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ABSTRACT: We present a precise analysis of the Higgs mass corrections stemming from
vectorlike top partners in supersymmetric models. We reduce the theoretical uncertainty
compared to previous studies in the following aspects: (i) including the one-loop threshold
corrections to SM gauge and Yukawa couplings due to the presence of the new states to
obtain the DR parameters entering all loop calculations, (ii) including the full momentum
dependence at one-loop, and (iii) including all two-loop corrections but the ones involving
g1 and go. We find that the additional threshold corrections are very important and can
give the largest effect on the Higgs mass. However, we identify also parameter regions
where the new two-loop effects can be more important than the ones of the MSSM and
change the Higgs mass prediction by up to 10 GeV. This is for instance the case in the
low tan 3, small M4 regime. We use these results to calculate the electroweak fine-tuning
of an UV complete variant of this model. For this purpose, we add a complete 10 and
10 of SU(5) to the MSSM particle content. We embed this model in minimal Gauge
Mediated Supersymmetry Breaking and calculate the electroweak fine-tuning with respect
to all important parameters. It turns out that the limit on the gluino mass becomes more
important for the fine-tuning than the Higgs mass measurements which is easy to satisfy
in this setup.
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1 Introduction

The discovery of the Higgs boson with a mass of about 125 GeV [1, 2] has a strong impact
on the parameter range of supersymmetric (SUSY) models, especially as its mass value
is turning into a precision observable with an uncertainty below 1%. In particular, in
constrained versions of the Minimal Supersymmetric Standard Model (MSSM) large regions
of the parameter space are not consistent with this mass range [3]. This is in particular
the case for models where SUSY breaking is assumed to be transmitted from the hidden to
the visible sector via gauge interactions like in minimal Gauge Mediated SUSY Breaking
(GMSB). Even relaxing the predictive boundary conditions of a constrained model and
considering the phenomenological MSSM with many more parameters at the SUSY scale,
it is still rather difficult to find regions with the correct Higgs mass. Either, a very large
mixing in the stop sector or heavy stop masses are needed to push the Higgs mass to
the desired range [4-18]. However, the large stop mixing with light stops turns out to be
dangerous because of charge and colour breaking minima [19-23]. On the other side, very
heavy stops introduce again a hierarchy problem which SUSY was supposed to solve. The
question about naturalness and fine-tuning is even more pronounced in regions the small
tan 8 region which recently gained some interest because of Higgs fits [15-17]: in these
regions the tree-level Higgs mass is suppressed by a factor cos(23) and even much bigger
loop corrections are needed than for larger values of tan 3.

A widely studied ansatz to solve this tension and to reduce the necessary fine-tuning
in SUSY models is to enhance the Higgs mass already at tree-level. For this purpose
models are considered which give new F- [24-32] or D-term contributions to the Higgs
mass [33-39]. The fine-tuning in these models is often better by a few orders compared to
the MSSM. Alternatively, one can also consider models which give new loop-corrections
due to the presence of additional large couplings to push the Higgs mass. This happens
for instance in inverse-seesaw models [40-42] or models with vector-like quarks [43-48, 48—
54] at the one-loop level, or in models with trilinear R-parity violation at the two-loop
level [55]. We are going to concentrate here on models with vectorlike tops partners. In
these models, the effects on the Higgs mass have been so far just studied in the effective
potential approach at one-loop. Also a careful analysis of the threshold corrections to
the standard model (SM) gauge and Yukawa couplings has been not performed to our
knowledge so far. However, it is well known from the MSSM that the SUSY threshold
corrections and one-loop momentum dependent effects can alter the Higgs mass by several
GeV [56]. Of course, also two-loop corrections involving coloured states are crucial in the
MSSM and it wouldn’t be possible to reach a mass of 125 GeV without them [57-70]. As
soon as the Yukawa-like interactions of the new (s)tops become large, one should expect
that effects of a similar size than in the MSSM sector appear. Therefore, we make a careful
analysis of all three effects: we calculate the full one-loop threshold corrections to get
an accurate prediction of the running gauge and Yukawa couplings at the SUSY scale, we
include the entire dependence of external momenta at the one-loop level, and we add the all
two-loop corrections which are independent of electroweak gauge couplings. In this context,
all calculations are performed within the SARAH [71-76] — SPheno [77, 78] framework which



SF | Spin 0 | Spin % Generations | (U(1) ® SU(2) ® SU(3))
Q| d q 3 (5:2:3)

L ] l 3 (-1,2,1)

Hy | H, oy 1 (—3.2,1)

H, | H, H, 1 (1,2,1)

D | dy dy 3 (3,1,3)

U | ap wh 3 (-2,1,3)

E | &, et 3 (1,1,1)

| t* 1 (-2,1,3)

| 7 1 (2,1,3)

Table 1. This table shows the particle content of the MSSM extended by a pair of vectorlike quark
superfields 77, T".

allows for two-loop calculations in SUSY models beyond the MSSM [79, 80]. The obtained
precision is comparable to the standard calculations usually employed for the MSSM based
on the results of refs. [66-70].

Finally, we extend the particle content to have a complete 10 and 10 of SU(5) in
addition to the MSSM particle content to get a model which is consistent with gauge
coupling unification. This model has already been studied to some extent after embedding
it in minimal supergravity or GMSB [50, 81, 82]. We choose here the variant where SUSY
breaking is transmitted via gauge mediation and check for the first time for the fine-tuning
in regions which are consistent with the Higgs measurements. We show that this gives
usually a fine-tuning which can easily compete with other attempts to resurrect natural
GMSB by including non-gauge interactions between the messenger particles and MSSM
states [83-93], in which a fine-tuning as low as 400 can be achieved (e.g. [92]).

This manuscript is organized as follows. We first introduce the minimal SUSY model
with vectorlike top partners as well as the UV complete variant embedded in GMSB in
section 2. In section 3 we summary briefly the main features of the tree-level masses
before we explain in large detail the calculation of the one- and two-loop corrections. The
numerical results are given in sections 4 and 5. In section 4 we discuss the impact of the
different corrections at one- and two-loop on the SM-like Higgs mass using a SUSY scale
input, before we analyse in section 5 the fine-tuning of the GMSB embedding. We conclude

in section 6.

2 The MSSM with vectorlike tops

2.1 The minimal model

We extend the particle content of the MSSM by a pair of right-handed vectorlike quark
superfields T’ and T'. The particle content of the model and the naming conventions for
all chiral superfields and their spin-0 as well as % components are summarized in table 1.



In addition, we have the usual vector superfields E, W, G which carry the gauge bosons
for U(1)y x SU(2), x SU(3)c as well as the gauginos Ap, Aw, Ag. The full superpotential
for the model reads:

W = }/eij ﬁlE]fId+Y;j Qzﬁ]ﬁd-l-YJJQAZU]I:Iu-{—H ﬁuﬁd-f- téQAiT,]qu-l-MT/T,f/-f-mi/Uif'/ .
(2.1)

Here, we skipped colour and isospin indices. The Yukawa couplings Y., Y; and Y, are in
general complex 3 x 3 matrices. The new interaction Yy is a vector, but we concentrate
only on cases where the third component Yﬁ has non-vanishing values. To simplify the
notation, we define therefore

Y=Yy, (2.2)

When we speak about the top-Yukawa coupling Y;, we refer to Y,23.

The dimensionful parameters in the superpotential are the u-parameter known from
the MSSM, as well as the mass term My for the vectorlike top quark superfields, and
a bilinear term my mixing the new states and the MSSM ones even before electroweak
symmetry breaking (EWSB).

The soft-SUSY breaking terms for the model are

—L = (T, Hy+ T3 Gidj Hy+ T Giti Hy+ By HaHy + T Git' Hy + Bri't + Bia;t' + h.c.)
+ml ity didim? S a g me e +my il +miy | Ha > +miy, | Hy, |
+m P4 m2 [F 2+ (m2 a1+ hee) + (MiApA g+ MoAw Aw + MaAgAg+ h.c.) .

(2.3)

In general, the T- and B- parameters are complex tensors of appropriate dimension, while
the mass soft-terms for scalars are hermitian matrices, or vectors or scalars. The gaugino
mass terms are complex scalar. However, we are going to neglect CP violation in the soft-
sector, i.e. all parameters are taken to be real. For the trilinear soft-term of Yy we use a
similar short-hand notation Tt?,’ = Ty in the following.

2.2 UV completion and fine-tuning
2.2.1 Gauge coupling unification

If we just include the right-handed top superfields, the model is not consistent with gauge
coupling unification. To cure this problem, additional fields have to be added. The minimal
choice is to add a pair of complete 10-plets under SU(5) which contain the states we are
interested in, but also vectorlike left-handed quarks (Q’, Q') and vector-like right-handed
leptons (E’, E'). To generate mass terms for all components of the 10 and 10, the following
extension of the superpotential is needed:

AW = MQ/QA/@/ + ME/E/E,. (2.4)

Here, the (Q-fields have quantum numbers (%, 2,3), (—%, 2, 3), while the vector-like leptons
E', E' carry quantum numbers (+1,1,1) with respect to U(1)y x SU(2)z, x SU(3).. We are
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Figure 1. Running of the gauge couplings (o; *(Q),i = 1,2,3, at 1-loop). The dashed lines belong
to the minimal vectorlike top model and the full lines to the UV-completed model. The dotted lines
represent the SM-only running up to Mgysy = 1500 GeV.

going to assume that no further interactions between these additional states and the MSSM
sector are present, i.e. these particles are only spectators when calculating the SUSY mass
corrections. Nevertheless, because of their impact on the SUSY RGEs and also on the
threshold corrections to the SM gauge couplings they can play an important role. We can
see this already at the one-loop RGEs of the gauge couplings for the minimal model and
the UV complete version:

41 7
o0 = (5 + Zouv ) 25)
By, = (1+30uv) g3 (2.6)
ﬁgg = (=24 20uv) g3, (2.7)
where we parametrized the 8 function as
1 2
Bo = 1o 2692 (677 B+ (2.8)

For dyy = 0 we obtain the minimal model, while §yy = 1 describes the UV complete
version. In figure 1 the re-established gauge unification can be observed. The one-loop 3
functions of the Yukawa couplings are the same in both model variants and read

16 7
0) = Yd(gyTYdJrYTY +3Tr(YdYT) 93— 303 15gl+Tr<YY ))4—}/}%2 (Ydiﬁj)
i1
(2.9)
9
B = 3V, Y1V, +Y. (3Tr<Yde> —Sg%—gg%—i-Tr(YeYT)) (2.10)
13, ., 16
G, = (3vTve+ame (3v,v ) + v vi+6(ve ;)—15 303~ gg>yt, y (2.11)
16
5“) 3y (YuYt,) 1Y, (3Y Y, +YTYd+3ﬁ(Y YT) —|—3<Y;/ )_ 2_ 362 Egg)
(2.12)
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Figure 2. This plot shows the scale M at which the Landau pole arises as a function of Y;,. The
red lines are for the minimal model, the blue lines for the UV complete version. For the dotted
lines we used tan 8 = 10, for the full ones tan 5 = 60.

We can use these RGEs to make a quick check for the cut off-scale of the theory in
the limit of very large Yy. For this purpose, we fix at Mgysy = 1.5TeV the SM gauge
couplings as g; = (0.47,0.64,1.05), and consider only third generation Yukawa couplings
Yj33 = 1/2/246 - (1.8/ cos 3,2.4/ cos 3,160/ sin B) with j = e, d,u. Of course, this is a very
simplistic setup missing many details like two-loop effects in the running and threshold
corrections. These effects will be included in our numerical analysis. Nevertheless, one can
already see in figure 2 that the cut-off scale My at which the Landau pole arises, given as
a function of Yy, is pushed towards higher scales in the UV complete version.

The additional soft-terms which appear because of the extended particle content are
the following:

— AL =mZ |+ mZ e |? +my|q | + mgz,|§’\2 + (mZyéfe + miy@;d +he). (213)

[ q

We can now embed the UV complete version in a constrained setup to relate the SUSY
breaking parameters. We are going to choose the setup of gauge mediated SUSY breaking
(GMSB) which we introduce now briefly.

2.2.2 Gauge mediated SUSY breaking and boundary conditions

The mediation of the SUSY breaking from the secluded to the visible sector happens
in GMSB by messenger particles charged under SM gauge groups. The minimal model
provides a pair of 5-plets under SU(5) which don’t have any interaction with the MSSM
sector but due to the gauge couplings. The necessary ingredients to break SUSY are the
interaction of the messengers, called ®, ®, and a spurion field S described by

W =\S®d. (2.14)

S is a gauge singlet and acquires a vacuum expectation value (VEV) along its scalar and
auxiliary component due to hidden sector interactions, which we leave here unspecified

(S) = M + ©°F . (2.15)



The coupling A of eq. (2.14) can be absorbed into the redefinitions of M = AM and F = AF'.
With these conventions, we find that the fermionic components of the messengers have a
mass M, while the scalars get masses

by = \}5 (&M + q?M) : my_=M2EF. (2.16)

This gives the condition M? > F. The soft breaking masses of the MSSM fields are

generated via loop diagrams involving the messenger particles. The gauginos receive masses
2

M; at one-loop level while the scalar masses m i

approximations for the soft breaking masses are

are generated at the two-loop. The leading

M5, (t) = ——Ac, | —220 16772 (2.17)

ai(t) = g?/(4r) are the running coupling constants at the scale ¢ and C, is the Casimir of
the representation r. The SUSY soft breaking scales Ag and Ag depend on F' and M as

follows: ) )
F F F F
Ag = Vil <M ) ) AG = Wf (JW?) (2.18)
with
2 4 6 2 11z* 31928
g@) 21+ T+ T4 0@, @) 214 - e = T 0GR (219)

6 15 28

It is convenient to define
(2.20)

For F < M? this leads to A¢ = Ag = A. Applying the general results to our (UV
complete) model, we have the following boundary conditions at the messenger scale M for
the scalar soft masses

sy = iy, =iy, = (ot + Sod) 43 (221)
mg’jj = mg-/ =mg = <31091 + 3g2 + g3> A% (2.22)
mijj = m%, =msz = (185 il + 2 > A2 (2.23)
mgj;=ma =my = gQ%A% (2.24)

m?l,jj (12591 + i > A% (2.25)

with j = 1,2,3. All off-diagonal entries are staying zero at the messenger scale. For the
gaugino mass terms, we have the MSSM results

M, = PAg (226)



while all other soft-terms vanish up to two-loop

T.=0 r=d,u,e,t (2.27)
By =0 X=qQ, BT (2.28)
mig, = mgq/ =m?’, =B; =0. (2.29)

Furthermore, we assume that the bilinear mass terms for the vector states unify at the
messenger scale

MT’ = MQ’ = ME’ = MV’ . (230)

We make no attempt to explain the size of u or B, in this setup. There are several proposals
how these parameters receive numerical values needed for phenomenological reasons [94—
96]. We take it as given that one of these ideas is working and calculate the p and B,
from the vacuum conditions. Similarly, we are also agnostic concerning the cosmological
gravitino problem usually introduced in GMSB by the Gravitino LSP and possible solutions
for it [97-103].

Thus, our full set of input parameters in this setup is
M, A, tanf, My, Y. (2.31)

2.2.3 Fine-tuning

Fine-tuning addresses the question how to quantify if a model and a particular parameter
point is natural or not. For this purpose, different measures are proposed to calculate the
fine-tuning (FT). We are using the measure for the electroweak fine-tuning introduced in
refs. [104, 105]

8lnM%_i8M% (2.32)
Olna _Mg oo '

Aprr = max Abs [Aa], Ay, =

In this setup, the sensitivity of the Z mass on the fundamental parameters at the UV scale
is calculated. « is a set of independent parameters at this scale and A, ! gives an estimate
of the accuracy to which the parameter o must be tuned to get the correct electroweak
breaking scale [106]. The smaller Ay, the more natural is the model under consideration.
We use the messenger scale M in GMSB as a reference scale and calculate the FT with
respect to

a={A, My, Yy, Yy, g3, u, Bu}. (2.33)

The practical calculation of the FT in our numerical calculation works as follows: we
vary these parameters at the messenger scale M and run the two-loop RGEs down to the
SUSY scale. At the SUSY scale, the electroweak VEVs are calculated numerically using
the minimization conditions of the potential and the resulting variation in the Z mass
is derived.



3 The mass spectrum of the minimal model

To get a good estimate of the fine-tuning by including the Higgs constraint, it is necessary
to reduce the theoretical uncertainty of the Higgs mass prediction. Our aim is to get the
same uncertainty as for the MSSM, namely to consider the Higgs mass in the range

mp = (125 £ 3) GeV. (3.1)

This precision can only be reached if a full one-loop calculation is done, and the dominant
two-loop corrections are included. Since this has not been done before in literature for the
considered model, we discuss our calculation of the mass spectrum, in particular of the
threshold corrections and two-loop Higgs corrections, in detail. The estimated uncertainty
of 3.0 GeV includes the missing electroweak corrections at two-loop as well as higher order
corrections due to (s)tops. This assumes that the stops are below 1.5TeV. For larger
stop masses a resummation of large logarithms would be necessary to keep the theoretical
uncertainty of that size [107]. However, this is beyond the scope of our analysis.

3.1 Tree-level properties

When electroweak symmetry gets broken, the neutral Higgs states receive VEVs v; and v,
and split in their CP even and odd components:

1 ) 1 .
H} — NG (g +ioqg +vg), HS — 7 (P + ioy + vy) - (3.2)

We have tan 8 = z—z and v = 4 /vfl + v2 ~ 246 GeV. Using these conventions, the tree-level
mass matrix squared for the scalar Higgs particles is the same as in the MSSM. It reads
in the basis (¢g, )

pry_ [ w(ot+aB) (3vh ) emb +u? —i(ok+a8)vav—(B) (3.3)
my = .
(gt +08)vava—R(By)  —3(g3+a3) (—3u2+03) +mdy, +ul?
This matrix is diagonalized by Z:
ZMmi 1T = mgiy (3.4)

Two of the parameters in this matrix can be eliminated by the tadpole conditions for
EWSB:

T, = g;/d = —%vu(Bu +BZ) + %(g% +g§)vd< —vg +v§) +Ud(m%{d + |,U|2> —0 (3.5)
T, = g;/u = é(gf +9§>UU< —vﬁ +v§> —vdﬂ‘E(BM) +U“<m%iu + |,U|2) —0. (3.6)

We are going to solve these equations for the squared soft-masses m%[d and m%{u when
we consider a SUSY scale input. That leaves three free parameters in the Higgs sector at



tree-level: tan 3, i and B,. The last one is related to the tree-level mass squared Mi of
the physical pseudo-scalar via

1
B, = M?
B tan B+ 1/tan 4

. (3.7)

However, when we consider the UV completion, m%{d and m%{u are fixed at the SUSY scale
and we are going to solve the above equations (3.5) and (3.6) for 1 and B,,.

Also, the mass matrices for the CP-odd and charged Higgs bosons, for down (s)quarks,
charged and neutral (s)leptons, as well as for neutralino and charginos are identical to the
MSSM. Only in the up (s)quark sector things change because of the additional top-like
states. The scalar mass matrix that links the left- and right-handed MSSM up-squarks and
the new vector-like states is given in the basis of (ﬂL’i, UR., t, f’*) by

Myt
, % (vuTu — deuu*> Magary, (3.8)
m= = P 38
“ % (UuTt/ - UdM*Yt') 3 (2 (MT/mf/ + m%g/) + viYu*Y;,) M5
Lo M7 Yo +YTm) B} Bf, my.;

with the diagonal entries

1 1 .
Mapa; = _271( —3¢% + g%)l( 2 vg,) 4= (zmg + 02 (Yt, Yo + YJYU)) (3.9)

2
1 1
Magay, = 5 (2 (m;mt/ + mi) + viYuYuT> + 69%1( — vi + vg) (3.10)
1 1
Mg = 5 (Q(mtg/ + IMT,|2) + v§|Yt,|2) + 69%( — 2+ vfl) (3.11)
1
My = (mt%, + | My |? + |mt”2> + 69%( —vg+ Ug) : (3.12)

This matrix is diagonalized by ZY:
ZYmZzYT = mgia (3.13)

and we have eight mass eigenstates called @; in the following. Similarly, in the fermionic
counterpart we choose the basis (ur, ;,t*) / (u*RJ, t *2>. The mass matrix in this basis reads

1 T 1
Lo YT Loy Y,
i = (ﬂ”“ w yglutt ) (3.14)
My M

Here, we need two rotation matrices U;' and Up to diagonalize this matrix,
U m Uyt = mdia, (3.15)

The four generations of mass eigenstates are called u; where the first three generations
correspond to the up, charm and top quark.

~10 -



3.2 Calculation of the Higgs masses at one- and two-loop

In this section we give details about the calculation of the Higgs masses at the one- and
two-loop level. We have performed all calculations with the combination of the software
packages SARAH and SPheno which automatize all relevant steps. There are three changes
compared to the calculation of the Higgs masses in the MSSM:

1. The new vectorlike states change the threshold corrections at My to derive the gauge
and Yukawa couplings in DR scheme from the measured SM couplings and fermion
masses. SARAH and SPheno applies and generalizes the procedure of ref. [56] to make
this matching. We give more details about the main differences compared to the
MSSM in section 3.2.1.

2. At the one-loop level new contributions of O(«y ) arise. These corrections are widely
discussed in literature and are known to be able to give a push of many GeV to
the Higgs mass. While these corrections so far have just been calculated in the
effective potential approach, SARAH and SPheno perform the full one-loop corrections
in a diagrammatic way including the dependence of the external momenta. This
calculation is again a generalization of the renormalization procedure presented in
ref. [56]. We explain this calculation and the difference to the MSSM more detailed
in section 3.2.2.

3. At the two-loop level, new corrections O(ay (g + o + oy + ay)) arise. The impor-
tance of these corrections was unknown up to now. However, with the generic results
of ref. [108] for the two-loop effective potential implemented into SARAH [79], a nu-
merical derivation in analogy to ref. [109] allows to obtain the two-loop self-energies
at vanishing external momentum for the scalars which get a VEV. Moreover, since
ref. [80], a fully equivalent and diagrammatic calculation in the limit p? = 0 can also
be performed by SARAH and SPheno. Both approaches are used to cross-check the

two-loop results. We give more details about this calculation in section 3.2.3.

3.2.1 Threshold corrections

The presence of additional vectorlike states change the relations between the running DR
parameters and the measured SM parameters. In the gauge sector, the relation between
the SM couplings (MS scheme with five flavours) and the DR ones are

_ a(5),m

aPR(ay) = S, (3.16)
_ NOMS

aDR (M) = %. (3.17)

- 11 -



(5),M3

Here, ag and o/(5):MS

are taken as input and receive corrections from the top loops as
well as from new physics. For the minimal model, the thresholds read

Aa(p) = = (; - % m“ﬁ - Zl m“% MSSM@)) (3.18)
=3

Aas(p) = %f (—gz L Zl og " MSSM(M)) : (3.19)
3

We absorbed all corrections which don’t change with respect to the MSSM in AaSSM (1)
and AaMSSM(y,). Note, this does not include the up-squark sector, now consisting of 8

squarks, to prevent double counting. In the case of the UV complete model, additional
terms of the same form show up.

To relate o to the running couplings ¢g; and gs, the running Weinberg angle sin ©
and the electroweak VEV in DR scheme are needed. Also here the vector-like tops enter
because of the new loop corrections to the mass shifts 6% and §M7, of the gauge bosons.
The corrections from the extended (s)top sector to the transversal self-energies are

8 8 8
AIT#(p?) = +3 Z Ao ( )Fz,z,a:;,aa —12) > " [Tza: 41> Boo (pQ, ms,, m§b>
a=1b=1
4 4
+ 3 Z Z |:<‘FZ Ua,Up ’2 + ’FZ ua,ub‘ )HO <p27 m’LQL(ﬂ m’%%)
a=1 b=1

+ 4By (w2, m? )muamubé)%(rz s By)] (3:20)

8 6
AHWT 12ZZ‘FW+U, db’ B()O(p md 7m >+32A0< )wa’WJr’ﬂ;’@a
a=1 b=1
4 3
+3) D, [( Dit away )+ 100+ 0.0, >H0<p2mﬁa,m§b)
(1:1 :]_

—'I' 4B0 (pQ’ mia, mgb)mdbmua%(rw_', g dbr%+yﬁa:db)i| (321)

with
Hy(p,m1,mga) = 4Baa(p, m1, ma) + Go(p, m1,ma), (3.22)
Go(p,m1,ma) = (p* — m} — m3)Bo(p, m1, ma) — Ag(m1) — Ag(ma), (3.23)

1 1 1
Boo(p, m1,ma) = 5 { 3 <A0(m1) + Ao(m2)> + (m% +mj — 2P2> By(p, m1, m2)

m3 —m? ) )
+ 2p2 |:A0(m2) - A()(ml) - (m2 - ml)BO(pu m17m2):|
1
+mi+m; - o } (3.24)

The appearing vertices are given in appendix A.1. All other contributions are identical
to the MSSM and given for instance in ref. [56]. With that information, v and sin? @D
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are calculated by

2 DR :n2 DR
1 — sin® ©p) sin® Oy
waPR

v? = (M% + 5M§)( (3.25)

- DR
sm?ORF = 1 — [+ ___T@ .
2 4 V2M2Gp(1-46,)

(3.26)

Here, GF is the Fermi constant and ¢, doesn’t receive new corrections compared to the
MSSM (Expressions for d, can be found in [110]). Also here the spectator fields in the UV
complete version will show up in a similar way because their contributions don’t vanish
even in the limit that all superpotential and soft-breaking interactions of those are assumed
to vanish.

The running Yukawa couplings are also calculated in an iterative way. We concen-
trate on the quark sector, because the leptons don’t get new contributions from the new
vector-like quarks at one-loop. This is also true for the UV complete model because these
contributions are proportional to the superpotential interactions which we assume to van-
ish for the £/ and ' states. The starting point are the running fermion masses in DR
obtained from the pole masses given as input:

_ DR DR,2 _ _
DR,SM @ 23ag 3  Dr2 13 Dre2
s — 1— _ e ’ 2
Mo b ( 3r Tor2 T 128m2% 11527291 (3:27)
DR DR,2 — —
DE.SM ag 23&5 3 DR.2 7 DR,2
SM_ 1— — — ’ 3.28
e e ( 3 Tor2 T o822 11527271 (3:28)
- 1
mpP M = o, [1 + 162 (Amgl)’qai + Amgz)’qu + Amgl)’ewﬂ (3.29)
v
with
16malR M?2
At — _ 2T8S (5+3log 5) (3:30)
3 my
ppiet _ 0o (1 201 w2 () 128\ ME s () MY
L 3 24" 38472 12 Sm2 ' 3272 °? ' 32a2 \ 0
(3.31)
1), 4 DR . DR M2
Am§ )ew _ _§g£)R,2 sin? ODR <5+310g m?) ) (3.32)

The two-loop parts are taken from ref. [111, 112]. The DR masses are matched to the
eigenvalues of the loop-corrected fermion mass matrices calculated as

mgclL) (1%2) _ mScT) B ES(P?) _ fJR(pf)m;T) _ m;T)ij(p?) . (3.33)

Here, the pure QCD and QED corrections are dropped in the self-energies ¥ because they
are already absorbed in the running DR masses. The self-energy contributions from the
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extended (s)top sector to down-quarks are

2 4
d.S, 2 _ZZ (2 2 ) Lx R
X5 (p7) = Bo(p?,my, . m, Fdj,Ha LT P

a=1 b=1
8 2
2 .2 2 L R
+Y > By (p mes mﬂa)r FARTS b
a=1 b=1
2 2 2 Rx L
_ 42 ( + By (p My s mw_))F@’W_’meubfjhw_’% (3.34)
b=1
124
dR; 2y L 2,2 Rx R
X (07) = QZZBl(p ’m%’m )Fd],Ha ,ude},H;,ub
a=1 b=1
1 8.2
_Z 2 2 R+ R
2 2.2 B (p ms,m “a)rv Wt
a=1b=1 b b
4
_ 2 L L
S B <p m2,,m, )PW W (3.35)
b=1
d,L, 2 d,R,; 2
nE(p?) = pi ‘ . 3.36
(7)) =% (00) Lom (3.36)
The full self-energies in the up-quark sector read now
S22y 2 2 Lx R 2 2 2 L R
ZZJ (p )_BO (p 7mdh’ )PuJ,H;,dbmthil,H;7db+B0 (p 7muh7mha)1—‘uj7 ayubmul’ruci»ha7ub
2, 2 2 \1L R L R
+my. By (p ’mxzvmdb)rﬁ;i;,@ru“xa, +1mu, Bo (p My mA‘))Fufua A0 & g, A
4
2 2 2 Lx* R 2 Lx* R
+B0(p 2 M0, My )Fuj,ua,xgm Ful,ua X°+3quO(p m mﬁa)r?fj,ﬁa@l iy la,g1
16
2 2 2 Rx L 2 Rx L
—4<Bo (p 7mdb7mW7))Flfj,w+,dbmdbr7fi7w+,db_§BO (p ’mub’O)F g ML g,
2 R L R L
— 4By (p amubﬁo)ruj*;y up TV Fu1 v, ub_4B0 (p muw )FuJ*Z ubmubri,;,Z,ub (337)
Ry 2 Rx R 2 \pRx R
Ty (%)= Bl (p Mg, m a)ruJ,Ha ,deui,Hj,db Bl (p mub’mha)rij,ha,ubr'@,ha,ub
1 2 2 2 Rx R 2 Rx R
—h (p ’mx;’m&bﬁ@:&a,&ra,~3za,db_531 (p X mA")Fua»uw% i , AY
1 2 2 2 Rx R 2 Rx* R
_§Bl <p ’m9227mﬁa>ru7,ua,xbrul,umx0_gBl(p m maa)rujj7aavglr7fivﬁaagl
4
L 2 Lx L
- B (p mdbamW )Fu W+ dbrui,wtdb_gBl (p 7mub’0)rug7g ubrui,gyub
2 L L L L
_ B (p ,mub,o)ru;7 Wl =B (p m2,,m )ru;"z%ruz,z’ub (3.38)
Lo 2 R/ 2
) =3 ) (3.39)

(L+R)

Because of the length of the expressions egs. (3.37)—(3.39), the sums over internal generation

indices @ and b are understood. All necessary vertices are listed in appendix A.2.' The

!The rotation matrices of the external states (marked as Z in the expressions for ) have to replaced by

the identity matrix since the corrections to the mass matrices are calculated.
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Figure 3. Running top Yukawa coupling (Y,23) at the SUSY scale as function of Y for two different
values of Mp:: 1.0 TeV (blue) and 3.0 TeV (dotted red).

eigenvalues of mgclL) (p?) must fulfill
1L DR,SM DR DR,SM
Eig [mé )(p2 = mi)} = (md ,mSDR’SM,mb ) (3.40)
Fig [mSL) (p? = mz)} — (mBT,SM’mET,SM’m?ﬁ,SM’m?T> (3.41)

with the DR-masses taken from egs. (3.27)—(3.29). In addition, the rotation matrices
diagonalizing m&lL) and m,(}L) are constrained by the measurement of the CKM matrix.
One can use these conditions and invert eq. (3.33) to get expressions for the tree-level mass
matrices, which are then used to calculated YCPT{ and YQPT{. Since the self-energies depend
on the Yukawa matrices, the entire calculation has to be numerically iterated until a stable
point is reached.

After the calculation of the gauge and Yukawa couplings at My is finished, the two-
loop RGEs shown in appendix B are used to run the couplings up to Mgygy. Since in all
calculations the masses of the SUSY states at Mz are needed, also a two-loop running of
all parameters from Mgysy to Mz is done to get the running tree-level masses at M.

The effect of the threshold corrections on the running value of the top Yukawa coupling
(Y,33) at the SUSY scale as a function of Yy is shown in figure 3. We have used two different
values of Mr: 1 and 3 TeV. In addition, we fixed tan 8 = 3 and all soft-masses to 1.5 TeV.
In total, this effect can be as large as a few percent and is larger for smaller My because
the t — ' mixing becomes larger. This already gives an important change in the MSSM-like
corrections to the Higgs states which turn out to be of order of a few GeV, as we will see.
One might wonder why the values for the top Yukawa don’t agree for Yy = 0. The reason
is that the threshold corrections to g3 are always present and they depend on M7/, even
if other couplings of the vectorlike states are absent. This changes the prediction for gs
which enters (i) the SM and MSSM part of the thresholds corrections, and (ii) the RGEs
when running from My to Msysy.

While a study of flavour physics in this model is beyond the scope of this paper, we
want to briefly comment on the expected effects. The CKM matrix in this model is a 4 x 3
matrix and we adjust the Yukawa couplings Y, and Y, in our study in a way that the 3 x 3
sub-matrix assigning the couplings between SM-quarks is in agreement with measurements.
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Figure 4. Absolute size |Vy,| of the CKM entries between the vectorlike top states and the SM
down quarks ¢ = u, s,b. The colour code is |Vyr4| (full blue), |Vys| (dotted red), and |Vip| (dashed
green). We fixed here M7 = 1TeV.

The last column of the CKM matrix carries the elements Vi, which define the size of the
flavour changing charged currents between the vectorlike top and the SM down-quarks.
The size of |Vy,| is constrained by the measurements of flavour violating processes which
are known to a high precision and which are in agreement with SM predictions. In ref. [113]
the following limits were derived at 3o:

Vyal <0.01, |Vis| <0.01, |Viy| <0.27. (3.42)

We show the prediction of these elements as a function of Yy in figure 4 for Mp = 1TeV.
One can see that the obtained values are well below the current bounds. The main reason

for this is that we assume Yt,l and Yt? to vanish.

3.2.2 One-loop corrections

A generic one-loop calculation with SARAH and SPheno was introduced in ref. [114]. The
procedure for this is as follows. First, all running tree-level parameters are calculated at
the SUSY scale. The g; (i = 1,2,3) and Y; (i = e, d, u) are obtained by running up the DR
values calculated at My, the Higgs soft-masses m%,d and m%{u are derived from the tadpole
equations egs. (3.5)—(3.6). Using these values all tree-level masses are obtained and §M%
is calculated. This quantity is needed to get the correct electroweak VEVs at the SUSY

scale from the Z-boson pole mass Mé’p‘)lo and tan 3 via

2, 2
pSUSY — \/gl 192 (MR —5M2), vy =0""Ycos B, v, =0 Vsing. (3.43)

With these values the tree-level masses are re-calculated and the calculation of the one-loop

)

corrections is started. Here, first the one-loop corrections (5t§1 to the tadpole equations T;

are needed. The changes compared to the MSSM stemming from vectorlike tops are:

4 8
6140 = 463 Ao (m2, ) (T e + T8 o) = 3D Ao(m2, )iz (344)
a=1 a=1
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with ¢ = u,d. All other corrections are identical to the results of ref. [56]. Afterwards, we
need the one-loop corrections to the scalar Higgs mass matrix. Here, the vectorlike top
quarks contribute to the scalar self-energy IT(p?)

Hu U =6 Z Mg Z By (p mu ) mub) M (FLZ*“a’ub ngvﬂm“b FR:“‘““I’ Fé/j’ﬂa’ub>
=3 Z AO( Ua) iP5 Uy Ua + 3 Z Z BO (p mu ,m2 )F;iya37ﬂbr¢j7az’ﬂb ’
a=1 b=1
(3.45)

The necessary vertices to calculate ottt and It (p?) are given in appendix A.3. We can
now express the one-loop corrected mass matrix of the scalar Higgs by

. ié%ﬁt(l) 0
2,(1L 2,(T u, i
) = 1 ) ( 0 L)

M;SMLLEI ) 0

MSSM /. 2

+H}‘{77f (p )+ }é{ 0 1 5;\{/[281\/[15(1) (346)
Here, H;\{/IESM and 6;\{/[281\415213 are the MSSM results without any contributions from up

2 2,(1L)

(s)quarks. The eigenvalues my, - of mj, correspond to the loop corrected Higgs masses.

Since, mi’(lL) (p?) is a function of the external momentum, this calculation is usually iter-

2,(1L)(

ated until a stable solution m; m%l) for each eigenvalue is found.

Previously, the one-loop corrections in this model have been calculated in the effective
potential approach [47]. This calculation is equivalent to ours in the limit p?> — 0. Thus,
by checking this limit we can easily estimate the error introduced in these calculations by
that approximation. Since the additional fermions and the scalars are usually heavier than
the desired Higgs mass of 125 GeV, one can expect that the momentum effects are rather
moderate. However, before we discuss this in detail, we go one step further to the two-loop

corrections.

3.2.3 Two-loop corrections

It is very well known that two-loop corrections in the MSSM are crucial: they can give a
large push to the Higgs mass and are the only chance to get agreement between the Higgs
mass in the MSSM for moderate SUSY masses (< 2TeV) and the measurement of about
125 GeV. This mass is out of reach only using one-loop corrections. This is not necessarily
the case for models with vectorlike quarks: if the new couplings to the SM-like Higgs are
large enough, even one-loop corrections might be sufficient to find a sufficiently large Higgs
mass. Nevertheless, there are good reasons to consider also the two-loop corrections: to
be able to make any meaningful statement in the considered model if a point is excluded,
the difference to the measurement must be larger than the theoretical uncertainty. At
one-loop the theoretical uncertainty in the Higgs mass prediction can easily be 10 GeV or
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Figure 5. Two-loop diagrams giving contributions to the effective potential O(a;a,) and O(ay as).
Here, the indices of up-quark generations (u;) run from 1 to 4, and those of up-squark generations
(t;) from 1 to 8.

more, i.e. it is not possible at all to restrict many regions of the parameter space by a
one-loop calculation. Of course, also the opposite might happen: points which are in good
agreement at one-loop can be ruled out by a two-loop calculation.

For this reason, we are going to give details about a two-loop calculation including
the dominant corrections. ‘Dominant’ in this context means all contributions excluding
those of the electroweak gauge couplings g1 and go. That’s the same precision which is
also usually considered for the MSSM. The remaining electroweak corrections, together
with the missing momentum dependence and the unknown higher-order corrections are
estimated to a remaining uncertainty of about 3 GeV. In the MSSM the most dominant
two-loop corrections are those involving the strong coupling constant gs because of large
colour factors. The diagrams which contribute in the MSSM are depicted in figure 5. In
the model at hand with vectorlike tops, the diagrams are actually the same but with a
sum over a larger number of (s)quark generations. The obtained corrections from these
diagrams are O(aqas) and O(apay) with ap = (Y,33)? /4w, ap = (Y;3)? /4.

The next important contributions from the MSSM are those of O(a?). These come
from diagrams involving (s)tops and Higgs states respectively Higgsinos. Also here, the
diagrams shown in figure 6 are the same as in the MSSM, but the sums over (s)fermion
generations are extended. These diagrams give contributions of the order O(a?), O(ayay)
and O(a2). Also the corrections O(ay(ap + ir)) with ap, = (Y33)?/(47), ar = (V33)%/(47)
are known in the MSSM. Especially for moderate values of tan S these corrections are
less important. Nevertheless, in our calculations also these corrections together with the
counterparts O(ay (ap + 7)) are included.

SARAH and SPheno offer two possibilities to calculate the two-loop corrections to scalar
Higgs masses: either a purely effective potential calculation can be done. In that case, the

(2L) and the derivatives of

diagrams as shown in figures 5 and 6 are calculated to get Veff
the results with respect to the Higgs VEVs are taken to get the two-loop corrections to the

tadpoles and self-energies

5t(2L) - aveff,(ZL) H(2L) B 62veff,(2L)
i - 6’Uz‘ & - 8’1)1'(9’1)3'

However, this involves a numerical derivation which sometimes suffers from numerical prob-

(3.47)
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Figure 6. Two-loop diagrams giving contributions to the effective potential O(a3), O(a3 ), and
O(aiayr). Here, ®° = {h, H,G° A"}, ®* = {H* G*}, & = {®°,®*}. The index ranges are:
O(1,2); xO(1 = 4); x*=(1,2); w(l = 4); d(1 = 3); a(1 — 8); d(1 - 6).

lems and rather large uncertainties. Thus, the second method implemented in SARAH and
SPheno is often the preferred one: this method employs a diagrammatic calculation where
the external Higgs legs explicitly show up. Even if this leads to a much bigger set of
two-loop diagrams, the calculation is not necessarily slower. All diagrams are evaluated
L) and HZ(?L as the first

in the limit p? — 0, i.e. the results give equivalent results for ot;
method does.

Given the two-loop corrections, the loop-corrected Higgs mass can be expressed by

Lt 4 5t PF) 0
mi,(2L)(p2) _ mi,(T) + H(IL)(pZ) + H(QL)(O) _ (vd( d . d ) i((stgm + 5t&2L))> )
(3.48)
Here, we have no longer distinguished between corrections involving vectorlike tops or not,
but used I and §t(XL) for the sum of all contributions. The eigenvalues m%% fulfilling
(QL)( 2

Eig(mi’ mj )) = mj_are associated with the scalar pole masses. In the following, the

smaller value m%l corresponds to the SM-like Higgs boson and we are going to use the
short notation my, = , /m%b1 for it.

Before we turn to the full calculation, we want to discuss briefly the importance of
the different contributions at two-loop. For this purpose we depict in figure 7 the different
two-loop contributions to the Higgs mass matrix:

_ 1
My = 03" — 6,6t i=d,u. (3.49)

Vi
It turns out that the corrections O(ayap) are negligible. The corrections O(aya,) are
even much smaller and therefore not shown in figure 7. We consider here two different
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cases: vanishing Ty and Ty = 2000 GeV - Yy. In both cases we find that the most dominant
contributions are those involving the strong interaction what’s similar to the MSSM. The
next important ones are those O(aycy), while the O(a?) contributions are moderately
small. Here, the difference compared to the MSSM corrections O(asa;) and O(a?) which
often cancel to some extent, is that here the contributions come with the same sign. We
also see that for most contributions the impact on the (1,1) element is the largest one, i.e.
the dominant part of these contributions come from F-terms ~ pYy. Thus, the new two-
loop corrections are expected to be more important for parameter regions where the light
Higgs has a larger H, fraction. The main differences between the cases of vanishing and
non-vanishing Ty is that the corrections involving the strong interaction to (1,1) become
smaller, while those to the (2,2) increase. Also the O(ayay) contributions to the (2,2)
are enhanced. Thus, another region where the new two-loop corrections are expected to
become important are those with large trilinear soft-terms T} .

4 Results — Part I: the Higgs mass

Before we turn to our main results, namely the discussion of the fine-tuning in the UV
complete model, we want to discuss the importance of the different Higgs mass corrections
we have included. For this reason we consider first the minimal model with the MSSM
extended by vector-like tops only. To deal with the large number of free parameters at the
SUSY scale when not considering an UV embedding, we make the following assumptions
about the MSSM soft masses:

m2 = m% = mfz =m?= mlg =1-(1.5TeV)?

M; =0.5TeV, My =1.0TeV, My =2.0TeV

T,.=1Ty=1.=0.

Moreover, we fix usually the MSSM parameters
p=10TeV, M3 = (1TeV)?
and for the new sector we assume if not stated otherwise

Ty =my =B =0

mt% = mtg, = (1.5TeV)?.

In addition, the most important SM parameters were chosen as

alS(My) =0.1180, m)S(mp) =4.2GeV, mP® =173.2GeV .

For current limits on the top partners from direct searches are below 800 GeV [115, 116],
we usually use 1 TeV for My to be safe. However, these scenarios can be tested with Run-I1
at the LHC. The LHC will be sensitive to the new vectorlike tops at about my < 1500 GeV
in Run II (estimated for /s = 14TeV) and up to 2600 GeV at /s = 33 TeV [116].
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Figure 7. Two-loop contributions the Higgs mass matrix involving vectorlike (s)quark.

We used

here My = 1.0 TeV and put all soft-mass terms to 1.5 TeV. On the left, we set T3y = 0, on the right
Ty = 2.0TeV - Yy, Dashed lines are for the (1,1) element, full lines for the (2,2) one, and dotted
lines for the off-diagonal contribution. In the first three rows we plot the individual contributions
O(a?), O(ayay), O(apas), while the last row shows the sum of all contributions.

Even stronger constraints could be obtained with the high-luminosity option of the LHC
considering the changes in the effective hyy and hgg vertices [54].

As already mentioned we employ the combination of the computer tools SPheno and
SARAH for all numerical calculations: we have implemented the minimal model with vec-
torlike tops as well as the UV complete variant in SARAH version 4.5.3 and the model files
will become public with the next release of SARAH. SARAH was used to generate Fortran
code for SPheno. The obtained Fortran routines include automatically all new features
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from vectorlike stops discussed in the last sections which are necessary for the precise Higgs
mass calculation. Also routines for the calculation of flavour observables and decays widths
are generated by SARAH. However, we will not go into details in these aspects of this model
here. We are just using the FlavorKit results [117] to double check that all points are in
agreement with current bounds from flavour observables. This is, of course, expected as
we already discussed in section 3.2.1. The Fortran code written by SARAH was compiled
together with SPheno version 3.3.6. For all parameter scans in the following we have used
the Mathematica package SSP [118].

4.1 The difference between one-loop effective potential, full one-loop and two-
loop

We check the importance of the corrections calculated here for the first time. For this
purpose we compare in figures 8-10 the prediction for the Higgs mass calculated

(i) at one-loop with vanishing external momenta but including thresholds,

(ii) at one-loop with full momentum dependence but neglecting the threshold corrections
to SM gauge and Yukawa couplings,

(iii) at full one-loop including the full momentum dependence and all threshold correc-

tions,
(iv) at full one-loop with dominant two-loop corrections.

The one-loop calculation without external momenta is equivalent to the calculation per-
formed in the effective potential approach. For all three figures we have put My = 1TeV.

In figure 8 we compare the results for two different values of tan 8: 2 and 10. While
there is a large difference already at tree-level, the impact of the loop corrections is similar
for both values of tan 8. Thus, we find that m; ~ 125GeV is found for Yy ~ 0.9 (0.6)
for tan 5 = 2 (10). Including the momentum dependence in the one-loop calculation of
the vectorlike states can account for changes up to 2 GeV for large Yy and are negative.
In contrast, for the considered scenario the two-loop corrections are of a similar size, but
positive. However, the biggest difference are caused by the threshold corrections. Since
these can have a large impact on the top Yukawa couplings, we find that the prediction of
the SM-like Higgs mass can deviate by up to 5 GeV. This effect is more pronounced for
smaller tan 8. Note, even in the limit Yy — 0, we find a shift by about 1 GeV compared to
the calculation using only MSSM results. The reason is that the threshold corrections to
g3 don’t vanish even in this limit. Therefore, the running value of the top Yukawa coupling
entering the loop calculations changes slightly, which has still a visible effect on the Higgs
mass. The absolute size of the one-loop corrections can grow up to 30 GeV for both values of
tan B, while the two-loop corrections are smaller by about a factor of 10. When we compare
these numbers with the purely MSSM corrections, we see that the one-loop corrections can
become as important as the MSSM ones, while the two-loop corrections can reach about
half the size of the MSSM two-loop corrections.
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Figure 8. Top left: light Higgs mass as function of Y. The red line corresponds to the effec-
tive potential calculation at one-loop, orange is the one-loop corrections with external momenta
but neglecting the new threshold correction stemming from vectorlike states, blue is the full one-
loop calculation including the momentum dependence and all thresholds, and green includes the
dominant two-loop corrections together with the full one-loop correction. Top right: impact of
the threshold corrections (red), the momentum dependence at one-loop (orange) and the two-loop
corrections (green), given as the difference Amy, = my, —my (1L, p? # 0, all thresholds). Note: this
plot shows only contributions stemming from the new vectorlike-top sector. Bottom left: absolute
size of the one- (blue) and two-loop (green) corrections stemming from the vectorlike states. Note,
for better readability we re-scaled the two-loop corrections by a factor of 10. Bottom right: relative
importance of the one- (blue) and two-loop (green) corrections normalized to the size of the purely
MSSM-like corrections. The full lines are for tan 5 = 10 and the dotted one are for tan § = 2. We
used here My = 1.0TeV, By = 0.

We have identified in section 3.2.3 two regions where the new two-loop corrections are
expected to be even more important. The first region is the one with non-vanishing T}.
This is studied in figure 9 where we set Ty = 2000 GeV - Yy. In addition, we check also the
effect of By+r. For By = 0 the differences to the results with 7y = 0 are not very large: the
corrections from the momentum dependence and the two-loop terms are of the same size
and come with different signs. The largest effect is again from the threshold corrections.
However, if By becomes large and causes a mass splitting for the vectorlike stops, the
picture changes. Now, the most important effect comes from the two-loop corrections
which can become as important as the MSSM ones. For Yy values of O(1) this can reduce
the Higgs mass prediction by more than 10 GeV and easily over-compensate the two-loop
corrections from the MSSM sector.

~ 93 -



155 F 10k
150 F
gL
145 F —
> z 6l
o 140F O
O, = 4f _-
~ 135F = ==
S q30f a 2 S —
125F oL
120 F iy
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
20F 50
—_— 0 L
> — [
) —20F X 0
o, 10x -
s T £ sof
= ~
N —60 4
<
—80F ] —-100 [
~100 F
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Yo Yy

Figure 9. The plots show the same results as in figure 8 when including non-vanishing 7. We
used Ty = 2.0TeV Yy, tan = 5 and Ty,33 = —2500 GeV. The full lines are for By = 0, while the
dotted ones correspond to By = (1.5 TeV)2.

The other region we identified where the two-loop corrections can be important is the
one where the SM-like Higgs has a larger down-type fraction. This happens if Mf‘ becomes
small. We discuss this case in figure 10 for zero and non-zero By again. In particular
for the large By the two-loop contributions can clearly make the biggest effect compared
to the incomplete calculations used so far. These are again negative and can reduce the
SM-like Higgs mass by up to 8 GeV. Thus, while it seems that one can reach the preferred
mass of 125 GeV at one-loop with Yy < 1, with the two-loop corrections this is not possible
for the considered combination of parameters. Although if By is taken to be zero, the
effect can still be large and the overall size of the new two-loop corrections is still in the
ballpark of the MSSM corrections.

4.2 Dependence on the vectorlike masses, stop masses, and the gaugino mass

As a next step we want to understand the dependence of the loop corrections on the involved
masses a bit more. We start with the dependence on the vectorlike mass parameter My
and Bps and show in figure 11 the Higgs mass at the one- and two-loop level. At one-loop
we have the well-known picture that the corrections quickly decrease with increasing mass
of the vectorlike states, while the dependence on By is small and just shows up for smallish
My of 1 TeV and smaller and large | By/| > 2.0 TeV? for Yy = 1.0 and Ty = 0. This general
picture does, of course, not change at two-loop but we find a shift by several GeV usually
dominated by the MSSM-like corrections. The two-loop corrections from the vectorlike
states are singled out in the right column of figure 11. They don’t show this strong My
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Figure 10. The plots show the same results as in figure 8 for smaller M3 = 10° GeVZ. We put
Ty =T, =0, and tan 8 = 3. The dashed lines are for By» = 0, while the full ones correspond to
BT/ = (15 TeV)2.

dependence as the one-loop corrections do, and actually slightly increase with larger M.
Also the dependence on Bp is more pronounced at two-loop. If we go for smaller Yy and
turn on 7y the one-loop corrections in total become smaller and are less dependent on Bypr.
However, the sensitivity at two-loop and M7 and By is nearly the same, but just the total
size of the corrections decreases.

We have so far just concentrated on the dependence of the Higgs mass corrections on
the new parameters absent in the MSSM. We want to finalize our discussion of the loop
corrections by also briefly commenting on the impact of at least two MSSM parameters:
the gluino mass parameter M3 and the soft-mass for the left-handed stop, mg 33. We start
with the dependence on the gluino mass shown in figure 12. Here, we vary Yy and use
gluino masses between 1 and 4 TeV. At the one-loop level there is of course just a tiny
impact on the Higgs mass. The small difference comes from SUSY threshold corrections.
For M7 = 1.5TeV and 3.0 TeV we find that with increasing M3 the two-loop corrections
O(agay) become larger. Since they are negative, the prediction for mj; becomes smaller.
However, for large My the dominance of the corrections O(a?) is so large that this effect
nearly doesn’t play any role.

Finally, we check the impact of the soft-masses for the left-handed stops. The one-
and two-loop corrections as function of Yy and mg33 = 1,2,3,4TeV are summarized in
figure 13. We see that this parameter plays an important role at one-and two-loop: at
one-loop, the corrections increase by a factor 2 when going from 1 to 4TeV. At two-
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Figure 11. Contour lines of constant my at one- (left) and two-loop (middle) in the (Mg, By)
plane. The plots on the right column show the size of the two-loop corrections involving vectorlike
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Figure 12. On the left: the light Higgs mass my, as function of Y;.. Here, we used different values
for Ms: 1TeV (red), 2TeV (blue), 3TeV (green), 4TeV (orange). The full lines are the two-loop
results, the dotted ones the one-loop. On the right the absolute size of the one- (blue) and two-loop
(green) corrections involving vectorlike states. The line coding is dashed, dotted, dot-dashed, full

for increasing Ms.
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Figure 13. On the left: the light Higgs mass mj, as function of Y. Here, we used different
values for mg33: 1 TeV (red), 2 TeV (blue), 3 TeV (green), 4 TeV (orange). The full lines are the
two-loop results, the dotted ones the one-loop. On the right the absolute size of the one- (blue)
and two-loop (green) corrections involving vectorlike states is shown. The line coding is dashed,
dotted, dot-dashed, full for increasing mg,33.

loop this effect is even more important and the corrections change by nearly a factor of
3. Interestingly, the one-loop corrections are larger for larger squark soft-terms, while the
two-loop corrections increase with decreasing squark masses.

5 Results — Part III: the fine-tuning in gauge mediated SUSY breaking

We now turn to the consequence of the loop corrections for the fine-tuning in minimal
GMSB. The intrinsic problem of minimal GMSB in the MSSM is that it predicts very small
trilinear couplings. Thus, the only chance to enhance the Higgs mass via loop corrections
is to go to very large values of A and M to get sufficiently heavy stops. When calculating
the fine-tuning for this setup and demanding my ~ 125 GeV, one finds that the fine-tuning
A is well above 1000. Of course, in the presence of large loop corrections due to vectorlike
states, the need of superheavy stops is relaxed and the fine-tuning is expected to improve.
We show in figure 14 the fine-tuning in the (tan f,Yy) plane for different constraints for
the Higgs mass within the theoretical uncertainty: (i) my = 122 GeV, (ii) m; = 125 GeV,
(iii) mp = 128 GeV. For the vectorlike states, masses of 500 and 1000 GeV were used at
the messenger scale.

One finds that the fine-tuning quickly drops with increasing Yy because lighter SUSY
states are sufficient to push the Higgs mass to the desired level. For very large Yy of O(1)
and the looser constraint of mj; > 122 GeV, even a fine-tuning of about 100 seems possible.
There is also another, very interesting observation: even for Yy = 0 the fine-tuning in
this model is not as bad as one expects it from the MSSM. The reason is that the strong
interaction at the messenger scale is larger compared to MSSM expectations because of the
different running. Therefore, for the same value of A, the squarks are already significantly
heavier and lead to larger Higgs mass corrections.

However, including the bounds from direct SUSY searches has a large impact: the
points with a small fine-tuning are excluded because of the light gluino mass. That’s
completely different to the GMSB variant of the MSSM where the Higgs mass pushes the
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Figure 14. Contours of overall fine-tuning A in the (tan 3, Y}y )-plane demanding a Higgs mass
my, = 128 GeV (top), my, = 125GeV (middle), and my, = 122 GeV (bottom) for the UV complete
variant of the model. We fixed here M = 107 GeV and My = 0.5 TeV (left column), respectively,
My = 1.0TeV (right column). The red dashed lines indicate the gluino mass in GeV.
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Figure 15. Minimal fine-tuning for given Higgs mass mj and gluino mass mgz. We fixed here
M =107 GeV and M7 = 1TeV and scanned over tan 3, Yy and A.

fine-tuning of the model to higher values. In this model, the vanishing trilinear couplings
at the messenger scale just play a subdominant role concerning the fine-tuning, but the
gluino mass demands a larger SUSY scale A, which increases the fine-tuning. The situation
wouldn’t change if we go to larger Messenger masses to increase the running because the
one-loop f-function of M3 vanishes in this model and the mass is actually slightly decreasing
with increasing M. Moreover, it’s a general feature of GMSB that the gaugino masses are
not very sensitive to the messenger scale because the leading dependence in the RGE
running always drops out. The running gaugino mass at the SUSY scale is related to the
one at the messenger scale by the ratio of the corresponding gauge coupling at both scales:

9;(Q)
g; (M)

We show the minimal fine-tuning in the (mg, ms) plane in figure 15. It is interesting that the
fine-tuning for mj; = 125 GeV can be smaller than for my = 122 GeV and mj = 128 GeV
when the gluino mass is sufficiently large.

= 2(Q)A¢. (5.1)

For very large Yy where the FT becomes the best, the theory is not perturbative up
to the GUT scale. Since there is a cut-off anyway in the theory, there is no real need
to maintain gauge coupling unification by adding the spectator fields at the SUSY scale.
Therefore, one might wonder what the FT of the minimal model is. This is depicted in
figure 16. In this setup, the squarks are lighter for the same values of M and A because of
the smaller strong coupling at the messenger scale. Thus, in general larger A is needed to
increase the Higgs mass. This leads also to larger gluino masses. This is shown in figure 17
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Figure 16. Contours of the overall fine-tuning A (left) and the mass of the lightest up-squark
(right, full blue lines) and gluino (right, dashed red lines) in the (tan 8,Y} )-plane demanding a
Higgs mass my > 122 GeV for the variant of the model without spectator fields. We fixed here
M =107 GeV.

where we compare the minimal value of A to get a Higgs mass larger than 122 GeV in the
(tan 3, Yy) plane for a messenger scale of again 107 GeV, and the resulting stop and gluino
masses triggered by this A. We find for the minimal model the following fine-tuning

A ~ (230,275,320, 380) (5.2)

for mg > (1000, 1200, 1400, 1600) GeV and mj, > 122 GeV.

Since the gluino mass is the main source for the fine-tuning in this model, it might be
interesting to combine the vectorlike (s)tops with a GMSB variant which predicts larger
gluino masses without the need to increase A. However, such a GMSB model hasn’t been
constructed in literature so far to our knowledge.

6 Conclusion

We discussed the loop corrections to the light Higgs mass in the MSSM extended by a
pair of vectorlike top quarks. We have improved previous calculations in literature in three
respects: (i) we included the additional threshold corrections from the vectorlike states to
SM gauge and Yukawa couplings, (ii) we added the full momentum dependence at the one-
loop level, (iii) we calculated all dominant (i.e. excluding electroweak) two-loop corrections
in the effective potential approach. It has been shown that the momentum effects can
be sizeable and change the Higgs mass prediction by a few GeV. The effect from the
threshold corrections turns out to be often more important. The importance of the two-
loop corrections strongly depends on the considered parameter point. They are often a
bit smaller than the two-loop corrections known from the MSSM, but we also identified
regions where they can be even larger. In these regions, the additional two-loop corrections
can change the Higgs mass prediction by up to 10 GeV.
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Figure 17. Contours of constant A (grey), the lightest top-squark mass (small-dashed blue lines)
and gluino mass (dashed red lines) in the (tan 3, Y )-plane demanding a Higgs mass my, > 122 GeV.
All contours are given in units of TeV. On the left side the UV complete model is shown, on the
right the model with only vectorlike tops. We fixed M = 107 GeV.

We checked the impact of the presence of vectorlike states on the fine-tuning in GMSB.
For this purpose, we extended the model by additional vectorlike quarks and leptons to have
complete multiplets of SU(5). We found that the fine-tuning can be reduced significantly
compared to minimal GMSB with only the MSSM particle content. Often, those regions
with the best fine-tuning which are in agreement with the Higgs mass measurement are
ruled out by gluino searches. Interestingly, we find that for heavy gluino masses the fine-
tuning for heavier Higgs masses can be even better. In particular, for mg ~ 1400 GeV, the
best fine-tuning is found for a Higgs mass of roughly 125 GeV.
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B Renormalization Group Equations
We give in the following the two-loop RGEs for the considered model. In general, the
RGEs for a parameter X are defined by

4
dt

1

2)
et (B.1)

LY
S Tl

Here, t = log (Q/M), with @ the renormalization scale and M a reference scale. For a
parameter x present in the MSSM we show only the difference with respect to the MSSM
RGEs

AB = ) — pMESH (B:2)

Where ,B;En) refers to the minimal model with vectorlike top quarks discussed here. The
additional difference to the UV complete version of the model is given as

AUVﬁg(Cn) = Bén),UV o B(n) ) (B?))

T

The calculation of the RGEs in SARAH is based on generic expressions given in
refs. [119-124]
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B.1 Gauge couplings
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B.3 Trilinear superpotential parameters
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0, - (oot so(07) - 2t 208 v (i),
(B.37)
8y = +(%%791+9192+ 25g§+4ifgfg§+89293+ gi-22((vevy ))2—5(E'YJYdYJ)
~ 92 (Yt Y] Yuy;,) (Yt Y ) (1693+692 9Tr(Y YT) +§ )+§g%Tr (YUYJ)

+ 16g§Tr(Yqu) —3ﬂ(YdeYqu) —9Ty (Y Yy, YT))Yt

+ (—3Tr (YdeT) +§gf*Tr (YEY;)> (YdTYd*Yt ) +z 91

(YTY Yt) +6g2 (YTYJY;/)Z_
- 13(Yt,Yt’f) (YuTYJYt/)i—9Tr(YuYT) (YTY Yy ) 2( Y vIY Yy, )
- Q(YTY*YdTYd*}Q ) (YTY*YUTYU Yt) (B.38)

AVVED (67592+80093—|—91g1)Yt (B.39)

75
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B.4 Bilinear superpotential parameters

ABY = 3u(y;,yf) (B.40)
ABP) = +§ (209§+gf)u(Yt/YJ) —9u((Yt/Y{f*>)2
+ 265 ( 25<Yt,Y YdYt’,‘)—i—4gl 75(Yt,YTY Yt)) (B.41)
AUV B = 9g2ﬂ+%91u (B.42)
Biiy, = 15 (15MT/ (Yt t/)+15(Yt/Y mt/)—8(5g§+93)MTf) (B.43)
52, = 42 DMt 20 Mt 2 b s (V7)) 2 (Vv vavy)

— oMy (Yt/YJYuYt,) 9 (Yt/YdT Yv mt/) —2<Yt/YJ Y, Y} mt/)

" (yt,yufmt,) (Ggg —6Tr (YUYJ ) - ggf)

+ (Y7 ) (6930 —GMT,ﬂ(YuYiT) —8(YeYime) - % giMr) (B.44)

AR = 7? (50934791 ) M (B.45)

B, =2(Mr (vaYi) +(vay) mt')z) 5 ° (50307 )mes (B.46)
B, = 21265 (13191+5093+8091g3)mt/ -

§(<2OMT/ (K/K,>+5(K/YTmt/>+MT/( 15g§+15Tr(YuYJ)+g%))(Yu ;r)

+ (—15g§+15Tr<YuYJ> +15(Yt/ )—|—gl) (Y YTmt/>

%

+5(Mp (VYY) +Mr (VYivaYs) +(YaYvarfme).

+ (vrfvyime) ) (B.A7)
16
UV a2 -

AVVEE) = == (5008 + gt e, (B.4S)

12
BME/ = _391ME' (B.49)

648
5ME, = gngE' (B.50)

1
BMQ, = 15 (4592+8093+91>MQ’ (B.51)
Bin = T (mg1 (1693+993 ) +25 (25694 +288g393+297g3 ) +289g1 ) Moy (B.52)

B.5 Trilinear soft-breaking parameters
ABD = 2(YdYti‘)iTt/7j+n/7j (TdY;:) | (B.53)
ABP) = —6Y,YT, (Y;Y) 31,YY, (Yt t,) _6Y,Y]Y, (Yth,)
+ Yd(—ﬁ(YijthTt,> 76< thde*m/) - 35 (5Og§M3+7glM1)) ‘;’gg;*Td
+ ?gg 3(1@1/ YaY, ) (TdY;,> (Yd Yd*Yt/> _74(Yd}QT)i<YdTYd*Tt/)j

o) (vrvive) () (v i), () (o)
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- 4(YdYt’f)i (TEYJ}@)J‘—%}@J ((SOTr(YJTu) +50 (Y;‘Tt/) +8g$Ml) (YdYt’f)i
+ (15Tr(YuYJ> +25 (Yth> —4g$) (TdYt,) +10< (YdYJTuYt’f)i

n (TdYJYuY’,‘) )) + 8,2 (YdY’f) Ty, — 10( ) (YdY’f) Ty
K3 1 1

5
- 6Tr (Y., (YdYt’f) Ty, —4<YdYJYuYt,) Ty (B.54)
oV — 715( (49g;*M1+675g3M2+8oog Mg)Yd+(49gl—|—67592—|—8OOg3) ) (B.55)
AUV — 715( (49g M, +675g4 Mj +800g% Mg)Yd+(4991+67592+80093) ) (B.56)
) = (( 24g;*+25(y;,yj YdY;’:‘))Te+Ye (50()/; YdYt’th/)
+ 50(Yt, 77 Yd*Yt/) +969‘1‘M1)> (B.57)
AUVBR) — 295( (2592+791)T +4<25g Mo+ 7 M )Y) (B.58)
ABg = 3(Yes ) Tu+4 (v Yt> Ty ;+5Y0 (TuYtT>i+6Yu (vi) (B.59)
ABY) =12V, YT, (Y;Y;) —15T,Y]Y, (Yth) —18Y,Y]Y, (Y;th,)
- 725}/ (2089 M, +800g2 M; +225 (Yt, Yd*n)+1350( T YJYt/)fG()gf (Y;‘Tt/>
— 120042 (Y{/‘Tt/) +30(n3@f) (291M1+409§M3+45 (YtTt)) +295 (Yj YdYt*th/>
F1350(VIYV Vi T ) )+ i+ S ATt 503 (V¥ ) Tt 163 (Vo ) o
2
- 9((3@&/;)) Tu—3(Yt/Yd YdY’f>Tu—IS(K,YJYUE/;‘)T“—G(TuYt’,‘)i(YuTYu*Yt/)j
-8(vayy) (virv: Tt/) -6(v.Y;). (TEYJYt/).
- %Yt,,j( (2glM1+3Og§M2+45Tr(YTT )+65<Yt,Tt/)) (Yuyj)i
+5(-3(4g3—5me (Vv ) - 7(veri) ) (7. ) +4(T., Yd)@,) +4(V YT ﬁ)i
n 6<TuYJYuYJ)i+8(YquTuYtT)i)) n ggl <YuYt’f)iTt/,j +6g2 (YuYti‘)iTt,J
- 18(Y;/Yj) (YuYt’f)iTm —12Tr (YuYJ) (Yuyj)iTt,,j
Q(YquYde) Ty —6(YUYJYuYtT) Ty (B.60)
AUV @ — 715( (675g§M2+8009§M3+9lg Ml)Y +(67592+80093+9191) ) (B.61)
W = +(11(Yt,Tt/>+69 M2+6Tr(YTT) SRM+T ggMg)Yt/ Z+(YdTYd*Tt/)i
n 5(YuTYu*Tt/)i+2<T(1TYd*§QI)i+4(T5YJ}Q/)i— %ngt,,i—ggth,,i— %6g§Tm
o+ 7(Ye Y ) T i+ 3T (VoY ) T (B.62)
o = +<7627—2354ng1 29795 M1 — 24752 T93 M, — 247529193 3*1693931\43*%93*1\43

— 29363 My — 3093 Mz — 169393 Mz —10 (Y T Vi Ve ) ~44 (Yo TT Y Vi)

— 38 —



8

+ 2ot (Y;‘Tt/) +12g2 (y;m,) 13242 (Yt*th/> - 10(Yj YdY;’th,) —42 (YTYuYtTTt,)

8

- gngm(YuYJ) 3242 MgTr(Y YT) —15(Yt,Tt/)Tr<Y YT) +5ngr<Y T, )

+ 32g§Tr(YjTu) - (Yt,Y’f) (1zg§M1 +16Og§M3+415(Yth,) +60g2 M

£ 90Tr (YT T, )) — 6Ty (YdYJ TV} ) —6Tr (Yuyj TdYJ) — 36Ty (Y YTTUYJ))Y;/7i
-+ (15Tr<Y*Td) 24 M1+5Tr(Y T, )) (YdTYd*Yt,) +03 (Y Yd*Tt,)_

4 T~ *

—giM, (Yu Y Yt)z

—12¢2M, (YuTYJn) A—24(Y{th/) (YUT Yth/) ‘—18Tr(YJ Tu) (YUTYJYt,) |

— 3Tr (Yde ) (YdT Yd*Tt,> Ty (YeYJ) (YdTYd*Tt,) g
K3 K3

+ 1242 (YuTYu*Tt/)i—QS (Ytyt) (YuT YJTt/)i— 15Tr (YuYuT ) (YuT Yu*Tt/)i
o t(agvin) oo (1) (o) (1)
o (TIveve) +ogd (TIveve) —as(vey ) (Ve ve).

12Ty (YUYJ) (TuT YJYt,)i—2(YdTYd*YdTYd*Tt,)i—4(YdTYd*Tg Yd*Yt/)i
. 4<YUT Y;Y}Y;Tt,)i 76(YHT Y;YUTYjTt/)Z_ 74(YUTYu*TdT Yd*Yt/>i

- S(YEYJTEYJE,) 4—4(TdTYd*YdTYd*Yt,) -2 (TTYijYd*Yt,) 4

T 3367 15 136
. 6<TTY YTy, Yt> 9T i+ 9193 Ty i+~ 93 Tv i+ —— 91 93T i+ 89393 Tv
450 2 45
g 4 . 2 * . 2 * X 2 * .
+ 9 gSTt’,z+291 }/t’}/t/ Tt’,z+6g2 Yt’}/t' Tt’,z+16.g3 }/t’}/t’ Tt/.l

- 27((Yt/Y’f))2Tt/,i—5(Yt/YijYf)Ttgi—24()Q/YJYUEQT)T,5/ i+ 5ngr(Y v, )Tt,,i
+16¢2Tr (Yuyj )Tm —12 (Yth) Tr (Yuyj ) Ty, —3Tr (YdYJ v,V )Tm
— 9Tt (YUYJ Y, v} )TN (B.63)

1
AUVAE = - (—4(67593 Mo+ 80093 My 9191 My ) Vi, + (67593 +800g3 +91g1 ) T i, ) (B.64)

B.6 Bilinear soft-breaking parameters
ABY) =3B, (Yt/Y’f) 6y (Y;th/> (B.65)
2 24
A8 = +B,(-18(vuvivayy ) -6 (Ve vavy) -o( (vevy)) + 551
4 4
+: (2003-+2) (viv7) ) - Sh n (2491 M+ 75 (YT Ve ) 4225 (VT Y Vo )

— 1003 (Y; T ) ~200g3 (Y Tor ) 45 (Yer Yy ) (203 My +40g3 My +45 (Y Ty ) )

+75 (Y; YdthTt/) +225 (ijm’m)) (B.66)
AV = 235( (75g My+7g° Ml)w (75g2+7g1)B ) (B.67)

2
BY), = = (1697 M1 Mz +8093 My Mz + B (15(Yi ¥ ) =8 (563-+.93 ) ) +15 (Yo v B )

+30M (Vi Ty ) +30(Vimo Ty ) ) (B.68)
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8384 512 512 128
225 1My My == =gt g3 My Moy = = glggMgMT/—Tgf%MgMT/

+ ggl 20 (VoY ) 126303 (Yo Y my ) - gg% (Yevd By ) +663 (Yevi By )

—9 (Y;,YijYjBt,) _2 (Yt,YuTYuYJ Bt,) —4Mp (Y;:TdT Yd*Yt,)

2
B, =

— 4Myp (Y;:TuT Yth/) - g 92 My (Y;’,‘Tt/> +12¢2 My (Y;*,‘Tt/)

- 16(Y;/ijt/> (YtTt> —4(ijt,Tde*n,) —4<ijt/Tngn) - %gf (ijt/Tt/)
+ 1242 (ijt,Tt/) —4AMy (Y; YdYt’th/) — 4 M (Yj YuYt“,‘Tt/)

- 4(Y; Y,y mt/Tt/) —4 (YJ Y, Y} mt/Tt/> —6 (Yt/YJ Bt/) Tr (YUYJ )

—12Mp (Yt’th/> Tr (YuYJ ) ~12 (YJ mt/Tt/> Tr (YUYJ )

n %BT/ (1048g1 +640¢2 g2 +400g3 — 900((1@ t,))2—225 (Yt/YdT YdY;;)

- 225 (Ve v, Yy )~ 45 (Yo ) (~ 1563 + 15T (VY ) 7))

— 12()@1@T mt/)Tr(YJ Tu)

+ (Yth) (% 92 My My —12¢2 My My —8(Yt,yj Bt,) —32My (Y;‘Tt/>

- 16(ijt/Tt/) —12MT,Tr(YuTTu)) (B.69)

UV p(2) _ 16
A BBT/ - 75

b = 17(15(2MT/ (1.v7) +2(Tu¥ime ) +Br (vavy) +(vaviBy) )

n 16(59 Mg—i—glMl)mt/ 4—8(593+91)Bt/ ) (B.71)

( <5Og§Mg+7glM1)MT/ - (5Og§+7g;‘)BT,) (B.70)

64
B0 = — 5= (13101 M1 +40g7 g3 (M1 +My ) +5093 M )

16 4 X x
+ 225( —gi My My (Y Yt) 122 My My (YuYt)
= gg1 2B (YaYy) +603Br (YaYy) = 8Br (YoYy ) (YaYyr).

- 2(Yt/YJ Bt/) (Yuygr) —16Mp (th,) (YuYti‘) '—4(Yj mt/Tt/) (YUYJ) |

13147 +5Ogg+809193)Bt/ +

— 6Bp/Tr (YuYJ ) (Yu ;:) —12Mp T (YJ Tu) (YuYt’f) - % My (TuYt’f)i
1292 My (Tuy;r)i— 16 My (Yth) (TuYti‘)i —4(m,YJmt,) (TuYti‘) |

- 12MT/Tr(YuYJ> (Tu}/';f)i—&-%ngl (YUYJmtz) —12g2 M, (Y Y, mt/)
12 (Y[,‘Tt/> (YuYJ mt/) 12T (YJ Tu> (YuYJ mt/> - %gl (YuYu Bt,>i
+6g2 (YquBt/>i—6(}ft/1ft’f> (YuYJ Bt/)i—6Tr(YuYJ ) (YuYJ Bt/)i

~ 2t (Tuvime) 41263 (TYime) ~12(vevy ) (Tvime ).

12Ty (Yuyj) (Tuyj mt,)i—zBT, (Yuyj YdY;‘)i—ALMT/ (Yuyj Td}/;:)i
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— 2By (YUYJYUYJ) —AMyp (Yuyj TuYt’f) —AMy (Tqu YdY;f) ‘

— M (TYIYVLYE) =2V YYayiBe) —4(YuY{Tavime) —2(YuYV.viBe).

- 4(YUYJTuYuTmt/) .—4(TquTYdYJmt/)i—4(TuYJYqumt/>i (B.72)
ATV = ;g( (5093 My +7gi M Y i, — (5093 +79% ) B, ) (B.73)
552, = = (2(4563 Mo + 8063 My + 970 ) Mgy — (453 +8003+.67) By ) (B.74)
B, = 4;)0( 4((25 (1449363 (Ms+ My ) +25693 My +297g3 My ) +2891 My
+ 5% (1693 (M1 + Mz ) +9g3 (M1 +Mz ) ) ) Mar+ (1093 (1693 +993 )
425 (25693+28892 g3+297g§) +289g‘f)BQ/) (B.75)
8, = 2ot (2M My - B (B.76)
82, = -2 gt (100 - By (B.77)

B.7 Soft-breaking scalar masses

Traces:

3
o171 = \/;gl( — 2Tr(mi) +2mtz, —2mtg,—Tr(m12) —m%{d—&—m%{u—i—

Tr(m?l) —&-Tr(mg) —l—Tr(mi)) (B.78)
AWeq | = \/ggl ( —m2 —m§,+m§~,+m§,) (B.79)
0211 = %ng <2Tr (m§> +3Tr (m?) +3m§{d +3m%u +6Tr <mf) +8Tr (mi)
+8m2 +8mt,+Tr( )) (B.80)
uv Lo 2 .2 2 .2
A"V oy = 0% (6 (mé,+mg,>—|—mq,—|—m§,) (B.81)

11
03,1 = %\/ngl
+ 823m? +160g3m2 +120m2, Y, Yy~ 30Y,m2 ¥y ~90m¥ (Vi¥;))

(—9g§m%{d 4592de+991mH —|-4592mH —3291m 16093m

+ 120m (Yt/Yt,) +4g] Tr(md) +80g§’ﬁ(md) +369%Tr( )

—9¢%Tr (ml) —45¢2Tr (ml ) —&-g%Tr( )+459§Tr (mg) +80g3 Tr (mg) —32g%Tr(m12L>
~160g2Tr (mi) +90m2,, Tr (Yde ) +30m2, Tr (Yeyj ) —90m2, Tr (YuYJ )

— 60T (Ya,jm3") = 30Tr (Yam2 V] )~ 60Tr (Yoyim?* ) + 30T (Yo

+ 120Tr(YuYJ mi) —30Tx (Yumg*yj )) (B.82)

1 1
Aoy, = %\/ngl (5(16g§+99§) ( - mgz, +m§~,) +91 ( — 36m2,+36m2, —mi:,—!—mg,)) (B.83)

020 = % (3Tr (mﬁ) +m3, +mi +Tr (m?)) (B.84)
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AUV gy = g( 2 em?,) (B.85)
o33 = %(2%( )+mt,+m —l—Tr(md) +T&~( )) (B.86)
AWy 5= m2 —|—m (B.87)

A = 25 T+ (2 by o Yo+ (Vo) Y +¥iy (2(vim,) + () )
(B.88)
(2)

ABZ) = 43281 | My 2 —12m% VY, (Yt/Y’f) —6m2Y]Y, (Yt/Y’ﬁ‘) —6TIT, (Y}/YT)
—3m2Y}Y, (Yt ;:) —6Ym2Y, (Y;/Yti‘) —3YY,m? (K/Y;’,*)
—eYiT, (Yt ;) —6Y]Y, (Yt/mgygf) Y]y, (m/yjmzf,) —6TlY, (YtTTt/>

N8 . 8 . 8 .
—6Y,Y, (Tt’ t’) + gQ%m%{u YiriYi +*g?m§/Yf,th',j - gQ%Mth’,z'Yt’,j

5
—20m%. Vi, (Yth)Yt —20m2 Yy ‘(Y;,Y;f)yggj—lom (Y}/miY’f)YyJ
~10 ;,(Yt,y mut,)Yt/,j—m i (Y;’:Tt,)mj—lomi(Tt/T;:)Yt,J
—12m3, thTr(YuYJ)Yt/,j—fim?, t’}‘JTr(YuYJ)Yt/ 6T Tr(Y T, )YH
- 6Yt’f7iT&r(T;Tg )YH —6y;’r’m(mgyjyu)n,j —6Y; T (mgyuyj)y;,J
+ 2oy, (mgytt)i—E)(Yt/}Q’:)Yt,,-(m Yt,> —3Tr(Y Y] )ng <m3 ;:)i
oY (Yim? ) —10(Ye Yy ) Yo, (Yim? ) —6Tr(vay) ) e, (Vimd: ).
+ gg% 7 (mg*Y}/)j—&QT’i (Y;/Y;’i‘) (m y;,) 3y, Tr(YuYJ> (mg*yt,)j
fSm%,“Yt/,j(ijum’f)lemt%,)@,j (YJYu t/)_, (mg*Yt,) _(YJYu}Qi‘)_
— AV (YJTU ;7);41@,]- (TJTU 57);87”?1” -(YTY*Y;/> —4m?, (YUTYJK/)J_
72(ngﬁ)'<YuTYJYt> —4<Yfmm,) (YTY Yt) 4Ty, (nyjn,)j
4 ,<YTT Tt/) 4 (TEYH Yt/)jle m(TuTTuYt) Yy (ngJYuYtT)Z_
— AV (ijiyuyt,) Y (Yqumgy;’:) — v (Y. YTmﬂt,>
= QYJ ( 2y Ty Yt) —4vy; .(YT 20y Yt) 4—4)@7)i(YJYJm3*Y}/)j
25 giM; (203 Mi1+5Y; »(2M1Yt,,j—Tt/,j))+§
- 10th,(Yt,T )Tt/ : 6T;¢JT&(YUYJ)Tt,,j—G}Qf,iTr(T;Yf )Tt,yj—4(YJYuT;)iTt,,j

g3 Ty = 10T, (Y ) Tory

- 4(T5Yuyj)iTt,,j (B.89)

2

AV B2) = —1(67503| Mol + Ty} | M [ 480093 My (B.90)
144

ABY) = =2 op 1L (B.91)

18
AUV S = 1 (Tog| Mol + 701 M ) (B.92)
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AB

’"LHd

A"V
Hg

ABL)
Hoy

A5(2)

m
i,

AT
Hy,

Aﬁ@)
my

AUVﬂfjé

Aﬁ(l)

2
mz,

Aﬂ(2)

144 ot

6 ( (i, 4, +m2 ) (Vovdvave ) + (VT Tayy )+ (Yem2y vavy)

i (Yt/YdTmZYdY’f) " (Yt,Y;Ydmgyf) n (Yt/YTYdYT ut,) + (Y; YT Tt/)

+ (T;Ydy;th,)+(T§ YiYy ;;)) (B.93)
= 543 | Ma |2+ 126 gl (B.94)
= 6((m3, +m£,) (v )+ (Yt/mQY{f) +(vovim2, )+ (TT7)) (B.95)

— —36(m3;, +m? ) ((Y;Yt))z S= 97 (100, (Yo ) +18930, =5 (Vi T ) )

+ g(Yth) (29%m%{u +40g3m%y +2g2m2 +40g2m? +80g2| M |2 — 45 (Yt/ngt*f)

— 45(YeYim?, ) ~45(Tu Ty ) )

= 2(— (203 +97) (Ve ) —ag? (Vovim2, ) 8063 (Vvim?,

+ 15mY, (Yt/YJ YdY;)+15m§L (Y;/Y YdY;,)+15m (Yg/Y YaY, )

+180m%, (Yt/YTY Yt> +90m? (Yt/YTY Yt> +15(Yt/T TdYt,)

490 (YtlTJTuth) 15 (thngd YdY;) 490 (m,m3Yqu1@t)

+ 15(Yt,YdT m2Y, ;7) +15(Yt/Yj Ydmgyj) +15<Yt/YdT YdYJm?]E,)

+90(Ye v im2Y, v ) 490 (Yo Vum2¥ ) +90 (Yo Y VaYim2;, ) +8093M; (Vi T )

+ (Yt/T;i) (4glM1 +80¢2 M;5+90 (Yt Ty )) +15 (Yj YdT;iTt,) +90 (YJ YuTt’iTt/)

+15( TV T ) +90(TIVLY T ) 415 (T Vi Vo 13 ) +90 (T Vo Yo Ty )

—4g? (Tt/ ;) —80g§ (Tt/Tt"i» (B.96)
=54 2|M2|2+ gt My |? (B.97)

+g5gl1|M1|2+32931\M3|2—2(2<Yd t’i)‘(Yd*Tt/)j+2(Tj)ft/)j(TdYtT)i
+2(Yd*Yt/)‘<TdT;§) (Yd Yt) (dedYt,) +2<Yd*Y}/>j(Ydm3Yt’7>i

o) (xims ) (107) (o o o) (1%, s2(ain),

+ 2(Yd*m§*n)j+(md*Y;n)j)) (B.98)
= S 1(200g31 M5+ 79 M) (B.99)
= 2m2,, ,(Yu*Yt/)j (B.100)
= +% 41|13 232981 | M

_z (30T v (Yt/ )+30Y yi (Yg,m%;,) +30Y, Y] (Yt/YT ut,)
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+ 30V, T (Vi T ) +30%, Y (T Ty )+ gim2s (Y;Yt,) —15g3m%;, (Y;Yt/)j
+15m2;, Tr(YuYJ) (Y;Y,;r)j—k20m§{u (Yuxf;)i(Y;n,) +10m3 (Y Y,> (Yj%)j
+5 (Yth) (6 <2m%{u +m§,)YuYJ +3<2TuTJ +2Y,m2Y +m2Y, Y] +Yuyjm3)
+4m?;, (Y)Q)j) +10(Y. t"?)i<YjTt/) _+10(Yun’f)_(T;Tt/) _

+ IO(Tg‘Yt/)j (TuYti‘)i+10(YJ}Q/) (7. ) +5(v2 Y;) (m2v, Yt)

+ IO(Yu*Yt/)j (Yumth’f)i—&—m(Yu Yt> (vavim?, ) +5(Y. yt) (m i*Yu*Yt/)j

+10(vayy) (Vem2 Ve ) +5m, (VivEYive)
i J ’ J

+5m2;, (Y;yfy;n,) ) (B.101)
32
= (5093|M3|2+791|M1\ ) (B.102)
576 4
— Sooi1a| (B.103)
504,
— 25 1|M1| (B104)
32

32
— 2GRN P 2 g My P+ Ay, (Vv ) +am?, (vivy ) +4(Yem2yy)

+ z(yﬂyf ut,)+4(Tt/T;) 4 (B.105)

\/%—59101,1

225 (291M1 (45( Tt/)+8(393ng1+40g§M3+8()g Ml) 90M, (Yth>)
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B.8 Vacuum expectation values
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