S0 is

S0(M
2, b2) =

∫ tc

0
dt

∫ 1

0
dz

αs

(

µ2
R

)

2π
2CF

[

2

1 − z + e−t
−

3

2

]

θ(k2
⊥b2 > 4e−2γE ) . (11.2)

It is useful to change variables from t to k2
⊥ = (1 − z)M2e−t, giving

S0(M
2, b2) =

∫ M2

4e−2γE /b2

dk2
⊥

k2
⊥

∫ 1

0
dz

αs

(

µ2
R

)

2π
2CF

[

2(1 − z)

(1 − z)2 + k2
⊥/M2

−
3

2

]

. (11.3)

We can now approximate S0(M
2, b2) in a fashion that makes it simpler. We are

interested in the behavior of S0(M
2, b2) for M2b2 ≫ 1. In particular, we are interested in
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terms with logarithms log(M2b2). The region of the k2
⊥ integration that dominates for large

b2 is k2
⊥ ≪ M2. In contrast, the region k2

⊥ ∼ M2 cannot contribute logarithms log(M2b2)

and is thus not of interest for us. For this reason, we can make the approximation k2
⊥ ≪ M2

inside S0(M
2, b2). Additionally, it is useful to expand αs(µ

2
R) in powers of αs(k

2
⊥). Then,

after performing the z-integral, we obtain contributions to the integrand of the k2
⊥ integral

of the form

αs(k
2
⊥)n

[

log
(

M2/k2
⊥

)]m
.

The leading terms in this counting are those with m = n. We need to keep track of those,

along with the next-to-leading terms with m = n − 1. However, we will not be interested

in the coefficients of terms with m ≤ n − 2. For this reason, we drop all such terms in the

approximations below.

To proceed with this program, we note that the renormalization scale in αs is, using

the definition (7.2) and then eq. (9.6),

µ2
R = λR(1 − z + e−t)M2e−t = λRk2

⊥

{

1 +
k2
⊥

(1 − z)2M2

}

. (11.4)

Expanding αs(µ
2
R) in powers of αs(k

2
⊥) and displaying only the order αs and α2

s terms,

we have

αs(µ
2
R)

2π
=

αs(k
2
⊥)

2π
− 2β1 log(λR)

(

αs(k
2
⊥)

2π

)2

− 2β1 log

(

1 +
k2
⊥

(1 − z)2M2

)(

αs(k
2
⊥)

2π

)2

+ O(α3
s ) .

(11.5)

Here

β1 =
33 − 2nf

12
. (11.6)

The z-integral that multiplies the order αs term is

∫ 1

0
dz

[

2(1 − z)

(1 − z)2 + k2
⊥/M2

−
3

2

]

= log

(

M2

k2
⊥

)

−
3

2
+ log

(

1 +
k2
⊥

M2

)

. (11.7)

The most important term here is the logarithm log
(

M2/k2
⊥

)

. The term −3/2 is next-to-

leading, so we keep it. The third term in eq. (11.7) contributes to the k2
⊥ integral only for

k2
⊥ ∼ M2 but is power suppressed in the dominant region k2

⊥ ≪ M2. Consequently, we

neglect this term. This same integral multiplies the order α2
s term proportional to log(λR).

Here, we keep the large logarithm log
(

M2/k2
⊥

)

but neglect the term −3/2 in which the

extra power of αs is not multiplied by a large logarithm. For the remaining α2
s term, we

need the integral

∫ 1

0
dz

[

2(1 − z)

(1 − z)2 + k2
⊥/M2

−
3

2

]

log

(

1 +
k2
⊥

(1 − z)2M2

)

=
π2

6
+ O

(

k2
⊥

M2

)

. (11.8)

Here there is no logarithm, log
(

M2/k2
⊥

)

, multiplying the extra power of αs, so we neglect

this contribution entirely. An analogous analysis shows that we can neglect entirely the

order α3
s and higher order terms in the expansion eq. (11.5).
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With these approximations, S0 ≈ S where

S(M2, b2) =

∫ M2

4e−2γE /b2

dk2
⊥

k2
⊥

{

αs

(

k2
⊥

)

2π
2CF

[

log

(

M2

k2
⊥

)

−
3

2

]

−

(

αs

(

k2
⊥

)

2π

)2

4β1CF log(λR) log

(

M2

k2
⊥

)

}

.

(11.9)

12 Result

We have seen that the b-space hadronic cross section
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

evolves from t = 0

to t = tc ≡ log
(

b2M2 e2γE/4
)

and then stops evolving. Therefore the Fourier trans-

form of the physical p⊥-space cross section is given by
(

1
∣

∣Q(b, Y )
∣

∣ρ(tc)
)

. Furthermore,
(

1
∣

∣Q(b, Y )
∣

∣ρ(tc)
)

is given as a convolution of parton distributions and the b-space partonic

cross section
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(tc)
)

by eq. (4.16),

(

1
∣

∣Q(b, Y )
∣

∣ρ(tc)
)

=
∑

ab

∫ 1

0
dηa

∫ 1

0
dηb

fa/A(ηa, 4e
−2γE/b2)fb/B(ηb, 4e

−2γE/b2)

4nc(a)nc(b) 2ηaηbpA ·pB

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(tc)
)

.

(12.1)

We have found that the b-space partonic cross section at t = tc is given by

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(tc)
)

= 12α Qab δ(1 − xa/ηa) δ(1 − xb/ηb)

× exp(−S(M2,b2)) ,
(12.2)

where the Sudakov exponent S given in eq. (11.9). This has been obtained with the

approximations discussed in section 5.3 and in section 11. In particular, terms in S of the

form αn
s logn−1(M2b2) are affected by the approximations.

We can compare this to the result of ref. [21] for QCD. In ref. [21], there are two

arbitrary parameters, C1 and C2, that do not affect the result summed to all orders of

perturbation theory, but do affect the perturbative expansion. Here, we take the simplest

choice, C1 = 2e−γE and C2 = 1. Additionally, the result is given for an arbitrary choice of

the scale µ2 = M2e−t that appears in the parton distribution functions. Here t should be

close to tc. We choose t = tc. With these choices, the result of ref. [21] is that the hadronic

b-space cross section is given by eq. (12.1) with

(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρ(tc)
)

QCD

≈ 12α
∑

a′b′

Qa′b′ Ca′a

(

xa

ηa
, αs

(

4e−2γE

b2

))

Cb′b

(

xb

ηb
, αs

(

4e−2γE

b2

))

× exp

(

−

∫ M2

4e−2γE /b2

dk2
⊥

k2
⊥

[

A(αs(k
2
⊥)) log

(

M2

k2
⊥

)

+ B(αs(k
2
⊥))

]

)

.

(12.3)
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Here A, B, and C have perturbative expansions in powers of αs of the indicated arguments.

The first terms in these expansions are [21, 26–29]

A(αs) = 2CF
αs

2π
+ 2CF K

(αs

2π

)2
+ · · · ,

B(αs) = − 4
αs

2π
+

[

−
197

3
+

34nf

9
+

20π2

3
−

8nfπ
2

27
+

8ζ(3)

3

]

(αs

2π

)2
+ · · · ,

Ca′a(z, αs) = δa′aδ(1 − z)

+
αs

2π

[

δa′a

{

4

3
(1 − z) + δ(1 − z)

(

−
3

2
+

2π2

3
−

23

6

)}

+ δag z(1 − z)

]

.

(12.4)

Here we follow the notation of [9] in defining

K = CA

[

67

18
−

π2

6

]

−
5nf

9
. (12.5)

We begin the comparison of the shower result (12.2) with the QCD result (12.3) by

noting that they agree at the Born level, order α0
s . This agreement was built in when we

chose the Born cross section as the starting point for shower evolution.

We next note that the QCD cross section exponentiates in b-space. This is a statement

about
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρ(tc)
)

QCD
. We consider the logarithm14 of this function and

expand it in powers of αs(M
2) and log(M2b2). To obtain this expansion, we need to

expand αs(k
2
⊥) in powers of αs(M

2) and log(M2/k2
⊥) using the evolution equation for

αs, then perform the integration over k2
⊥ in the Sudakov exponent S. Similarly, in the

coefficients C, we need to expand αs

(

4e−2γE /b2
)

in powers of αs(M
2) and log(M2/b2).

The general form of the perturbative expansion would be

log
[(

1
∣

∣Q(b, Y ; ηa, ηb,a, b)
∣

∣ρ(tc)
)

QCD

]

= −

∞
∑

n=1

2n
∑

m=0

Dnm(Y )

(

αs(M
2)

2π

)n
(

log(M2b2)
)m

.
(12.6)

We know that the maximum power m of log(M2b2) must be no larger than 2n because

each loop can give at most two logarithms, one from a collinear singularity and one from

a soft singularity. If we look at the perturbative expansion of the partonic b-space cross

section instead of its logarithm, then terms with m = 2n actually occur. By the statement

that the shower cross section exponentiates in b-space we mean that, for all n,

Dnm = 0 for m > n + 1 . (12.7)

This property of the QCD result (12.3) is shared by the shower result (12.2). For the

shower, it is a simple consequence of having a differential equation in which the derivative

14In taking the logarithm, we consider the functions C to be operators on the space of parton distribution

functions. Thus the first term, δa′aδ(1 − z), represents the unit operator. The coefficients Dnm(Y ) in

eq. (12.6) are then, in general, operators on the space of parton distribution functions. One could diagonalize

these operators by taking moments, but there is little reason to do so.
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with respect to shower time of the partonic b-space cross section is a kernel times this same

partonic b-space cross section, where the kernel has one αs and one logarithm.

One sometimes finds discussions of summations of large perturbative logarithms ex-

pressed in terms of the directly observed cross section, which can be written as a convolution

of parton distribution functions and a partonic p⊥-space cross section defined analogously

to the partonic b-space cross section. Thus one may write

(

1
∣

∣Q(p⊥, Y ; ηa, ηb,a, b)
∣

∣ρpert(tc)
)

=

∞
∑

n=1

2n
∑

m=1

Enm(Y )

(

αs(M
2)

2π

)n
1

p2
⊥

(

log(M2p2
⊥)
)m−1

.
(12.8)

One can then discuss the coefficients Enm. However, this is not very useful. For instance,

no condition on the Enm for m = 2n and m = 2n − 1 will imply eq. (12.7). It is for this

reason that we compare the shower result and the QCD result with respect to the logarithm

of the partonic b-space cross section.

Let us now compare the n = 1 terms in eq. (12.6) between the QCD result (12.3) and

the shower result (12.2). We first note that the terms D10 do not match between the two

results: the order αs contribution to Ca′a(z, αs) in the QCD result is lacking in the shower

result. These terms arise in part from the one loop virtual graphs, which are not included

in the shower splitting functions. For that reason, the shower does not get these terms

right. In our analysis we have have, accordingly, completely neglected contributions to the

evolution kernel that have a factor αs with no logarithms log(M2b2).

We now compare the α1
s terms with one or two powers of log(M2b2). For the shower

result (12.2), we have

D12 =
4

3
,

D11 = −
16

3
[log 2 − γE] − 4 .

(12.9)

This is the same as D12 and D11 in the QCD result. It is not surprising that the leading

coefficient, D12, matches. The contribution D12 log2(M2b2) is 4CF times the area of the

triangle in figure 2. The contribution D11 log(M2b2) is more subtle. This contribution is

associated with the edges of the triangle. The bottom edge of the triangle is associated

with the lower limit on the k2
⊥ integral, which is 4e−2γE /b2 instead of simply 1/b2. In

the shower evolution, this value arises as a property in integrals involving Bessel functions

J0(|k⊥||b|). In the analysis of the contribution to evolution associated with k2
⊥ near this

limit, it was important that the rapidity of a potential gluon emission was large compared

to the rapidities of previous gluon emissions. In the analysis of the contribution associated

with the left hand edge of the triangle, it was important that the denominator of the

splitting function is 1 − z + e−t and not, say, 1 − z + 2e−t. This denominator is related

to the treatment of the soft gluon interference diagrams. Finally, the right hand edge of

the triangle is associated with the term −3/2 in eq. (11.9) for the Sudakov exponent. This

term comes from the −γa in the virtual part of the DGLAP evolution equation for the

parton distribution functions, eq. (8.9).
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Let us now look beyond the order αs contribution to the Sudakov exponent.

We note that the QCD result and the shower result share the contribution inside the

k2
⊥ integral,

αs

(

k2
⊥

)

2π
2CF log

(

M2

k2
⊥

)

. (12.10)

In the shower result, this form reflects our choice to use µ2
R defined in eq. (7.2) as the

argument of αs; this is a choice that is not required by the logic of the shower, in which

we factor softer interactions from harder interactions. With this choice, we match the

contribution in eq. (12.10) between the shower result and the QCD result. Expanding in

powers of αs(M
2), we see that

Dshower
mn = DQCD

mn n ≥ 1, m = n + 1 . (12.11)

We note also that the QCD result and the shower result share the contribution inside

the k2
⊥ integral,

αs

(

k2
⊥

)

2π
2CF

(

−
3

2

)

. (12.12)

This term contributes to the coefficients Dnm for n = m. However, the QCD result has

a contribution
(

αs

(

k2
⊥

)

2π

)2

2CFK log

(

M2

k2
⊥

)

, (12.13)

which is to be compared to

−

(

αs

(

k2
⊥

)

2π

)2

4β1CF log(λR) log

(

M2

k2
⊥

)

. (12.14)

It is not a surprise that these do not match for λR = 1, since we have used a leading order

shower and this is a second order contribution. However, this term in the Sudakov exponent

contributes to the coefficients Dnm for n = m and n ≥ 2. If we would like to match these

terms, we can, by means of a trick introduced in ref. [9]. We choose λR such that

− 4β1CF log(λR) = 2CFK . (12.15)

This is what we have done in our default choice given in eq. (7.3). For nf = 5, this is

λR ≈ 0.41. If we take this default choice, then

Dshower
mn = DQCD

mn n ≥ 1, m = n . (12.16)

This scale choice applied to q → q + g splittings produces the second order term in

A(αs) for Z-boson production. The same formalism applies to the transverse momenta

of Higgs bosons produced in hadron collisions. In that case, the incoming partons are

two gluons instead of a quark and an antiquark. The Sudakov exponent has the same

form, but with different functions A, B, and C. For A, the first two terms are now

2CA(αs/(2π))+2CAK(αs/(2π))2, but the ratio of the first and second coefficients in A(αs)
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is unchanged [5]. Thus the same factor λR applied to g → g + g splittings produces the

second order term in A(αs) for the Higgs boson transverse momentum distribution. Of

course, this is a trick that applies for the particular purpose at hand. It is not equivalent

to using a second order splitting kernel.

For the Higgs boson p⊥ distribution, we also replace B1 = −2γq = −4 by B1 = −2γg,

where γg is given in eq. (8.10) [5].

13 Other choices

In this section, we briefly investigate the Z-boson transverse momentum distribution that

would result if we were to make other choices for the construction of the shower.

13.1 Spin-averaged, leading-color shower

We have organized this paper as an analysis of the shower evolution equation in ref. [14],

with some minor modifications. This evolution equation contains the effects of spin corre-

lations and applies to arbitrary color states. It contains the physics that we believe should

be approximately represented in a parton shower event generator. However, the nature of

the evolution is such that finding a way to represent the equations in a practical computer

program is challenging. To start with a base approximation, one can average over the spins

and take the standard leading color approximation. We analyzed this case in ref. [15]. With

a spin average and a leading color approximation for each splitting, the evolution equa-

tions have the right form to be implemented as a Markov process, as is commonly used

for parton showers.15 We are thus led to ask whether the results of this paper still hold if

one averages over spins and takes the leading color approximation at each parton splitting

step. The answer to this question is that the results do still hold.

Spin does not matter because the observable of interest, the Z-boson transverse mo-

mentum, is independent of parton spins. The spin dependence is represented in the spin

factor in eq. (7.5),
〈

{s′}m

∣

∣{s}m

〉

: the parton spins {s}m in the quantum amplitude must

equal those in the quantum conjugate amplitude, {s′}m, but the splitting probability is

independent of what the spin values are. If we average over spins, this factor goes away.

Color is of some importance. However if we use the exact color dependence then

eq. (7.11) allowed us to reduce the color dependence to a simple factor of CF or CA. If

we use the leading color approximation, then each gluon is treated as carrying color 3⊗ 3̄

instead of color 8. The allowed parton pairs forming a dipole are then the color connected

partners. Then eq. (7.11) still holds with CF replaced by CA/2. One can get back to

CF by simply adjusting the quark-quark-gluon couplings in the splitting functions. With

this understanding, the results of the previous section calculated with full color remain

unchanged in the leading-color approximation.

13.2 Alternative choice of dipole partitioning function

Within the framework of a virtuality ordered shower as presented in ref. [14], there is a

choice to make. Consider the emission of a soft gluon from a color dipole composed of

15We are, in fact, currently engaged in writing computer code for this purpose.
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the initial state parton “a” and one other parton, k. The total emission probability is

proportional to

Hak({p̂}m+1) + Hka({p̂}m+1) ≡
αs

π

p̂a ·p̂k

p̂m+1 ·p̂a p̂m+1 ·p̂k
. (13.1)

Here we use the eikonal approximation, which is valid for very small p̂m+1. The shower

algorithm divides this into pieces, Hak and Hka, defined by

Hak({p̂}m+1) =
αs

π
A′

ak({p̂}m+1)
p̂a ·p̂k

p̂m+1 ·p̂a p̂m+1 ·p̂k
,

Hka({p̂}m+1) =
αs

π
A′

ka({p̂}m+1)
p̂a ·p̂k

p̂m+1 ·p̂a p̂m+1 ·p̂k
.

(13.2)

Here A′
ak and A′

ka are both positive and obey

A′
ak + A′

ka = 1 . (13.3)

The contribution proportional to A′
ak is considered to be an emission from parton a and

is treated using the momentum mapping associated with emission from parton a. The

contribution proportional to A′
ka is considered to be an emission from parton k and is

treated using the momentum mapping associated with emission from parton k.16 Thus

the function A′
ak tells how to partition the soft emission from a dipole into two parton

splitting contributions.

In this paper, we use the A′
ak defined in eq. (7.12) of ref. [16],

A′
ak =

p̂m+1 ·p̂k p̂a ·(p̂a + p̂b)

p̂m+1 ·p̂k p̂a ·(p̂a + p̂b) + p̂m+1 ·p̂a p̂k ·(p̂a + p̂b)
, (13.4)

with A′
ka given by the same expression with a ↔ k. In the p̂a + p̂b rest frame, this is

A′
ak =

1 − cos θm+1,k

(1 − cos θm+1,k) + (1 − cos θm+1,a)
. (13.5)

We have seen that with this choice the shower will produce the proper structure for the

Drell-Yan transverse momentum distribution.

One can consider using instead the A′
ak defined in eq. (7.13) of ref. [16],

A′
ak =

p̂m+1 ·p̂k

p̂m+1 ·p̂k + p̂m+1 ·p̂a
. (13.6)

This is the form used by Catani and Seymour and by others for the purpose of partitioning

the dipole splitting probability in defining perturbative dipole subtractions. The most

important difference between the two choices is that A′
ak as given by eq. (13.4) is invariant

under the scaling p̂k → λp̂k. Thus this A′
ak depends on the angle between the emitted

gluon and the momentum of parton k, but not on the energy of parton k.

16In eq. (12.21) of ref. [14], the splitting probabilities are expressed in terms of functions Aak and Aka,

which are related to A′

ak and A′

ka by eq. (7.2) of ref. [16].
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We have investigated the possibility of using A′
ak defined by eq. (13.6) to generate

the parton shower. We find that if we do so, the argument given in sections 7.1 and 9.2

fails. Now the probability of emitting a gluon m + 1 from the initial state parton “a” with

virtuality smaller than that of a previously emitted gluon k can depend on the momentum

pk. As a result, we no longer obtain a differential equation for the b-space partonic cross

section that has only a kernel times the b-space partonic cross section on the right hand

side. The Z-boson will get less transverse momentum recoil from emitted gluons, but we

cannot say how much less.

We can draw a lesson from this: a parton shower built on splitting functions that reflect

the collinear and soft singularities of QCD does not automatically sum large logarithms

that appear in a physical cross section of interest. Seemingly minor details like the choice

of A′
ak matter.

13.3 Catani-Seymour dipole shower

The shower discussed in this paper is the virtuality ordered shower of ref. [14] with an

improved momentum mapping for initial state radiation and with the renormalization

scale for αs given in eq. (7.2). A close relative is the Catani-Seymour (CS) dipole shower,

proposed in ref. [30] and implemented in refs. [31, 32]. Here one takes the splitting functions

and momentum mappings of the Catani-Seymour algorithm [25] for defining subtractions

in NLO perturbative calculations and uses them instead to define a shower algorithm. We

examine this choice here, with the evolution variable taken to be

t⊥ = log

(

M2

k2
⊥

)

, (13.7)

as in refs. [30–32].

The most important difference between the shower of this paper and the CS dipole

shower lies in its treatment of momentum conservation. Let us consider the (backward)

evolution of an initial state parton by emission of a gluon into the final state. The initial

state parton is on shell with zero transverse momentum. It is replaced by a prior on-

shell parton with zero transverse momentum and the final state gluon that has non-zero

transverse momentum. Thus there is a transverse momentum imbalance. In the shower

of this paper, the recoil from the final state gluon is taken by all of the other final state

partons collectively, by means of a Lorentz transformation k̂i = Λki. With this choice, we

have seen that the recoil transverse momentum is predominately taken by the Z-boson.

In the CS shower, for each splitting there is a partner parton, the other parton in the CS

dipole. Let us suppose that we use the leading color approximation, which is commonly

applied in parton showers. Then the partner of a radiating initial state quark is the parton

that is color connected to the quark. For the first gluon emission, the partner of incoming

parton “a” is the other incoming parton “b”. In this case, the CS scheme assigns the

recoil transverse momentum to the Z-boson. However, once one gluon has been emitted,

the partner of “a” is the previously emitted gluon. Then the CS scheme assigns the recoil

transverse momentum to the partner parton. That is, the previously emitted gluon recoils

against the newly emitted gluon and the Z-boson does not take any recoil.
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This leads to a curious situation. With a transverse momentum ordered shower, the

shower first evolves by not emitting any gluons. The probability not to emit any gluons

up to a certain shower time t⊥ is a Sudakov form factor. At some point, one real gluon is

emitted. Then evolution of the Z-boson transverse momentum distribution stops because

the recoil from further gluons emitted is taken by one of the gluons previously emitted.

This problem has been analyzed and addressed in ref. [33].

We can formulate the issue in the style of our analysis of the previous sections if we

supply one additional variable in the measurement operator Q, a variable recoil that takes

values T and F. Including this variable, our operator expressing possible measurements is

Q(b, Y ; ηa, ηb, a, b; recoil). If recoil = T, then when a gluon is emitted from either of

the initial state partons, the Z-boson will share in the recoil against the gluon transverse

momentum. If recoil = F, then, when a gluon is emitted from an initial state parton, the

Z-boson does not share in the recoil.

The evolution equation of the recoil = T cross section is

d

dt⊥

(

1
∣

∣Q(b, Y ; ηa,ηb, a, b; T)
∣

∣ρpert(t⊥)
)

= −
(

1
∣

∣Vpert(t)Q(b, Y ; ηa, ηb, a, b; T)
∣

∣ρpert(t⊥)
)

.

(13.8)

This does not involve the recoil = F cross section. Using the approximations developed

in the preceding sections, we can solve this equation. We find

(

1
∣

∣Q(b, Y ; ηa,ηb, a, b; T)
∣

∣ρpert(t⊥)
)

= 12α Qab xaxb δ(ηa − xa) δ(ηb − xb)

× exp

(

−

∫ M2

k2
⊥

dµ2

µ2

αs

(

λRµ2
)

2π
2CF

[

log

(

M2

µ2

)

−
3

2

]

)

.

(13.9)

Note that for very large t⊥, the recoil = T cross section tends to zero.

The evolution equation of the recoil = F cross section has only the recoil = T cross

section on the right-hand side:

d

dt⊥

(

1
∣

∣Q(b, Y ;ηa, ηb, a, b; F)
∣

∣ρpert(t⊥)
)

≈

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

exp

(

i
1

z
b·k⊥

)

×
(

1
∣

∣zHpert
a (t; z, φ, f ′)Q(b, Y ; zηa, ηb, a − f ′, b; T)

∣

∣ρpert(t⊥)
)

+ (b splitting term) .

(13.10)

The total partonic b-space cross section is

Q(b, Y ; ηa, ηb, a, b) = Q(b, Y ; ηa, ηb, a, b; T) + Q(b, Y ; ηa, ηb, a, b; F) . (13.11)

For very large t⊥, the recoil = T contribution vanishes and we are left with the recoil =

F contribution, which we can obtain by solving eq. (13.10) with the use of eq. (13.9). The
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result for large t⊥ is

(

1
∣

∣Q(b, Y ;ηa, ηb, a, b; F)
∣

∣ρpert(∞)
)

≈

∫ M2

0

dk2
⊥

k2
⊥

∫ 1

0
dz
∑

f ′

J0

(

|k⊥||b|

z

)

× 12α Qa−f ′,b xaxb δ(zηa − xa) δ(ηb − xb)

× exp

(

−

∫ M2

k2
⊥

dµ2

µ2

αs

(

λRµ2
)

2π
2CF

[

log

(

M2

µ2

)

−
3

2

]

)

nc(a)

nc(a − f ′)

αs

(

µ2
R

)

2π

1

z

[

Pa−f ′,a(z) −
2z CF δf ′,g

1 − z
+

2z CF δf ′,g

1 − z + e−t

]

+ (b splitting term) .

(13.12)

We see that the partonic cross section does not exponentiate in b-space. In fact, it is sim-

plest in p⊥-space instead: if we take a Fourier transform back to p⊥, the factor J0(|k⊥||b|/z)

provides a delta function 2(2π)2δ(p2
⊥ − k2

⊥/z2). This leaves a relatively simple expression

consisting of a Sudakov factor and a splitting function for the single allowed splitting.

Again, we see that a parton shower built on splitting functions that reflect the collinear

and soft singularities of QCD does not automatically sum large logarithms that appear in

a physical cross section of interest. Seemingly minor details like the momentum map-

ping matter.

13.4 Transverse momentum ordered shower

The shower examined in this paper is based on virtuality ordering. What would happen

if we kept everything else the same but used transverse momentum ordering? That is,

what if we replace the evolution time t of eq. (3.3) by t⊥ defined in eq. (13.7)? We keep

the momentum mapping the same as in the virtuality ordered shower, so that the transfer

of recoil transverse momentum to the Z-boson is the same as in the main body of this

paper. Transverse momentum ordering is used in Pythia [34, 35], but the algorithm that

we consider in this section differs in some respects from that of Pythia.

With k⊥ ordering, the first stage of shower evolution is simple. For t⊥ ≪ log(M2b2),

only virtual splittings contribute to the evolution of the b-space partonic cross section; the

rapidly oscillating J0(|k⊥||b|) factor that multiplies Hpert
I eliminates the real emission con-

tribution.

The later stages of shower evolution are also simple. The argument of section 10 implies

that the rate of change of the b-space hadronic cross section vanishes for t⊥ ≫ log(M2b2).

We are left with the region t⊥ ∼ log(M2b2). This is the bottom of the triangle in

figure 2. With a virtuality ordered shower, this region is sampled from left to right, which

is in order of increasing rapidity of emitted gluons — that is, decreasing emission angles.

Then the splitting function in eq. (7.5) took the simple form in which the complicated

function f was replaced by 1 because the rapidity of the real or virtual gluon was much

larger than the rapidity of previously emitted gluons. With t⊥ as the evolution variable,

there is no guarantee that a previously emitted gluon had smaller rapidity than a new
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real or virtual daughter gluon. Thus the form of the evolution equation changes and the

evolution of the partonic b-space cross section depends on the previous emission history.

Because the evolution is more complicated than we have dealt with, we do not know

what the result is. We do note that the difficulty arises only for a limited region, t⊥ ∼

log(M2b2).

13.5 Angle ordered shower

What would happen if we used angular ordering instead of virtuality ordering? That

is, what if we replace the evolution time t of eq. (3.3) by t∠ = − log(tan(θ/2)) where θ

is the splitting angle. Then ordering in t∠ is ordering in splitting angle, starting from

large angles and progressing to smaller angles as t∠ increases. We could continue to use

the dipole partitioning function A′
lk specified in eq. (13.4). Alternatively, we could use a

revised version of the dipole partitioning function A′
lk, as specified below. Angular ordering

together with the revised A′
lk gives us two of the main features of Herwig [36, 37], although

if we start with the shower described in this paper and change only these features, we

certainly do not have exactly Herwig.

To be more precise, let P = xapa + xbpb be the Z-boson momentum approximated as

having no transverse part but as obeying P 2 = M2
Z . Consider the splitting of a parton

with label l and momentum pl and let nl be the lightlike vector

nl = pl −
M2

Z

2 pl ·P
P . (13.13)

Let the daughter partons have momenta p̂l and p̂m+1. Then define

t∠ =
1

2
log

(

p̂m+1 ·nl P ·pl

p̂m+1 ·pl P ·nl

)

. (13.14)

For an emission from initial state line “a”, t∠ is the rapidity of the splitting that we used

in section 9.2. From eq. (9.8) we have, for y ≪ 1 and ηa ≈ xa,

t∠ = t +
1

2
log

(

k2
⊥

M2

)

+ log

(

1

z

)

. (13.15)

Curves of constant t∠ are shown in figure 3. Over most of the region of the figure, (1−z) ≪ 1

so log(1/z) ≈ 0. This gives straight lines in the t-log(k2
⊥/M2) plane. As these lines

approach the line (1 − z) ∼ 1 in the figure, the log(1/z) term becomes important and the

t∠ curves bend.

The curves of constant t∠ extend down to arbitrarily small virtuality, M2e−t. In

a virtuality ordered shower, one would simply stop the evolution when M2e−t reaches

some infrared cutoff at which application of a hadronization model is more appropriate

than continued use of perturbative showering. For the angle ordered shower, we should

impose this same cutoff as a upper limit on integrations over t at fixed t∠. Equivalently,

if we parameterize the curves of fixed t∠ using k2
⊥, then we impose a lower limit on the

integrations over k2
⊥.
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One should do more than simply switching the evolution variable. One can also modify

the dipole partitioning function A′
ak as used in eq. (13.2). For an angle ordered shower, it

is standard [8] to begin with

A
(0)′
ak =

1

2

[

1 +
cos θm+1,a − cos θm+1,k

1 − cos θa,k

]

,

A
(0)′
ka =

1

2

[

1 −
cos θm+1,a − cos θm+1,k

1 − cos θa,k

]

,

(13.16)

where the angles are defined, for instance, in the Z-boson rest frame. These functions

add to one, but are not everywhere positive. One can then replace the functions Ha,k and

Hk,a defined in eq. (13.2) by their averages over the azimuthal angles defined by rotating

p̂m+1 about, respectively, the directions of p̂a and p̂k. As shown in ref. [8], this gives a

simple result,

Hak({p̂}m+1) =
αs

π
A

(0)′
ak ({p̂}m+1)

1

E2
m+1

1 − cos θa,k

(1 − cos θm+1,a) (1 − cos θm+1,k)

→
αs

π

1

E2
m+1

θ(θa,m+1 < θa,k)

1 − cos θm+1,a
,

Hka({p̂}m+1) =
αs

π
A

(0)′
ka ({p̂}m+1)

1

E2
m+1

1 − cos θa,k

(1 − cos θm+1,a) (1 − cos θm+1,k)

→
αs

π

1

E2
m+1

θ(θk,m+1 < θa,k)

1 − cos θm+1,k
.

(13.17)

The procedure is equivalent to replacing A
(0)′
ak and A

(0)′
ka by

A′
ak = θ(θa,m+1 < θa,k)

1 − cos θm+1,k

1 − cos θa,k
,

A′
ka = θ(θk,m+1 < θa,k)

1 − cos θm+1,a

1 − cos θa,k
.

(13.18)

These functions are positive. They do not sum to 1, but, as just noted, one gets the right

result after suitable averaging over azimuthal angles.

It is now easy to see how the partonic b-space cross section Q(b, Y ; ηa, ηb, a, b) evolves

as t∠ increases. At each step dt∠, there are contributions from all values of k2
⊥ down to the

infrared cutoff. We divide the integration over k2
⊥ into three distinct regions: k2

⊥ ≫ 1/b2,

k2
⊥ ∼ 1/b2, and k2

⊥ ≪ 1/b2. In the region k2
⊥ ≪ 1/b2, the real emission term with a factor

J0(|k⊥||b|) cancels the virtual emission term with a factor 1 because J0(|k⊥||b|) − 1 ≈

0, as in our other analyses. Thus this region does not contribute to the evolution of

Q(b, Y ; ηa, ηb, a, b). In the region k2
⊥ ≫ 1/b2, only virtual emissions contribute to the

evolution of Q(b, Y ; ηa, ηb, a, b). The rapidly oscillating J0(|k⊥||b|) factor that multiplies

Hperp
I eliminates the real emission contribution. In the region k2

⊥ ∼ 1/b2, both real and

virtual emissions contribute.

We have by no means carried out a detailed investigation of this angle ordered scheme.

However, it appears to us that it will give equivalent results for the Z-boson transverse

momentum distribution as does the virtuality ordered shower.
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13.6 Dipole antenna shower

In this paper so far we have discussed dipole parton showers in which the creation of a

new gluon is attributed to the splitting of one of the previously existing partons. There is

an ambiguity because, for soft gluon emissions, interference diagrams are important: one

has to include emission from a parton l squared, emission from a parton k squared, and

the l-k interference graphs. Using the eikonal approximation, the sum of these is simple,

as in eq. (13.1). We have partitioned the total emission probability into a fraction A′
lk

associated with splitting of parton l and a fraction A′
kl = 1 − A′

lk associated with the

splitting of parton k, as in eq. (13.2). In the nomenclature of section 16 of ref. [38], this

constitutes a partitioned dipole shower.17 There is a separate momentum mapping Pl for

each parton l that splits. Here Pl is an operator, defined in ref. [14], on the space of parton

states. It is not necessary that this momentum mapping depends on the choice of k, and

the momentum mapping used in this paper and ref. [14] does not depend on k. Thus,

in a highly compressed notation, we can write that the emission from the l-k dipole is

partitioned into two terms,

Hpart
lk (t) ∝ Pl A

′
lk

p̂l ·p̂k

p̂m+1 ·p̂l p̂m+1 ·p̂k
+ Pk A′

kl

p̂l ·p̂k

p̂m+1 ·p̂l p̂m+1 ·p̂k
. (13.19)

In section 13.2, we have seen that the summation of large logarithms can be sensitive

to the choice of the partitioning function A′
lk; a choice based on the angles between parton

l and k and the emitted soft gluon is preferred.

One might be tempted to get rid of this ambiguity, particularly in the leading color

approximation where one can use pairs of color connected partons as the dipoles. The idea

is to consider each l-k dipole as a unit that can emit a gluon. Thus the basic building

blocks are 2 → 3 parton splittings. A shower based on this approach may be called a dipole

antenna shower. The pioneering development along these lines is the final state shower of

Ariadne [39]. More recent examples include those in ref. [23]. There is a corresponding

subtraction scheme for next-to-leading order calculations, antenna subtraction [40].

In a dipole antenna shower, there is no A′
lk. There is a separate momentum mapping

Plk for each dipole l-k. Thus eq. (13.19) is replaced by

Hant
lk (t) ∝ Plk

p̂l ·p̂k

p̂m+1 ·p̂l p̂m+1 ·p̂k
. (13.20)

The freedom to choose A′
lk now resides in the freedom to choose Plk. It must be symmetric

under the interchange of partons l and k. It is usually defined in such a way that momentum

is conserved locally in the 2 → 3 splitting, without taking momentum from any of the other

partons. For a final state dipole, this means

pl + pk = p̂l + p̂k + p̂m+1 . (13.21)

Such a mapping is defined in ref. [41, 42]. We note that it is possible to have a shower that

is simultaneously a partitioned dipole shower and an antenna dipole shower. We get that

17Note that from the point of view adopted in section 13.5, an angle ordered shower also can be considered

as a partitioned dipole shower.
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case if we define

Plk = θ(ϑl,m+1 < ϑk,m+1)Pl + θ(ϑk,m+1 < ϑl,m+1)Pk , (13.22)

where the ϑij is the angle between momenta i and j and Pl represents the momentum

mapping that is used in this paper. Then A′
lk = θ(ϑl,m+1 < ϑk,m+1).

As far as we can see, a dipole antenna shower can reproduce the proper summation of

large logarithms for the Z-boson transverse momentum distribution studied in this paper.

However, the momentum mapping for initial state splittings cannot be local in the sense

of eq. (13.21). For a dipole consisting of the two initial state partons, eq. (13.21) becomes

pa + pb = p̂a + p̂b − p̂m+1 . (13.23)

We want pa,⊥ = p̂a,⊥ = 0 and also pb,⊥ = p̂b,⊥ = 0. This leaves no place for the transverse

momentum of parton m+1 to go. One might hope to use a non-local momentum mapping

for this case, but use a local mapping in the case of a dipole consisting of one initial state

parton, say “a”, and a final state colored parton k. In this case, eq. (13.21) becomes

pa − pk = p̂a − p̂k − p̂m+1 . (13.24)

However, that would mean that p̂k,⊥ − pk,⊥ = −p̂m+1,⊥: the recoil transverse momentum

from the emission of parton m+1 is taken up by parton k instead of by the Z-boson. Thus a

non-local momentum mapping is needed for all dipoles that include an initial state parton.

14 Conclusions

In this paper, we have examined the differential cross section dσ/(dp⊥dY ) for producing

a Z-boson in hadron-hadron collisions as a function of the transverse momentum p⊥ and

rapidity Y of the Z-boson. For p2
⊥ ≪ M2

Z , the perturbative expansion of dσ/(dp⊥dY )

contains large logarithms, log(p2
⊥/M2

Z). There are known QCD results for the summation

of these logarithms, quoted in section 12. We have asked to what extent a virtuality ordered

parton shower algorithm of the sort defined in ref. [14] (with some small modifications as

discussed in this paper) correctly reproduces the known results.

The parton shower evolves in shower time t, defined to be minus the logarithm of the

virtuality of a parton splitting, so that hard splittings come first, soft splittings last. The

state of the shower at time t, in the sense of the distribution of parton configurations, is

represented by a vector
∣

∣ρ(t)
)

. In this notation, dσ/(dp⊥dY ) as it has developed by shower

time t is denoted by
(

p⊥, Y
∣

∣ρ(t)
)

. Then, at the end of the shower at time tf , the predicted

cross section is
dσ

dp⊥ dY
=
(

p⊥, Y
∣

∣ρ(tf)
)

. (14.1)

We have examined whether the cross section obtained from the shower algorithm has the

structure of the QCD result by examining how
(

p⊥, Y
∣

∣ρ(t)
)

evolves with t.

To find d
(

p⊥, Y
∣

∣ρ(t)
)

/dt, we used eq. (2.9), which expresses how the completely exclu-

sive partonic state evolves. This expresses d
(

p⊥, Y
∣

∣ρ(t)
)

/dt in terms of the complete state
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of all of the partons at time t. Fortunately, we found that, with appropriate approxima-

tions, d
(

p⊥, Y
∣

∣ρ(t)
)

/dt is expressed as a convolution of a certain kernel with
(

p⊥, Y
∣

∣ρ(t)
)

.

That is, the detailed configuration of all of the partons does not matter, only the inclu-

sive distribution
(

p⊥, Y
∣

∣ρ(t)
)

matters. Thus we obtain a closed form differential-integral

equation for
(

p⊥, Y
∣

∣ρ(t)
)

.

The result can be simply stated in terms of the Fourier transform of transverse mo-

mentum distribution, defined in eq. (4.4),

(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

=

∫

dp⊥

(2π)2
e−ib·p⊥

(

p⊥, Y
∣

∣ρ(t)
)

. (14.2)

We found that
(

1
∣

∣Q(b, Y )
∣

∣ρ(t)
)

stops evolving at a certain evolution time tc, with tc =

log
(

b2M2 e2γE/4
)

. We found in eq. (12.1) that
(

1
∣

∣Q(b, Y )
∣

∣ρ(tc)
)

is a convolution of parton

distribution functions evaluated at the appropriate scale times a function that does not

involve parton distribution functions,

(

1
∣

∣Q(b, Y )
∣

∣ρ(tc)
)

=
∑

ab

∫ 1

0
dηa

∫ 1

0
dηb

fa/A(ηa, 4e
−2γE/b2)fb/B(ηb, 4e

−2γE/b2)

4nc(a)nc(b) 2ηaηbpA ·pB

×
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(tc)
)

.

(14.3)

The important structure is thus expressed in the function
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(tc)
)

.

Consider the logarithm of
(

1
∣

∣Q(b, Y ; ηa, ηb, a, b)
∣

∣ρpert(tc)
)

. On general grounds, one

would expect that this function has two powers of the large logarithm log(M2b2) per power

of αs(M
2):

log[
(

1
∣

∣Q(b, Y ; ηa,ηb, a, b)
∣

∣ρpert(tc)
)

]

= −
∞
∑

n=1

2n
∑

m=0

Dnm(Y )

(

αs(M
2)

2π

)n
(

log(M2b2)
)m

.
(14.4)

However, we found that the partonic cross section produced by the shower algorithm ex-

ponentiates in b-space in the sense that

Dnm = 0 for m > n + 1 . (14.5)

This property is shared with the full QCD result.

This exponentiation is not guaranteed by simply having a parton splitting probability

that matches QCD in the soft and collinear limits, including the proper interference between

emissions of a soft gluon from different partons. We found that two other features of the

shower algorithm are important.

First, partons in a parton shower are treated as being on-shell, but it is not possible

for an on-shell parton to split into two on-shell partons and still conserve momentum.

There has to be a momentum mapping that takes a small amount of momentum from

somewhere and supplies it to the daughter partons. In the case of an initial state splitting,

the problem is more pronounced because the initial state partons are treated as having

zero transverse momentum. This means that when a soft gluon is emitted from an initial
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state parton, some transverse momentum has to come from somewhere. We found that the

momentum mapping has to be such that the Z-boson gets most of the recoil transverse

momentum. We noted that the momentum mapping used for perturbative subtractions in

the Catani-Seymour dipole subtraction scheme does not give the desired exponentiation

for
(

1
∣

∣Q(b, Y )
∣

∣ρ(tc)
)

in a dipole based shower.

Second, in a shower like that of ref. [14] that is based on color dipoles, there is a

function that we call A′
lk that specifies how much of the radiation from dipole l-k is treated

as being emitted from parton l and how much is treated as being emitted from parton k.

We found that, for initial state emissions, the choice of A′
lk matters. A choice based on the

angles between the momenta of partons l and k and an emitted soft gluon is satisfactory,

while the choice used in the Catani-Seymour dipole subtraction scheme fails to give the

proper exponentiation in a dipole based shower.

After having checked for the proper exponentiation of the large logarithms, the next

question was which non-zero coefficients Dnm are correctly produced by the shower algo-

rithm.

We found that the leading coefficient, D12, is correctly reproduced. This result has a

simple physical interpretation in the parton shower picture. The quantity
(

1
∣

∣Q(b, Y )
∣

∣ρ(tf)
)

is the cross section to produce the Z-boson with rapidity Y but not radiate initial state

gluons with transverse momentum bigger than approximately 1/b2. The Sudakov exponent

S is the integral of the differential probability to radiate such a gluon, so exp(−S) is the

probability not to radiate any such gluons. The leading term in the Sudakov exponent is

CFαs/π times twice the area of the triangle in figure 2. This area is total phase space for

gluon emission with k2
⊥ > 1/b2 from one of the two initial state partons; doubling the area

gives the total phase space for emission from either line. Quantum coherence plays a role

here. The initial emission is from a color dipole consisting of the two incoming quarks.

Emissions with large positive rapidity count as emission from incoming quark “a” while

emissions with large negative rapidity count as emission from incoming quark “b”.

We found also that the next-to-leading log coefficient, D11, is correctly reproduced.

This coefficient corresponds to the behavior of the parton splitting near the three edges

of the triangle in figure 2. It thus represents physics that is more subtle than the physics

behind the leading coefficient, D12.

We note that once the choices of momentum mapping and A′
lk have been made, no

adjustment of parameters is needed to get D12 and D11 to match the QCD result.

One could argue that matching the leading order coefficients D12 and D11 is all that

one should expect from a leading order parton shower. Nevertheless, we found that it

is possible to do better (as in ref. [9]). With a suitable choice of the argument of αs in

the splitting function, it is possible to match all of the coefficients Dnm with m = n + 1

and with m = n. With this level of matching, the Sudakov exponent S produced by the

shower algorithm is a good approximation to the full QCD exponent SQCD in the limit

log(M2b2) → ∞ and αs(M
2) → 0 with αs(M

2) log(M2b2) fixed.

We have investigated how well the virtuality ordered parton shower algorithm defined

in refs. [14–16] and this paper performs in summing large logarithms for the transverse

momentum of a vector boson produced in the Drell-Yan process in hadron-hadron colli-

– 50 –



J
H
E
P
0
3
(
2
0
1
0
)
0
9
7

sions. The same analysis would apply to the transverse momentum distribution of Higgs

bosons produced in hadron-hadron collisions. There are other sorts of summations of large

logarithms that are of importance for understanding experiments. We believe that the in-

vestigation of other cases, perhaps using methods developed in this paper, is an important

goal, both for the virtuality ordered parton shower algorithm used in this paper and for

other parton shower algorithms.
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A Structure of inclusive splitting

In this appendix, we review formulas from refs. [14–16] for inclusive splitting, that is the

splitting operator HI(t) times the inclusive measurement function
(

1
∣

∣. We start with in

eq. (12.20) of ref. [14],
(

1
∣

∣HI(t)
∣

∣{p, f, s′, c′, s, c}m

)

= 2
〈

{s′}m

∣

∣{s}m

〉 〈

{c′}m

∣

∣h(t, {p, f}m)
∣

∣{c}m

〉

. (A.1)

The inclusive splitting function is diagonal in spin, but it has a non-trivial color structure.

The structure of the splitting is contained in the operator h, which is given in eq. (12.21) of

ref. [14]. With a slightly modified notation and with one error corrected, this equation reads
〈

{c′}m

∣

∣h(t, {p, f}m)
∣

∣{c}m

〉

=

1

2

∑

l

∑

ζf∈Φl(fl)

∫

dζp θ(ζp ∈ Γl({p}m, ζf))

× δ

(

t − log

(

Q2
0

|(p̂l + (−1)δl,a+δl,b p̂m+1)2 − m2(fl)|

))

×
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ2

F )

fa/A(ηa, µ2
F )fb/B(ηb, µ2

F )

×

{

θ(f̂m+1 6= g)
〈

{c′}m

∣

∣{c}m

〉

C(f̂l, f̂m+1) wll({f̂ , p̂}m+1)

− θ(f̂m+1 = g)
∑

k 6=l

〈

{c′}m

∣

∣Tk · Tl

∣

∣{c}m

〉

×
[

wll({f̂ , p̂}m+1) − 2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)
]

}

.

(A.2)

Here possible quark masses are included. There is a sum over the index l of the initial state

or final state parton that splits. There is a sum over flavor choices ζf for the splitting and an

integration over the momentum choices,
∫

dζp. Once we choose splitting variables t, z and

φ, this becomes an integration over the splitting variables. There is a delta function that

expresses the definition of the shower time t. Next, there is a ratio of parton luminosities,

containing parton distribution functions, as in eq. (4.8). The main momentum and color

dependence is contained inside the braces that follow.
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The second term inside the braces applies when the newly emitted parton with label

m + 1 is a gluon. There is a sum over partons k, where k 6= l. Partons l and k constitute

a color dipole that can emit the gluon. There are functions wll and wlk that describe the

direct terms and the interference terms, respectively, for gluon emission. These functions

are defined in ref. [14]. Convenient expressions for wll and wlk as rational functions of dot

products of the momenta involved are given in ref. [15].18 There is also a function Alk

that expresses how the interference term is partitioned between a part considered to be

a splitting of parton l and a corresponding part considered to be a splitting of parton k.

There is a color operator Tk ·Tl that inserts a gluon color matrix T a on line k and another

on line l and sums over the gluon color index a. This operator was denoted glk({f̂}m+1)

in the original equation.

The first term inside the braces applies when the newly emitted parton with label

m + 1 is not gluon. Then there is no interference term. There is a color factor

C(f̂l, f̂m+1) =















TR {f̂l, f̂m+1} = {q, q̄} or {q̄, q}

CF {f̂l, f̂m+1} = {g, q}, {g, q̄}, {q, g} or {q̄, g}

CA {f̂l, f̂m+1} = {g, g}

. (A.3)

The cases with f̂m+1 = g do not appear in eq. (A.2), but we will need these cases later.

In eq. (12.21) of ref. [14], we failed to note the possibility of an initial state splitting with

{f̂l, f̂m+1} = {g, q} or {g, q̄}, so we listed this factor simply as TR.

We now manipulate eq. (A.2) so as to obtain a more useful form. For the f̂m+1 =

g term, we divide the splitting function into two parts by adding and subtracting the

eikonal approximation to wll. (The eikonal approximation is the limiting form when the

gluon momentum tends to zero. The function wlk is already constructed in the eikonal

approximation in ref. [14].) Thus we write

wll({f̂ , p̂}m+1)−2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)

=
(

wll({f̂ , p̂}m+1) − weikonal
ll ({f̂ , p̂}m+1)

)

+
(

weikonal
ll ({f̂ , p̂}m+1) − 2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)

)

.

(A.4)

The first term is important in only in the collinear limit. The momentum dependent

factor wll −weikonal
ll is independent of k and multiplies

〈

{c′}m

∣

∣Tk ·Tl

∣

∣{c}m

〉

. When we sum

over k, we can use
∑

k 6=l

〈

{c′}m

∣

∣Tk · Tl

∣

∣{c}m

〉

= −
〈

{c′}m

∣

∣Tl · Tl

∣

∣{c}m

〉

= − C({f̂l, f̂m+1})
〈

{c′}m

∣

∣{c}m

〉

.

(A.5)

For the second term, we take Alk to be of the form specified in eq. (7.2) of ref. [16], in

which Alk is expressed using another function A′
lk. This gives the result of in eq. (7.10)

of ref. [16],

weikonal
ll ({f̂ , p̂}m+1)−2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)

= 4παs A′
lk({p̂}m+1)

−P̂ 2
lk

(p̂m+1 ·p̂l p̂m+1 ·p̂k)2
,

(A.6)

18In ref. [15] and also in ref. [16], we use the notations W ll = wll and W lk = 2Alkwlk.
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where

P̂lk = p̂m+1 ·p̂l p̂k − p̂m+1 ·p̂k p̂l . (A.7)

This is for general masses. For the analysis of the Z-boson p⊥ distribution, we want all of

the partons to be massless. Then

(

weikonal
ll ({f̂ , p̂}m+1)−2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)

)

= 4παs A′
lk({p̂}m+1)

2p̂l ·p̂k

p̂m+1 ·p̂l p̂m+1 ·p̂k
.

(A.8)

Our choice in this paper for the function A′
lk is given in eq. (13.4).

With these rearrangements, we have

(

1
∣

∣HI(t)
∣

∣{p, f, s′, c′, s, c}m

)

=
〈

{s′}m

∣

∣{s}m

〉

∑

l

∑

ζf∈Φl(fl)

∫

dζp θ(ζp ∈ Γl({p}m, ζf))

× δ

(

t − log

(

Q2
0

|(p̂l + (−1)δl,a+δl,b p̂m+1)2 − m2(fl)|

))

×
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ2

F )

fa/A(ηa, µ
2
F )fb/B(ηb, µ2

F )

×

{

〈

{c′}m

∣

∣{c}m

〉

C(f̂l, f̂m+1)

×
[

wll({f̂ , p̂}m+1) − θ(f̂m+1 = g)weikonal
ll ({f̂ , p̂}m+1)

]

− θ(f̂m+1 = g)
∑

k 6=l

〈

{c′}m

∣

∣Tk · Tl

∣

∣{c}m

〉

× 4παs A′
lk({p̂}m+1)

−P̂ 2
lk

(p̂m+1 ·p̂l p̂m+1 ·p̂k)2

}

.

(A.9)

We can now specialize to initial state splittings with massless partons. In the sum over

the label l of the parton that splits, we take l = a. The integration measure dζp, with the

choice of variables {t, z, φ} used in this paper, is

dζp = 2pa · pb (2π)−2dt dz
dφ

2π

y

4z
=

p̂m+1 ·p̂a

8π2 z
dt dz

dφ

2π
. (A.10)

The integration over t is performed using the delta function that defines t. We have

defined the matrix element of Hpert
a (t, z, φ, f ′) in eqs. (4.15) and (6.2) to be the coeffi-

cient of dz dφ/(2π) in the integrand and sum over flavors, leaving out the ratio of parton
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luminosities. Cf. eqs. (8.4) and (8.5). Thus

(

1
∣

∣zHpert
a (t, z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

=
p̂m+1 ·p̂a

8π2

〈

{s′}m

∣

∣{s}m

〉

×

{

〈

{c′}m

∣

∣{c}m

〉

C(f̂a, f̂m+1)

×
[

waa({f̂ , p̂}m+1) − θ(f̂m+1 = g)weikonal
aa ({f̂ , p̂}m+1)

]

− θ(f ′ = g)
∑

k 6=a

〈

{c′}m

∣

∣Tk · Ta

∣

∣{c}m

〉

× 4παs A′
ak({p̂}m+1)

2p̂a ·p̂k

p̂m+1 ·p̂a p̂m+1 ·p̂k

}

.

(A.11)

We can use the results of ref. [15] to state the functions waa in terms of the variables

y, z, φ used in this paper. For {f̂a, f̂m+1} = {q, g} or {q̄, g}, we find, using eq. (2.29)

of ref. [15],
p̂m+1 ·p̂a

8π2

[

waa − weikonal
aa

]

=
αs

2π

1

z
(1 − z)(1 + y) . (A.12)

For {f̂a, f̂m+1} = {g, g}, we find, using eq. (2.57) of ref. [15],

p̂m+1 ·p̂a

8π2

[

waa − weikonal
aa

]

=
αs

2π

2

z

[

1 − z

z
+ z(1 − z) −

z(1 − z)y

(1 − z) + y

]

. (A.13)

For {f̂a, f̂m+1} = {q, q̄} or {q̄, q}, we find, using eq. (A.2) of ref. [15],

p̂m+1 ·p̂a

8π2
waa =

αs

2π

1

z

1 + (1 − z)2

z
. (A.14)

For {f̂a, f̂m+1} = {g, q̄} or {g, q}, we find, using eq. (A.3) of ref. [15],

p̂m+1 ·p̂a

8π2
waa =

αs

2π

1 + y

z

[

z2 + (1 − z)2
]

. (A.15)

The contribution to
(

1
∣

∣zHpert
a (t, z, φ, f ′)

∣

∣{p, f, s′, c′, s, c}m

)

from the term proportional

to A′
ak in the last line of eq. (A.11) vanishes if the emitted parton is not a gluon and if

f ′ = g it is
(

1
∣

∣zHpert
a (t, z, φ, g)

∣

∣{p, f, s′, c′, s, c}m

)

eikonal

=
〈

{s′}m

∣

∣{s}m

〉

(−1)
∑

k 6=a

〈

{c′}m

∣

∣Tk · Ta

∣

∣{c}m

〉 αs

2π
A′

ak({p̂}m+1)
2p̂a ·p̂k

p̂m+1 ·p̂k
.

(A.16)

Let rk be the rapidity of parton k in the pa + pb rest frame and let φk its azimuthal angle,

while φ denotes the azimuthal angle of parton m + 1. Then, using the definition (13.4) of

A′
lk from eq. (7.12) of ref. [16], we find

(

1
∣

∣zHpert
a (t, z, φ, g)

∣

∣{p, f, s′, c′, s, c}m

)

eikonal

=
〈

{s′}m

∣

∣{s}m

〉

(−1)
∑

k 6=a

〈

{c′}m

∣

∣Tk · Ta

∣

∣{c}m

〉 αs

2π

2

1 − z + y
f(z, y, φ, rk) ,

(A.17)
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where

f(z, y, φ, rk) =

[

1

1 + y
− erk

2
√

(1 − z)y

1 − z + y

z

1 + y
cos(φ − φk)

+ e2rk
2y

(1 − z + y)

z2

(1 + y)2

]−1

.

(A.18)

In the limit that the emitted gluon is soft, we can neglect (1 − z) compared to 1 and

y compared to 1. We do not, however, neglect y compared to (1 − z). Then

f(z, y, φ, rk) ≈

[

1 − erk
2
√

(1 − z)y

1 − z + y
cos(φ − φk) + e2rk

2y

(1 − z + y)

]−1

. (A.19)

We use this result in section 7.1.

When the emitted gluon becomes collinear, y → 0 with fixed z, we get

f(z, 0, φ, rk) = 1 . (A.20)

Then we can use eq. (A.5), so that

(

1
∣

∣zHpert
a (t, z, φ, g)

∣

∣{p, f, s′, c′, s, c}m

)

eikonal

≈
〈

{s′}m

∣

∣{s}m

〉〈

{c′}m

∣

∣{c}m

〉

C(f̂l, f̂m+1)
αs

2π

2

z

z

1 − z + y
.

(A.21)

The behavior of the splitting probability in the collinear limit is obtained by combining

this result with the results in eqs. (A.12), (A.13), (A.14), and (A.15).

B An integral of Bessel functions

In this appendix, we prove a theorem about the J0 Bessel function that is needed in

section 9.3. The theorem concerns an integral of the form

F (x2, x1) =

∫ x2

x1

dx

x
f(log x) [J0(x) − 1] . (B.1)

where x here stands for |k⊥||b|. We imagine that x1 ≪ 1 and x2 ≫ 1. We suppose

that the function f(log x) is slowly varying in the sense that its second derivative is small:

f ′′(log x) ≪ f(log x). In our application, f is αs(k
2
⊥) = αs(x

2/b2). This is slowly varying

because its second derivative with respect to log(x) is proportional to α3
s . If the integration

extends down to small values of k2
⊥, then αs(k

2
⊥) is not slowly varying if we use the

perturbative evolution equation, so the theorem is useful only if we use an approximation

in which αs(k
2
⊥) stops varying for small values of k2

⊥.

The theorem concerns the approximation of F (x2, x1) by

F (x2, x1)approx = −

∫ x2

x1

dx

x
f(log x) θ(x > x0) , (B.2)

where

x0 = 2e−γE . (B.3)

– 55 –



J
H
E
P
0
3
(
2
0
1
0
)
0
9
7

We thus analyze the difference,

∆F (x2, x1) = F (x2, x1) − F (x2, x1)approx , (B.4)

which is given by

∆F (x2, x1) =

∫ x2

x1

dx

x
f(log x) [J0(x) − θ(x < x0)] . (B.5)

We expect that ∆F (x2, x1) is small because for the integration range x ≫ 1, J0(x) oscillates,

so that its integral is small, while for the integration range x ≪ 1, J0(x) ≈ 1, so that it

cancels the term θ(x < x0).

To prove that ∆F (x2, x1) is small, we define

I1(x) =

∫ x

0

dx̄

x̄
[J0(x̄) − θ(x̄ < x0)] . (B.6)

Now, I1(x) vanishes as x → 0. The approach to the limit is given by

I1(x) ∼ −
x2

8
, x → 0 . (B.7)

The integral converges for x → ∞ and, with our special choice of x0, its value is I1(∞) = 0.

The approach to the limit is given by

I1(x) ∼ −

√

2

π

1

x3/2
sin
(π

4
− x
)

, x → ∞ . (B.8)

We rewrite ∆F (x2, x1) using an integration by parts:

∆F (x2, x1) =

∫ x2

x1

dx

x
f(log x)x

d

dx
I1(x)

= [f(log x2) I1(x2) − f(log x1) I1(x1)]

−

∫ x2

x1

dx

x
f ′(log x) I1(x) .

(B.9)

Now define

I2(x) =

∫ x

0

dx̄

x̄
log(x/x̄) [J0(x̄) − θ(x̄ < x0)] . (B.10)

Note that the derivative of I2(x) with respect to log x is I1(x). Again, I2(0) = 0. The

approach to the limit is given by

I2(x) ∼ −
x2

16
, x → 0 . (B.11)

Again, the integral converges for x → ∞ and its value is, perhaps surprisingly, I2(∞) = 0.

This can be proved using the generating function in eq. (4.12) of ref. [43]. The approach

to the limit is given by

I2(x) ∼ −

√

2

π

1

x5/2
cos
(π

4
− x
)

, x → ∞ . (B.12)
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We can write ∆F (x2, x1) using

∆F (x2, x1) = [f(log x2) I1(x2) − f(log x1) I1(x1)]

−

∫ x2

x1

dx

x
f ′(log x)x

d

dx
I2(x) .

(B.13)

This gives

∆F (x2, x1) = [f(log x2) I1(x2) − f(log x1) I1(x1)]

−
[

f ′(log x2) I2(x2) − f ′(log x1) I2(x1)
]

+

∫ x2

x1

dx

x
f ′′(log x) I2(x) .

(B.14)

Now we can see the conditions under which ∆F (x2, x1) is small. There are terms

proportional to f(log x2) and f ′(log x2). Using the large x behavior of I1(x2) and I2(x2),

we see that these contributions are power suppressed for large x2 as long as f(log x2) and

f ′(log x2) do not grow for large x2. There are terms proportional to f(log x1) and f ′(log x1).

Using the small x behavior of I1(x1) and I2(x1), we see that these contributions are power

suppressed for small x1 as long as f(log x1) and f ′(log x1) do not grow for small x1. Finally,

there is an integral of f ′′(log x) I2(x). Since I2(x) falls off for large x and for small x, it

is the behavior of f ′′(log x) around x = 1 that is important in the integration (as long as

f ′′(log x) is bounded everywhere). If f ′′(log x) is small, ∆F (x2, x1) will be small.

Additionally, ∆F (x2, x1) is small when both x1 and x2 are large compared to 1. In

this case, all of the terms in eq. (B.14) are suppressed by powers of 1/x1 and 1/x2.
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