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Abstract
In this paper, it is our aim to prove strong convergence of a new iterative algorithm to
a common element of the set of solutions of a finite family of classical equilibrium
problems; a common set of zeros of a finite family of inverse strongly monotone
operators; the set of common fixed points of a finite family of quasi-nonexpansive
mappings; and the set of common fixed points of a finite family of continuous
pseudocontractive mappings in Hilbert spaces on assumption that the intersection of
the aforementioned sets is not empty. Moreover, the common element is shown to
be the metric projection of the initial guess on the intersection of these sets.
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1 Introduction
LetH be a realHilbert space. AmappingT with domainD(T) and rangeR(T) inH is called
an L-Lipschitzianmapping (or simply a Lipschitzmapping) if and only if there exists L ≥ 
such that for all x, y ∈D(T),

‖Tx – Ty‖ ≤ L‖x – y‖.

If L ∈ [, ), then T is called strict contraction or simply a contraction; and if L = , then T
is called nonexpansive. A point x ∈D(T) is called a fixed point of an operator T if and only
if Tx = x. The set of fixed points of an operator T is denoted by Fix(T), that is, Fix(T) :=
{x ∈D(T) : Tx = x}.
A mapping T with domain D(T) and range R(T) in H is called a quasi-nonexpansive

mapping if and only if Fix(T) �= ∅ and for any x ∈D(T), for any u ∈ Fix(T),

‖Tx – u‖ ≤ ‖x – u‖.

Every nonexpansive mapping with a nonempty fixed point set is quasi-nonexpansive. The
following examples show that the converse is not true.
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Example . (see []) Let E = [–π ,π ] be a subspace of the set of real numbersR, endowed
with the usual topology. Define T : E → E by Tx = x cosx for all x ∈ E. Clearly, F(T) = {}.
Observe that

|Tx – | = |x| × | cosx| ≤ |x| = |x – |.

Thus, T is quasi-nonexpansive. The mapping T is, however, not a nonexpansive mapping
since for x = π

 and y = π ,

|Tx – Ty| =
∣∣∣∣π cos

(
π



)
– π cosπ

∣∣∣∣ = π .

But

|x – y| =
∣∣∣∣π – π

∣∣∣∣ = π


.

Example . (see [, ]) Let E =R be endowed with usual topology. Define T :R→R by

Tx =

{
x
 cos(


x ), x �= ,

, x = .
(.)

It is easy to see that F(T) = {} since for x �= , Tx = x implies that x
 cos


x = x. Thus, for any

x �= , cos 
x = , which is not possible. So, F(T) = {}. Next, observe that for any x ∈R,

|Tx – | =
∣∣∣∣x

∣∣∣∣ ×
∣∣∣∣cos

(

x

)∣∣∣∣ ≤ |x|


< |x| = |x – |.

So, the mapping T is quasi-nonexpansive. Finally, we show that T is not nonexpansive. To
see this, let x = 

π and y = 
π
, then

|Tx – Ty| =
∣∣∣∣ 
π

cos

(
π


)
–


π

cosπ

∣∣∣∣ = 
π

.

But,

|x – y| =
∣∣∣∣ 
π

–

π

∣∣∣∣ = 
π

.

So,

|Tx – Ty| = 
π

>

π

= |x – y|.

The concept of quasi-nonexpansive mappings was essentially introduced by Diaz
and Metcalf []. Although Examples . and . guarantee the existence of a quasi-
nonexpansive mapping which is not nonexpansive, we must note that a linear quasi-
nonexpansive mapping defined on a subspace of a given vector space is nonexpansive
on that subspace.
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Another important generalization of the class of nonexpansive mappings is the class of
pseudocontractive mappings. These mappings are intimately connected with the impor-
tant class of nonlinear accretive operators. This connection will be made precise in what
follows.
A mapping T with domain D(T) and range R(T) in H is called pseudocontractive if and

only if for all x, y ∈D(T), the following inequality holds:

‖x – y‖ ≤ ∥∥( + r)(x – y) – r(Tx – Ty)
∥∥ (.)

for all r > . As a consequence of a result of Kato [], the pseudocontractive mappings can
also be defined in terms of the normalized duality mappings as follows: the mapping T is
called pseudocontractive if and only if for all x, y ∈D(T), we have that

〈Tx – Ty,x – y〉 ≤ ‖x – y‖. (.)

It now follows trivially from (.) that every nonexpansive mapping is pseudocontractive.
We note immediately that the class of pseudocontractive mappings is larger than that of
nonexpansivemappings. For examples of pseudocontractivemappings which are not non-
expansive, the reader may see [].
To see the connection between the pseudocontractive mappings and the monotone

mappings, we introduce the following definition: a mapping A with domain D(A) and
range R(A) in E is calledmonotone if and only if for all x, y ∈ D(A), the following inequality
is satisfied:

〈Ax –Ay,x – y〉 ≥ . (.)

The operator A is called η-inverse strongly monotone if and only if there exists η ∈ (, )
such that for all x, y ∈D(A), we have that

〈Ax –Ay,x – y〉 ≥ η‖Ax –Ay‖. (.)

It is easy to see from inequalities (.) and (.) that an operator A is monotone if and only
if the mapping T := (I – A) is pseudocontractive. Consequently, the fixed point theory
for pseudocontractive mappings is intimately connected with the zero of monotone map-
pings. For the importance of monotone mappings and their connections with evolution
equations, the reader may consult any of the references [, ].
Due to the above connection, fixed point theory of pseudocontractivemappings became

a flourishing area of intensive research for several authors.
Let C be a closed convex nonempty subset of a real Hilbert space H with inner product

〈·, ·〉 and norm ‖ · ‖. Let f : C ×C →R be a bifunction. The classical equilibrium problem
(EP) for a bifunction f is to find u∗ ∈ C such that

f
(
u∗, y

) ≥ , ∀y ∈ C. (.)

The set of solutions for EP (.) is denoted by

EP(f ) =
{
u ∈ C : f (u, y) ≥ ,∀y ∈ C

}
.
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The classical equilibrium problem (EP) includes as special cases the monotone inclusion
problems, saddle point problems, variational inequality problems, minimization prob-
lems, optimization problems, vector equilibrium problems, Nash equilibria in noncoop-
erative games. Furthermore, there are several other problems, for example, the comple-
mentarity problems and fixed point problems, which can also be written in the form of
the classical equilibrium problem. In other words, the classical equilibrium problem is a
unifying model for several problems arising from engineering, physics, statistics, com-
puter science, optimization theory, operations research, economics and countless other
fields. For the past  years or so, many existence results have been published for various
equilibrium problems (see, e.g., [–]). Approximation methods for such problems thus
become a necessity.
Iterative approximation of fixed points and zeros of nonlinear mappings has been stud-

ied extensively by many authors to solve nonlinear mapping equations as well as varia-
tional inequality problems and their generalizations (see, e.g., [–]). Most published
results on nonexpansive mappings (for example) focus on the iterative approximation of
their fixed points or approximation of common fixed points of a given family of this class
of mappings.
Some attempts tomodify theMann iterationmethod so that strong convergence is guar-

anteed have recently been made (we should recall that Mann iteration method only guar-
antees weak convergence (see, for example, Bauschke et al. [])). Nakajo and Takahashi
[] formulated the following modification of theMann iteration method for a nonexpan-
sive mapping T defined on a nonempty bounded closed and convex subset C of a Hilbert
space H :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ C,
yn = αnxn + ( – αn)Txn,
Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖},
Qn = {v ∈ C : 〈xn – v,x – xn〉 ≥ },
xn+ = PCn∩Qn (x), ∀n ∈ N,

(.)

where PC denotes the metric projection fromH onto a closed convex subset C ofH . They
proved that if the sequence {αn}n≥ is bounded away from , then {xn}n≥ defined by (.)
converges strongly to PF(T)(x).
Formulations similar to (.) for different classes of nonlinear problems had been pre-

sented by Kim and Xu [], Nilsrakoo and Saejung [], Ofoedu et al. [], Yang and Su
[], Zegeye and Shahzad [–].
In this paper, motivated by the results of the authors mentioned above, it is our aim to

prove strong convergence of a new iterative algorithm to a common element of the set of
solutions of a finite family of classical equilibrium problems; a common set of zeros of a
finite family of inverse strongly monotone mappings; a set of common fixed points of a
finite family of quasi-nonexpansive mappings; and a set of common fixed points of a finite
family of continuous pseudocontractive mappings in Hilbert spaces on assumption that
the intersection of the aforementioned sets is not empty. Moreover, the common element
is shown to be the metric projection of the initial guess on the intersection of these sets.
Our theorems complement the results of the authorsmentioned above and those of several
other authors.
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2 Preliminary
In what follows, we shall make use of the following lemmas.

Lemma . (see, e.g., Kopecka and Reich []) Let C be a nonempty closed and convex
subset of a real Hilbert space. Let x ∈ H and PC :H → C be the metric projection of H onto
C, then for any y ∈ C,

‖y – PCx‖ + ‖PCx – x‖ ≤ ‖x – y‖.

Lemma . Let C be a closed convex nonempty subset of a real Hilbert space H ; and let
PC : H → C be the metric projection of H onto C. Let x ∈ H , then x = PCx if and only if
〈z – x,x – x〉 ≤  for all z ∈ C.

Lemma . Let H be a real Hilbert space, then for any x, y ∈H , α ∈ [, ],

∥∥αx + ( – α)y
∥∥ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖.

Lemma . (see Zegeye []) Let C be a nonempty closed convex subset of a real Hilbert
space H . Let T : C →H be a continuous pseudocontractive mapping, then for all r >  and
x ∈H , there exists z ∈ C such that

〈y – z,Tz〉 – 
r
〈
y – z, ( + r)z – x

〉 ≤ , ∀y ∈ C.

Lemma . (see Zegeye []) Let C be a nonempty closed convex subset of a real Hilbert
space H . Let T : C → C be a continuous pseudocontractive mapping, then for all r >  and
x ∈H , define a mapping Fr :H → C by

Frx =
{
z ∈ C : 〈y – z,Tz〉 – 

r
〈
y – z, ( + r)z – x

〉 ≤ ,∀y ∈ C
}
,

then the following hold:
() Fr is single-valued;
() Fr is firmly nonexpansive type mapping, i.e., for all x, y ∈H ,

‖Frx – Fry‖ ≤ 〈Frx – Fry,x – y〉;

() Fix(Fr) is closed and convex; and Fix(Fr) = Fix(T) for all r > .

In the sequel, we shall require that the bifunction f : C × C → R satisfies the following
conditions:
(A) f (x,x) = , ∀x ∈ C;
(A) f is monotone in the sense that f (x, y) + f (y,x) ≤  for all x, y ∈ C;
(A) lim supt→+ f (tz + ( – t)x, y)≤ f (x, y) for all x, y, z ∈ C;
(A) the function y �→ f (x, y) is convex and lower semicontinuous for all x ∈ C.

Lemma . (see, e.g., [, ]) Let C be a closed convex nonempty subset of a real Hilbert
space H . Let f : C × C → R be a bifunction satisfying conditions (A)-(A), then for all

http://www.fixedpointtheoryandapplications.com/content/2014/1/9
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r >  and x ∈H , there exists u ∈ C such that

f (u, y) +

r
〈y – u,u – x〉 ≥ , ∀y ∈ C. (.)

Moreover, if for all x ∈H we define a mapping Gr :H → C by

Gr(x) =
{
u ∈ C : f (u, y) +


r
〈y – u,u – x〉 ≥ ,∀y ∈ C

}
, (.)

then the following hold:
() Gr is single-valued for all r > ;
() Gr is firmly nonexpansive, that is, for all x, z ∈H ,

‖Grx –Grz‖ ≤ 〈Grx –Grz,x – z〉;

() Fix(Gr) = EP(f ) for all r > ;
() EP(f ) is closed and convex.

Lemma . (see Ofoedu []) Let C be a nonempty closed convex subset of a real Hilbert
space H . Let T : C → C be a continuous pseudocontractive mapping. For r > , let Fr :H →
C be the mapping in Lemma ., then for any x ∈H and for any p,q > ,

‖Fpx – Fqx‖ ≤ |p – q|
p

(‖Fpx‖ + ‖x‖).
Lemma . (Compare with Lemma  of Ofoedu []) Let C be a closed convex nonempty
subset of a real Hilbert space H . Let f : C × C → R be a bifunction satisfying conditions
(A)-(A). Let r >  and let Gr be the mapping in Lemma ., then for all p,q >  and for
all x ∈H , we have that

‖Gpx –Gqx‖ ≤ |p – q|
p

(‖Gpx‖ + ‖x‖).
3 Main results
Let C be a nonempty closed convex subset of a real Hilbert space H . Let T,T, . . . ,Tm :
C → C be m continuous pseudocontractive mappings; let S,S, . . . ,Sl : C → C be l con-
tinuous quasi-nonexpansive mappings; let A,A, . . . ,Ad : C →H be d γj-inverse strongly
monotone mappings with constants γj ∈ (, ), j = , , . . . ,d; let f, f, . . . , ft : C ×C →R be
t bifunctions satisfying conditions (A)-(A). For all x ∈ E, i = , , . . . ,m, let

Fi,rx :=
{
z ∈ C : 〈y – z,Tiz〉 – 

r
〈
y – z, ( + r)z – x

〉 ≤ ,∀y ∈ C
}

and for all x ∈ E, h = , , . . . , t, let

Gh,r(x) =
{
u ∈ C : fh(u, y) +


r
〈y – u,u – x〉 ≥ ,∀y ∈ C

}
,

http://www.fixedpointtheoryandapplications.com/content/2014/1/9
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then in what follows we shall study the following iteration process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C = C chosen arbitrarily,
zn = PC(xn – λnAn+xn),
yn = αnxn + ( – αn)Sn+zn,
wn = η

∑m
i= βiFi,rnyn + ( – η)

∑t
h= ξhGh,rnyn,

Cn+ = {z ∈ C : ‖wn – z‖ ≤ ‖xn – z‖},
xn+ =	Cn+ (x), n≥ ,

(.)

where An = An(modd), Sn = Sn(mod l); {rn} ⊂ (,∞) such that limn→∞ rn = r > ; {αn}n≥ a
sequence in (, ) such that lim infn→∞ αn( – αn) > ; {βi}mi=, {ξh}th= ⊂ (, ) such that∑m

i= βi =  =
∑t

h= ξh; η ∈ (, ) and {λn} is a sequence in [a,b] for some a,b ∈ R such
that  < a < b < γ , γ =min≤j≤d{γj}.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T,T, . . . ,Tm : C → C be m continuous pseudocontractive mappings; let S,S, . . . ,Sl :
C → C be l continuous quasi-nonexpansive mappings; let A,A, . . . ,Ad : C → H be d γj-
inverse strongly monotone mappings with constants γj ∈ (, ), j = , , . . . ,d; let f, f, . . . , ft :
C × C → R be t bifunctions satisfying conditions (A)-(A). Let F :=

⋂m
i= Fix(Ti) ∩⋂d

j=A–
j () ∩ ⋂l

k= Fix(Sk) ∩
⋂t

h= EP(fh) �= ∅. Let {xn} be a sequence defined by (.), then
the sequence {xn} is well defined for each n ≥ .

Proof Wefirst show thatCn is closed and convex for each n ∈ N∪{}. From the definitions
of Cn it is obvious that Cn is closed. Moreover, since ‖wn – z‖ ≤ ‖xn – z‖ is equivalent to
〈z,xn – wn〉 – ‖xn‖ + ‖wn‖ ≤ , it follows that Cn is convex for each n ∈ N ∪ {}. Next,
we prove that F ⊂ Cn for each n ∈ N∪ {}. From the assumption, we see that F ⊂ C = C.
Suppose that F ⊂ Ck for some k ≥ , then for p ∈ F , we obtain that

‖wk – p‖ =

∥∥∥∥∥η

m∑
i=

βiFi,rk yk + ( – η)
m∑
h=

ξhGh,rk yk – p

∥∥∥∥∥
≤ ‖yk – p‖ = ∥∥αkxk + ( – αk)Sk+zk – p

∥∥
≤ αk‖xk – p‖ + ( – αk)‖Sk+zk – p‖
≤ αk‖xk – p‖ + ( – αk)‖zk – p‖. (.)

Furthermore,

‖zk – p‖ =
∥∥PC(xk – λkAk+xk) – p

∥∥

≤ ‖xk – λkAk+xk – p‖

=
∥∥xk – p – λk(Ak+xk –Ak+p)

∥∥

= ‖xk – p‖ – λk〈xk – p,Ak+xk –Ak+p〉 + λ
k‖Ak+xk –Ak+p‖

≤ ‖xk – p‖ + λk(λk – γ )‖Ak+xk –Ak+p‖

≤ ‖xk – p‖ (since λk < γ ).

http://www.fixedpointtheoryandapplications.com/content/2014/1/9
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Thus,

‖zk – p‖ ≤ ‖xk – p‖. (.)

Using (.) in (.) gives

‖wk – p‖ ≤ ‖xk – p‖.

So, p ∈ Ck+. This implies, by induction, that F ⊂ Cn so that the sequence generated by
(.) is well defined for all n≥ . �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T,T, . . . ,Tm : C → C be m continuous pseudocontractive mappings; let S,S, . . . ,Sl :
C → C be l continuous quasi-nonexpansive mappings; let A,A, . . . ,Ad : C → H be d γj-
inverse strongly monotone mappings with constants γj ∈ (, ), j = , , . . . ,d; let f, f, . . . , ft :
C × C → R be t bifunctions satisfying conditions (A)-(A). Let F :=

⋂m
i= Fix(Ti) ∩⋂d

j=A–
j ()∩ ⋂l

k= Fix(Sk)∩
⋂t

h= EP(fh) �= ∅. Let {xn} be a sequence defined by (.). Then
the sequence {xn}n≥ converges strongly to the element of F nearest to x.

Proof From Lemma ., we obtain that F ⊂ Cn, ∀n ≥  and xn is well defined for each
n≥ . From xn = PCn (x) and xn+ = PCn+ (x) ∈ Cn+ ⊂ Cn, we obtain that

〈xn+ – xn,xn – x〉 ≥  and ‖xn – x‖ ≤ ‖xn+ – x‖.

Besides, by Lemma .,

‖xn – p‖ = ‖PCnx – x‖ ≤ ‖x – p‖ – ‖x – xn‖ ≤ ‖x – p‖.

Thus, the sequence {‖xn – x‖}n≥ is a bounded nondecreasing sequence of real numbers.
So, limn→∞ ‖xn – x‖ exists. Similarly, by Lemma ., we have that for any positive integer
μ,

‖xn+μ – xn‖ = ‖xn+μ – PCnx‖

≤ ‖xn+μ – x‖ – ‖PCnx – x‖

= ‖xn+μ – x‖ – ‖xn – x‖ for all n≥ .

Since limn→∞ ‖xn – x‖ exists, we have that limn→∞ ‖xn+μ – xn‖ =  and hence, {xn}n≥ is
a Cauchy sequence in C. Therefore, there exists x∗ ∈ C such that limn→∞ xn = x∗. Since
xn+ ∈ Cn+, we have that

‖wn – xn+‖ ≤ ‖xn – xn+‖.

Thus,

lim
n→∞‖xn+ –wn‖ =  (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/9
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andhence ‖xn–wn‖ ≤ ‖xn–xn+‖+‖xn+–wn‖ →  as n→ ∞, which implies thatwn → x∗

as n→ ∞.
Next, we observe that for p ∈ F and using Lemma .,

‖yn – p‖ =
∥∥αnxn + ( – αn)Sn+zn – p

∥∥

=
∥∥αn(xn – p) + ( – αn)(Sn+zn – p)

∥∥

= αn‖xn – p‖ + ( – αn)‖Sn+zn – p‖ – αn( – αn)‖xn – Sn+zn‖ (.)

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖ – αn( – αn)‖xn – Sn+zn‖. (.)

But

‖zn – p‖ ≤ ‖xn – p‖ + λn(λn – γ )‖An+xn –An+p‖

= ‖xn – p‖ + λn(λn – γ )‖An+xn‖. (.)

So, using (.) in (.), we obtain that

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)
[‖xn – p‖ + λn(λn – γ )‖An+xn‖

]
– αn( – αn)‖xn – Sn+zn‖

= ‖xn – p‖ + ( – αn)λn(λn – γ )‖An+xn‖

– αn( – αn)‖xn – Sn+zn‖. (.)

Moreover, we obtain that

‖wn – p‖ =

∥∥∥∥∥η

m∑
i=

βiFi,rnyn + ( – η)
m∑
h=

ξhGh,rnyn – p

∥∥∥∥∥


≤ ‖yn – p‖. (.)

Using (.) in (.) we get that

‖wn – p‖ ≤ ‖xn – p‖ + ( – αn)λn(λn – γ )‖An+xn‖

– αn( – αn)‖xn – Sn+zn‖. (.)

Now, using the fact that λn < γ , inequality (.) gives (for some constantM > ) that

αn( – αn)‖xn – Sn+zn‖ ≤ ‖xn – p‖ – ‖wn – p‖ ≤M‖xn –wn‖. (.)

Hence, we obtain from inequality (.) that

‖xn – Sn+zn‖ →  as n→ ∞. (.)

Moreover, from (.) we obtain that

( – αn)λn(γ – λn)‖An+xn‖ ≤ ‖xn – p‖ – ‖wn – p‖ ≤M‖xn –wn‖,

http://www.fixedpointtheoryandapplications.com/content/2014/1/9
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which yields that

lim
n→∞‖An+xn‖ = . (.)

Now,

‖xn – zn‖ =
∥∥xn – PC(xn – λnAn+xn)

∥∥ =
∥∥PCxn – PC(xn – λnAn+xn)

∥∥
≤ ‖xn – xn + λnAn+xn‖ = λn‖An+xn‖
≤ b‖An+xn‖. (.)

It follows from (.) and (.) that

lim
n→∞‖xn – zn‖ = ; (.)

and hence zn → x∗ as n→ ∞.
We now show that x∗ ∈ ⋂l

k= Fix(Sk). Observe that from (.) and (.) we obtain that

‖Sn+zn – zn‖ ≤ ‖Sn+zn – xn‖ + ‖zn – xn‖ →  as n→ ∞, (.)

so that

lim
n→∞Sn+zn = x∗. (.)

Let {nσ }σ≥ ⊂ N be such that Snσ + = S for all σ ∈ N, then since znσ → x∗ as σ → ∞, we
obtain from (.), using the continuity of S, that

x∗ = lim
σ→∞Snσ +znσ = lim

σ→∞Sznσ = Sx∗.

Similarly, if {nj}j≥ ⊂N is such that Snj+ = S for all j ∈N, then we have again that

x∗ = lim
j→∞Snj+znj = lim

j→∞Sznj = Sx∗.

Continuing, we obtain that Skx∗ = x∗, k = , . . . , l. Hence, x∗ ∈ ⋂l
k= F(Sk).

Next, we show that x∗ ∈ ⋂d
j=A–

j (). Since Aj is γ -inverse strongly monotone for j =
, , . . . ,d, we have that Aj is 

γ
-Lipschitz continuous. Thus,

∥∥An+xn –An+x∗∥∥ ≤ 
γ

∥∥xn – x∗∥∥ →  as n→ ∞. (.)

Hence, from (.) and (.), we obtain that

∥∥An+x∗∥∥ ≤ ∥∥An+xn –An+x∗∥∥ + ‖An+xn‖ →  as n→ ∞.

As a result, we get that

lim
n→∞An+x∗ = .
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Let {ns}s≥ ⊂N be such that Ans+ = A for all s ∈ N. Then

Ax∗ = lim
s→∞Ans+x

∗ = .

Similarly, we have that Ajx∗ =  for j = , . . . ,d. Thus, x∗ ∈ ⋂d
j=A–

i ().
Furthermore, we show that x∗ ∈ ⋂m

i= Fix(Ti) =
⋂m

i= Fix(Fi,r), ∀r > . Using the fact that
xn → x∗, zn → x∗ as n→ ∞, we obtain that

∥∥F,rnyn – x∗∥∥ ≤ ∥∥yn – x∗∥∥
≤ αn

∥∥xn – x∗∥∥ + ( – αn)
∥∥zn – x∗∥∥

≤ ∥∥xn – x∗∥∥ +
∥∥zn – x∗∥∥ →  as n→ ∞. (.)

Thus, we obtain from (.) that

lim
n→∞F,rnyn = x∗ = lim

n→∞ yn.

This implies that limn→∞ ‖F,rnyn – yn‖ = . But by Lemma .,

‖F,rnyn – F,ryn‖ ≤ |rn – r|
rn

(‖F,rnyn‖ + ‖yn‖
) →  as n→ ∞.

Thus,

lim
n→∞F,ryn = lim

n→∞F,rnyn = x∗.

So, the continuity of F,r and the fact that yn → x∗ as n→ ∞ give

x∗ = lim
n→∞F,ryn = F,rx

∗.

A similar argument gives

x∗ = lim
n→∞Fi,ryn = Fi,rx

∗, i = , , . . . ,m.

Hence,

x∗ ∈
m⋂
i=

Fix(Fi,r ) =
m⋂
i=

Fix(Ti).

Moreover, we show that x∗ ∈ ⋂t
h= EP(fh) =

⋂t
h= Fix(Gh,r ). Observe that

∥∥G,rnyn – x∗∥∥ ≤ ∥∥yn – x∗∥∥
≤ αn

∥∥xn – x∗∥∥ + ( – αn)
∥∥zn – x∗∥∥

≤ ∥∥xn – x∗∥∥ +
∥∥zn – x∗∥∥ →  as n→ ∞. (.)
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Thus, we obtain from (.) that

lim
n→∞G,rnyn = x∗ = lim

n→∞ yn.

This implies that limn→∞ ‖G,rnyn – yn‖ = . But by Lemma .,

‖G,rnyn –G,ryn‖ ≤ |rn – r|
rn

(‖G,rnyn‖ + ‖yn‖
) →  as n→ ∞.

Thus,

lim
n→∞G,ryn = lim

n→∞G,rnyn = x∗.

So, the continuity of G,r and the fact that yn → x∗ as n→ ∞ give

x∗ = lim
n→∞G,ryn =G,rx

∗.

A similar argument gives

x∗ = lim
n→∞Gh,ryn =Gi,rx

∗, h = , , . . . , t.

Hence,

x∗ ∈
t⋂

h=

Fix(Gh,r ) =
t⋂

h=

EP(fh).

Finally, we prove that x∗ = PF (x). From xn = PCn (x)n≥ , we obtain that

〈x – xn,xn – z〉 ≥ , ∀z ∈ Cn.

Since F ⊂ Cn, we also have that

〈x – xn,xn – p〉 ≥ , ∀p ∈ F . (.)

So,

 ≤ 〈x – xn,xn – p〉 = 〈
x – x∗ + x∗ – xn,xn – x∗ + x∗ – p

〉
=

〈
x – x∗,xn – x∗〉 + 〈

x – x∗,x∗ – p
〉

+
〈
x∗ – xn,xn – x∗〉 + 〈

x∗ – xn,x∗ – p
〉

≤ 〈
x – x∗y,x∗ – p

〉
+

∥∥x – x∗∥∥∥∥xn – x∗∥∥
+

∥∥xn – x∗∥∥∥∥x∗ – p
∥∥ –

∥∥xn – x∗∥∥. (.)

Inequality (.) implies that

 ≤ 〈
x – x∗,x∗ – p

〉
+

(∥∥x – x∗∥∥ +
∥∥x∗ – p

∥∥)∥∥xn – x∗∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/9


Ofoedu et al. Fixed Point Theory and Applications 2014, 2014:9 Page 13 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/9

By taking limit as n→ ∞ in (.), we obtain that

〈
x – x∗,x∗ – p

〉 ≥ , ∀p ∈ F .

Now, by Lemma . we have that x∗ = PF (x). This completes the proof. �

Remark . We note that x∗ = PF (x) makes sense since it could be easily shown that F is
closed and convex. In fact, it is enough to show that the set of zeros of γ -inversemonotone
mappings and a fixed point set of continuous quasi-nonexpansive mappings are convex
sets. Closure of the two sets simply follows from the continuity of the mappings involved.

Remark . Several authors (see, e.g., [, ] and references therein) have studied the
following problem: Let C be a closed convex nonempty subset of a real Hilbert space H
with inner product 〈·, ·〉 and norm ‖ ·‖. Let f : C×C →R be a bifunction and� : C →R∪
{+∞} be a proper extended real-valued function, whereR denotes the set of real numbers.
Let � : C → H be a nonlinear monotone mapping. The generalized mixed equilibrium
problem (abbreviated GMEP) for f , � and � is to find u∗ ∈ C such that

f
(
u∗, y

)
+�(y) –�

(
u∗) + 〈

�u∗, y – u∗〉 ≥ , ∀y ∈ C. (.)

The set of solutions for GMEP (.) is denoted by

GMEP(f ,�,�) =
{
u ∈ C : f (u, y) +�(y) –�(u) + 〈�u, y – u〉 ≥ ,∀y ∈ C

}
.

These authors always claim that if� ≡  ≡ � in (.), then (.) reduces to the classical
equilibrium problem (abbreviated EP), that is, the problem of finding u∗ ∈ C such that

f
(
u∗, y

) ≥ , ∀y ∈ C (.)

and GMEP(f , , ) is denoted by EP(f ), where

EP(f ) =
{
u ∈ C : f (u, y) ≥ ,∀y ∈ C

}
.

If f ≡  ≡ � in (.), then GMEP (.) reduces to the classical variational inequality
problem and GMEP(, ,�) is denoted by VI(�,C), where

VI(�,C) = {u ∈ C : 〈�u, y – u〉 ≥ ,∀y ∈ C}.

If f ≡  ≡ �, then GMEP (.) reduces to the followingminimization problem:

find u∗ ∈ C such that �(y) ≥ �
(
u∗), ∀y ∈ C;

and GMEP(,�, ) is denoted by Argmin(�), where

Argmin(�) =
{
u ∈ C :�(u) ≤ �(y),∀y ∈ C

}
.
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If � ≡ , then (.) becomes the mixed equilibrium problem (abbreviated MEP) and
GMEP(f ,�, ) is denoted byMEP(f ,�), where

MEP(f ,�) =
{
u ∈ C : f (u, y) +�(y) –�(u) ≥ ,∀y ∈ C

}
.

If� ≡ , then (.) reduces to the generalized equilibrium problem (abbreviatedGEP) and
GMEP(f , ,�) is denoted by GEP(f ,�), where

GEP(f ,�) =
{
u ∈ C : f (u, y) + 〈�u, y – u〉 ≥ ,∀y ∈ C

}
.

If f ≡ , then GMEP (.) reduces to the generalized variational inequality problem (ab-
breviated GVIP) and GMEP(,�,�) is denoted by GVIP(�,�,C), where

GVIP(�,�,C) =
{
u ∈ K : �(y) –�(u) + 〈�u, y – u〉 ≥ ,∀y ∈ C

}
.

It is worthy to note that if we define  : C ×C → R by

(x, y) = f (x, y) +�(y) –�(x) + 〈�x, y – x〉,

then it could be easily checked that  is a bifunction and satisfies properties (A)-(A).
Thus, the so-called generalized mixed equilibrium problem reduces to the classical equi-
librium problem for the bifunction . Thus, consideration of the so-called generalized
mixed equilibrium problem in place of the classical equilibrium problem studied in this
paper leads to no further generalization.

4 Application (convex differentiable optimization)
In Section , we defined a Lipschitz continuous mapping and an inverse strongly mono-
tonemapping. Inverse strongly monotonemappings arise in various areas of optimization
and nonlinear analysis (see, for example, [–]). It follows from the Cauchy-Schwarz
inequality that if a mapping A : D(A) ⊆ H → R(A) ⊆ H is 

L -inverse strongly monotone,
thenA is L-Lipschitz continuous. The converse of this statement, however, fails to be true.
To see this, take for instance A = –I , where I is the identity mapping on H , then A is L-
Lipschitz continuous (with L = ) but not 

L -inverse strongly monotone (that is, not firmly
nonexpansive in this case).
Baillon and Haddad [] showed in  that if D(A) =H and A is the gradient of a con-

vex functional on H , then A is 
L -inverse strongly monotone if and only if A is L-Lipschitz

continuous. This remarkable result, which has important applications in optimization the-
ory (see, for example, [–]), has become known as the Baillon-Haddad theorem. In
fact, we have the following theorem.

Theorem . (Baillon-Haddad) (see Corollary  of []) Let φ : H → R be a convex
Fréchet-differentiable functional on H such that ∇φ is L-Lipschitz continuous for some
L ∈ (, +∞), then ∇φ is a 

L -inverse strongly monotone mapping (where ∇φ denotes the
gradient of the functional φ).

Now, let us turn to the problem of minimizing a continuously Fréchet-differentiable
convex functional with minimum norm in Hilbert spaces.
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Let K be a closed convex subset of a real Hilbert space H , consider the minimization
problem given by

min
x∈K φ(x), (.)

where φ is a Fréchet-differentiable convex functional. Let � ⊆ K , the solution set of (.),
be nonempty. It is known that a point z ∈ � if and only if the following optimality condition
holds:

z ∈ K ,
〈∇φ(z),x – z

〉 ≥ , x ∈ K . (.)

It is easy to see that if K =H , then optimality condition (.) is equivalent to z ∈ � if and
only if z ∈ (∇φ)–().
Thus, we obtain the following as a corollary of Theorem ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T,T, . . . ,Tm : C → C bem continuous pseudocontractivemappings; let S,S, . . . ,Sl : C →
C be l continuous quasi-nonexpansivemappings; let φ,φ, . . . ,φd :H →H be d convex and
Fréchet-differentiable functionals on H such that (∇φ)j is Lj-Lipschitz continuous for some
Lj ∈ (, +∞), j = , , . . . ,d; let f, f, . . . , ft : C × C → R be t bifunctions satisfying condi-
tions (A)-(A). Let F :=

⋂m
i= Fix(Ti) ∩ ⋂d

j=(∇φj)–() ∩ ⋂l
k= Fix(Sk) ∩ ⋂t

h= EP(fh) �= ∅.
Let {xn}n≥ be a sequence defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C = C chosen arbitrarily,
zn = PC(xn – λn(∇φ)n+xn),
yn = αnxn + ( – αn)Sn+zn,
wn = η

∑m
i= βiFi,rnyn + ( – η)

∑t
h= ξhGh,rnyn,

Cn+ = {z ∈ Cn : ‖wn – z‖ ≤ ‖xn – z‖},
xn+ =	Cn+ (x), n≥ ,

where (∇φ)n = (∇φ)n(modd), Sn = Sn(mod l); {rn} ⊂ (,∞) such that limn→∞ rn = r > ; {αn}n≥

a sequence in (, ) such that lim infn→∞ αn( – αn) > ; {βi}mi=, {ξh}th= ⊂ (, ) such that∑m
i= βi =  =

∑t
h= ξh; η ∈ (, ) and {λn} is a sequence in [a,b] for some a,b ∈ R such that

 < a < b < 
L , L =max≤j≤d{Lj}.Then the sequence {xn}n≥ converges strongly to the element

of F nearest to x.

Proof Since, by our hypothesis, (∇φ)j is Lj-Lipschitz continuous for some Lj ∈ (, +∞),
j = , , . . . ,d, we obtain from Theorem . that (∇φ)j is 

Lj
-inverse strongly monotone, j =

, , . . . ,d; and since L =max≤j≤d{Lj}, it is then easy to see that (∇φ)j is 
L -inverse strongly

monotone, j = , , . . . ,d. The rest, therefore, follows as in the proof of Theorem . with
γ = 

L . This completes the proof. �
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