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Abstract

Background: In recent years, many protein complex mining algorithms, such as classical clique percolation (CPM)
method and markov clustering (MCL) algorithm, have developed for protein-protein interaction network. However,
most of the available algorithms primarily concentrate on mining dense protein subgraphs as protein complexes,
failing to take into account the inherent organizational structure within protein complexes. Thus, there is a critical
need to study the possibility of mining protein complexes using the topological information hidden in edges.
Moreover, the recent massive experimental analyses reveal that protein complexes have their own intrinsic
organization.

Methods: Inspired by the formation process of cliques of the complex social network and the centrality-lethality
rule, we propose a new protein complex mining algorithm called Multistage Kernel Extension (MKE) algorithm,
integrating the idea of critical proteins recognition in the Protein- Protein Interaction (PPI) network,. MKE first
recognizes the nodes with high degree as the first level kernel of protein complex, and then adds the weighted
best neighbour node of the first level kernel into the current kernel to form the second level kernel of the protein
complex. This process is repeated, extending the current kernel to form protein complex. In the end, overlapped

biological significance in the PPl network.

protein complexes are merged to form the final protein complex set.

Results: Here MKE has better accuracy compared with the classical clique percolation method and markov
clustering algorithm. MKE also performs better than the classical clique percolation method both on Gene
Ontology semantic similarity and co-localization enrichment and can effectively identify protein complexes with

Introduction

Mining protein complexes is very important in biological
processes since it helps reveal the structure-functionality
relationships in biological networks. So much attention
has been paid to accurate detection of protein complexes
from the increasing amount of protein-protein interaction
(PPI) network data. In recent years, many protein complex
mining algorithms have developed for protein-protein
interaction network. However, most of the available algo-
rithms primarily concentrate on mining dense protein
subgraphs as protein complexes, failing to take into
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account the inherent organizational structure within pro-
tein complexes. Thus, there is a critical need to study the
possibility of mining protein complexes using the topolo-
gical information hidden in edges [1]. Moreover, the
recent massive experimental analyses reveal that protein
complexes have their own intrinsic organization [2].
Complex social networks and complex biological net-
works both contain distinct community structures [3].
The formation of complex social network is often
divided into several stages. First, the founders create the
original kernel of the community according to common
ideas or interests. Next, the kernel community is
expanded by introducing the similar objects to join the
community to form a basic framework and organiza-
tional structure, and the new community begins to run
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effectively. Subsequently, the community gradually
assimilates objects sharing common ideas or interests
incessantly joining this community, then a complex net-
work is constructed which exerts corresponding influ-
ence and function in society.

Studies show that the PPI network is such a kind of
the complex network, it has the properties similar to
complex networks on topological structure, namely
small world property [4], scale-free property [5], and it
presents remarkable modular structures [6]. The PPI
network is composed by many protein complexes (func-
tion modules or clusters), and these protein complexes
are made up of some proteins working together to carry
out some functions. Protein complex refers to a group
of proteins that interact with each other at the same
time and in the same space. The formation of the pro-
tein complexes and the PPI follow its inherent objective
laws, which is a gradually developing process, not
accomplished at one stroke.

Halt et al. believed that criticality is an important prop-
erty of protein complexes, and experimental data shows
that critical proteins always heavily concentrate in certain
complexes [7]. Some researchers combined the recogni-
tion of the critical proteins with protein complexes detec-
tion. Zotenko et al. pointed out that densely connected
protein complexes with same or similar biological function
are rich in critical protein nodes, and these nodes around
the critical nodes have a strikingly functional similarity [8].
Jeong et al. discovered the centrality-lethality rule which
demonstrates that the deletion of proteins with more
neighbouring nodes is easier to affect the topological
structure of the whole network, and then produces lethal
effect on the body [9]. That is to say, the protein nodes
with higher degree more tend to exhibit the criticality in
biological properties and play an important role in the
protein complexes.

Based on the above ideas, we propose a novel protein
complex mining algorithm called MKE (Multistage Kernel
Extension) based on multistage kernel extension. MKE
first transforms the undirected and unweighted graph of
PPI network to a directed and weighted network graph,
then selects the node set composed by high-degree and
closely connected nodes in PPI network as the first level
kernel of the protein complex, or as the kernel nodes of
the protein complex, since these nodes are prone to play a
key role in the biological function of the protein complex.
Next, for each adjacent node of the first level kernel of the
protein complex, MKE uses the definition of the weighted
best neighbour node to determine the extent of the close-
ness between the adjacent node and the current kernel. If
the extent of the closeness is greater than the average
extent of closeness of the subgraph formed by the current
kernel and its neighbouring nodes, then this neighbouring
node can be added into the current kernel and be
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extended into the next level kernel. This process is con-
tinuously repeated; the kernel is extended stage-by-stage
and finally a protein complex is constructed. Experimental
results demonstrate that MKE is simple and effective, and
the protein complexes identified with biological signifi-
cance have a very high degree of match with reference
protein complexes.

Methods

Constructing directed and weighted network graph

In the protein-protein interaction network, for each pair
of protein nodes, it is difficult to determine whether
they belong to the same protein complex just by the
degree of the nodes and their connection characteristics.
Since two protein nodes have their own neighbour node
set in PPI network, we can get their common neighbour
node set. If one pair of protein nodes has more common
neighbour nodes, it indicates that they have closer con-
nection. Thus the possibility that the two proteins
belong to the same protein complex is greater, and the
probability that they participate in the same cell func-
tion is larger as well. Therefore, the common neighbour
node set of one pair of protein nodes acts as an impor-
tant role in weighing the relationship between the pair
of protein nodes.

In the PPI network, for any two protein nodes, denoted
by s and ¢, if there is an undirected edge between them, it
can be converted into directed and weighted edge. Initi-
ally, the edge between node s and node ¢ is undirected
and unweighted.

N; and N; represent the neighbour node set of node s
and node ¢ respectively in the PPI network, and the
number of the common neighbour nodes between them
is denoted by cny, defined by:

chg = [Ny N Ny 1)

ws and Wi are the directed and weighted edges
between node s and node t after conversion treatment,
which is described in (2) and (3):

Wy = Cnst/ds 2)

Wys = cNys/d, (3)

Where, cny is the number of the common nodes
between node s and node t, ¢y is the number of common
nodes between node ¢t and node s. Since it is an undirected
graph, ¢ng = chys. d, represents the degree of node s, and d,
represents the degree of node t. After the conversion treat-
ment, there are two directed and weighted edges between
the node s and node ¢, as shown in Figure 1.

In the above definitions, the weights of the edges
between two nodes are unequal. Assume that the degree
of protein node t is very large, while the degree of protein
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Figure 1 Convert the undirected edge to directed and
weighted edges. (a) is an interactive graph (undirected and
unweighted graph) including node § and node t.(b) shows the
undirected and unweighted edge between node s and node t. ()
shows the directed and weighted edges between node § and node

t after conversion treatment.
\

node s is so small. Although they have the same number
of common neighbour nodes, according to formula (2)
and (3), Wy > Wy, as shown in Figure 1. In terms of node
t, the possibility that node t and node s belong to the
same protein complex is small, but in terms of node s,
the possibility that node s and node t belong to the same
protein complex is larger. Since the correlation is asym-
metric, it is necessary to use two directed and weighted
edges to weigh the correlation between the nodes. How-
ever, in these known protein complex mining algorithms,
most of them fail to consider this detail, but treat it in
the way with an equal weight, which is obviously
unreasonable.

If there are n nodes in the network, let d,, denote
the biggest degree of a node in current network. For
each node v, find its neighbour node set S. For any node
t in set S, the number of the edges between node t and
the other nodes in set S is the number of common
neighbour nodes between node v and node t, and the
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time complexity is O(dmax ® dmax) that discovers the
common neighbours. Then the time complexity is
O(n e dmax ® dmax) that converts the undirected and
unweighted graph into the directed and weighted net-
work graph.

Defining the weighted best neighbour node

In the PPI network, for one protein node, there are
always a large number of neighbour nodes around it.
Since the PPI graph has been transformed into a direc-
ted and weighted graph, it is convenient to find the
neighbour node.

In terms of one node v, if the directed weights between
node v and one of its neighbour node both greater than
Wave, then we call this neighbour node the weighted best
neighbour node of node v, denoted by Bn(v). That is to
say, the weighted best neighbour node may be more than
one. The relationship of node v and its best neighbour
node Bn(v) is shown in (4):

Wy,Bn(v) = Wave @)

WBn(v),v = Wave

Where,Ware is a weight threshold—an average weight of
a local network formed by the current subgraph and the
adjacent nodes of the subgraph. Its definition is given in
the back (see formula (7)). (In the initial formation stage
of the protein complex, as the initial nodes are the criti-
cal nodes with high degree and more adjacent nodes,
and combining the experimental tests in this paper, the
Waye is initialized to 0.8.)

In terms of a cluster, the neighbour nodes of the clus-
ter refer to the nodes which have the direct interactions
with the internal nodes of the cluster but are not in the
cluster. For cluster ¢, N, is the neighbour node set of
clusterc, vis one of the nodes in set N,. uis the node
within clusterc. Wwis the weight between the node u
within clusterc and its neighbour node v. The best
neighbour node of clusterc can be denoted by Bn(c),
and W¢Bn(c)is the weight between clusterc and its best
neighbour node. The relationship of clusterc and its best
neighbour node Bn(c) is shown in (5):

We,Bn(c) = Wuy = Wave
© (wecveN) )
WBn(c),c = Wyu = Wave

Identifying the first level kernel of protein complex

In the PPI network, protein complex generally corre-
sponds to the subgraph where proteins interact closely.
The formation of protein complex is a slow procedure.
Compared to other part of the protein complex, the first
level kernel of the protein complex corresponds to the
set of kernel nodes of the protein complex, which plays
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an irreplaceable role in the protein complex. Since the
degree of the nodes in the PPI network follows the
power-law distribution, there are a few nodes with a
high degree and they play an important role in the net-
work, corresponding to the core parts of the network.
Since the closely connected and high-degree nodes have
no significant difference between them, they are
together taken as the first level kernel of the protein
complex. P(k) is the percentage that the high-degree
nodes account for of all the nodes in the PPI network.

g, >k

P(k) = (6)

Where ndenotes the number of nodes in the network,
kis the given degree threshold, d,represents the degree
of node v. M4,>tis the total number of nodes whose
degrees are greater than or equal to k in the PPI net-
work. According to the different sizes of the PPI net-
work, P(k)can be tuned properly, and in this paper it is
set to be 0.01, because critical nodes account for small
fraction of all nodes.

According to the degree distribution of nodes in the PPI
network, first, all the nodes in the network are ranked
according to the degree, and nodes with degree greater
than or equal to f are selected to be the initial kernel
nodes of the first level kernels of protein complexes. For
the protein nodes within the first level kernel of the pro-
tein complex, there are plenty of common neighbour
nodes between them, otherwise there is little chance that
these nodes would belong to the same protein complex.
Thus for two protein nodes, node s and node t, when the
directed weights between them are both greater than the
given threshold value of the weight, it indicates that they
closely connect with each other. Then they can be thought
to belong to the same first level kernel of protein complex.
[see Additional file 1 for Algorithm 1-Identifying the First
level Kernel(IFLK) Algorithm and for its Time Complexity
Analysis].

Identifying the second level kernel of protein complex
For each neighbour node of the identified first level ker-
nel, we can adopt the definition of weighted best neigh-
bour node to analyze the extent of closeness between the
current kernel and the neighbour nodes. If the extent of
closeness is greater than the average extent of closeness
of the subgraph formed by the current kernel and its
neighbour nodes, then add this neighbour node into the
current kernel to generate the next kernel, otherwise, dis-
card it.

The first level kernel of the protein complex identified
is usually the single protein node with high degree or
the set of some protein nodes with high degree. Com-
pared with the first level kernel of the protein complex,
the degree of the nodes of the second level kernel is
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slightly small. However, like the first level kernel of the
protein complex, the second level kernel of the protein
complex is in the central position of the protein com-
plex as well, so there is no substantial difference on the
extent of connection closeness between the second level
kernel and the first level kernel of the protein complex.

Since the second level kernel of the protein complex is
in the periphery of the first level kernel, we can natu-
rally achieve the second level kernel by extending the
first level kernel of the protein complex. In the protein-
protein interaction network graph, the second level ker-
nel of the protein complex can intuitively correspond to
the network subgraph formed by the first level kernel
and its adjacent nodes. Simply speaking, some special
processing can be done on the adjacent network of the
first level kernel of the protein complex, and then we
can conveniently obtain the second level kernel of the
protein complex.

Generally speaking, in the local area, if the number of
exchanges between two people or the number of com-
mon friends of two people exceeds the average number
of exchanges or the average number of common friends
between people in the district, then the relationship
between the two people can be regarded as unusual.
Likewise, the protein complexes in the PPI network pos-
sess the same property and law. Therefore, the average
weight of the local network is taken as the criterion to
measure whether two nodes belong to the identical pro-
tein complex. In terms of the directed and weighted PPI
graph G(V,E), the average weight Waye of the network
can be shown as follows:

Z Wyt

S#EV (7)

w =
VI (V= 1)

Where, |V| is the number of the nodes of the network
formed by the current kernel and its neighbours, Wais
the directed weight between node s and node t. [see
Additional file 1 for Algorithm 2-Identifying the Second
Level Kernel(ISLK) Algorithm and for its Time Com-
plexity Analysis].

Mining protein complexes by multistage kernel extension
In the PPI network, the protein complex is a striking mod-
ule structure which is formed by multistage kernel exten-
sion of the kernel protein nodes. The initial stage of kernel
extension of the protein complex is very important, so we
have elaborated on this before. Since the kernel extension
stages of the protein complex are similar and the next
stages of kernel extension are similar to the second stage,
it is redundant and pointless to elaborate on the next
stages of kernel extension of the protein complex.

During the multistage kernel extension process, the
previous extension stage is more important than the
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next extension stage. In general, the more important
protein node sets account for smaller percentage in PPI
network. Thereby, we can make a reasonable hypothesis
accordingly that the number of the nodes added into
the current protein complex kernel in the next stage is
greater than that in the previous stage. In addition, due
to the specificity of different networks, some kernels
need to early terminate the extension to form the pro-
tein complexes after several extension stages; conse-
quently, the algorithm introduces the Extended Level
Parameter « as a constraint.

According to the above discussion, we implement the
same process on the second level kernel like the way
that the first level kernel extends to yield the second
level kernel of the protein complex, and the process is
repeated until the increased number AN ypen; of nodes
of current kernel extension is smaller than the increased
number ANyior of nodes of the previous kernel exten-
sion or until the extended level parameter « is greater
than the threshold T,, then output the ultimate kernel
of the protein complex. Before the algorithm starts, the
current kernel of the protein complex is null, naturally,
the size of the kernel is 0. After having identified the
first level kernel of protein complex, the increased num-
ber of nodes of first level kernel of the protein complex
is obviously equal to its own size.

In terms of a node in the PPI network, the extent of clo-
seness between the node and a protein complex is
obtained by calculating the extent of closeness between
this node and the nodes satisfying special condition within
the protein complex, rather than by calculating the extent
of closeness between this node and multiple nodes within
the protein complex. Therefore, using the definition of the
weighted best neighbour node for the PPI network, we can
find that algorithm in this paper predicts the protein com-
plex by one node in the kernel extending to the nodes out-
side the kernel, which is different from most of other
available algorithms that predict the modules by multiple
nodes within the kernel extending to the nodes outside
the kernel.

When the algorithm is over, we get the final set of the
predicted protein complexes. Subsequently, we need to
determine the possibility that two final kernels belong to
the same protein complex according to the degree of
overlapping. For the protein complexes j and j, the over-
lap ratio between them is shown in (8):

L ICiNGl g
' ciug ®)
Where C; is the number of nodes in cluster §, and G; is
the number of nodes in cluster j. [see Additional file 1
for Algorithm 3—Multistage Kernel Extension (MKE)
Algorithm and for its Time Complexity Analysis].
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Results and discussion

For the protein-protein interaction network data of all
species, yeast protein-protein interaction network data is
relatively complete, so the yeast protein-protein interac-
tion network is selected as the main study object of the
experiment. The experiment tests on Krogan dataset
[10] and Collins dataset [11] to compare with other
algorithms, and then analyses the biological significance
of the predicted protein complexes. After removing the
self-interactions loop links of the protein nodes and the
multilateral links of protein nodes in the pre-process,
Krogan dataset and Collins dataset contain 3672, 1622
nodes and 14317, 9074 edges respectively.

Palla et al. (2005) have proposed algorithm CPM
(Clique Percolation Method) which can identify the
overlapped network cluster structures [12]. The basic
hypothesis of the algorithm is: network cluster is made
up of multiple adjacent k-cliques, where k-clique is the
maximally connected subgraph containing % protein
nodes. Provided that two k-cliques have k — lcommon
nodes, then the two k-cliques are thought to be adja-
cent. The CPM algorithm produces the maximally con-
nected subgraph as the module by incessantly uniting
adjacent k-cliques. Adamcsek et al. have employed
algorithm CPM to develop a network module mining
software called CFinder which can expediently dig pro-
tein complexes from the protein-protein interaction
network. Compared with other graph clustering algo-
rithms, algorithm CPM is a deterministic method, and
it can find overlapped protein complexes from the pro-
tein-protein interaction network. Algorithm MCL
(Markov Clustering) is a fast and scalable unsupervised
clustering algorithm, and its basic idea is that: this
method first simulates random walk in the graph, then
divides the protein-protein interaction network into
disjoint dense subgraphs, and finally extracts com-
plexes from the protein-protein interaction network
[13]. In the experiment, the maximal size of cliques of
the CFinder is set to be 3. The reference protein com-
plexes dataset adopted by algorithm MCL and CFinder
comes from reference [14]. And for algorithm MKE, it
derives from reference [15].

Analysing extended level parameter «

In order to evaluate the predicted protein complexes,
408 protein complexes are artificially extracted to gener-
ate a elaborated catalogue from the published small
scale experimental data, and a reference protein com-
plexes dataset is created by filtering out 236 protein
complexes with size at least 3, and the average size is
6.7. Meanwhile, since protein complex with size less
than 3 is meaningless, the size of all predicted protein
complexes analyzed in this paper is at least 3.
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Different datasets have different network topology, and
the organizational structures of clusters in different
datasets vary too. Therefore we need to adjust the
extended level parameter o of the algorithm to optimize
the results of the algorithm on a given dataset.

The MKE algorithm generates the protein complexes by
extending the kernel clusters, but different datasets have
different optimal extended level parameter o. The impact
that the extended level parameter o has on the Krogan
and Collins dataset is shown in Figure 2, the average size
of the protein complexes the algorithm discovered on the
Krogan dataset dramatically increases with the larger para-
meter a. Although the average size of the protein com-
plexes is stable when parameter « is 4, it is far from the
average size of the reference protein complex set. On Col-
lins dataset, the average size of the protein complexes basi-
cally exhibits the similar trends. From Figure 2, for Krogan
and Collins datasets, when o = 4 and & = 7 respectively, it
can be seen that the average size of the protein complexes
becomes stable. It indicates that all of kernels in the Kro-
gan and Collins datasets experience at least 4 or 7 times of
extension to meet the condition that the increased number
of nodes in the next kernel extension is less than that in
the previous kernel extension.

Accuracy of algorithms

The accuracy measure Acc (accuracy) introduced by
Brohee and Van Helden is usually used to compare the
performance of algorithms [16], which is the geometric
mean of the sensitivity Sn and positive predictive value
PPV. Sn and PPV are calculated based on matching
matrix of predicted protein complexes and reference
protein complexes. The number of rows n represents
the number of reference protein complexes, the number

140
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The Average Size of Protein Complexes

% 2 4 6 8

The Extended Level Parameter

Figure 2 The average size of complexes predicted under
different extended level parameter «. The impact that the
extended level parameter ot. & has on the Krogan and Collins
dataset.
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of columns m represents the number of predicted pro-
tein complexes, the element of the matrix t(i, j)denotes
the number of co-occurrence proteins which present in
the i — th reference protein complexes and appear in the
j — th predicted protein complexes at the same time,
and n(i) represents the size of the j — th reference pro-
tein complexes. Sn and PPV can be given by
n .

o = =1 M 1) ©)

= 0o

iz (i)

~ >t maxi, (i, j)

B > i (i)

The accuracy measure of algorithm can be defined as

PPV (10)

Acc = +/Sn x PPV (11)

Respectively calculating these above measures of each
algorithm on Krogan and Collins dataset, the results are
listed in Table 1. The figures of CFinder and MCL
derive from literature [17].

In Table 1 On Krogan dataset, the MKE algorithm
separately finds 35 protein complexes and matches 48
protein complexes more than CFinder. Even though the
value of Sn of CFinder is 0.227 higher than MKE, the
value of PPV of MKE is notably higher than CFinder.
With respect to MCL, the predicted clusters is much
greater than that MKE predicted, but MKE matches
more than that MCL matches, which indicates that in
MCL algorithm, multiple predicted protein complexes
match one reference protein complex. Just like CFinder,
the value of Sn of MCL is 0.027 higher than MKE, but
the value of PPV of MKE is 0.114 higher than MCL.

On Collins dataset, the performance of CFinder and
MCL exhibits high similarity as on Krogan dataset.
Since the values of Sn and PPV of CFinder are extre-
mely uneven, it results in lower values of Acc, which are
0.133 and 0.082 lower than Acc of MKE algorithm
respectively on Krogan and Collins dataset. Conse-
quently, on the whole, the MKE algorithm outperforms
CFinder. Although Sn and PPV of MCL are relatively

Table 1 Various performance indicators of different
algorithm on Krogan and Collins datasets

Dataset Method clusters matched Sn PPV Acc
Krogan CFinder 121 34 0611 0162 0315
MCL 483 68 0411 0408 0409

MKE 156 82 0.384 0.522 0.448

Collins CFinder 114 66 0661 0367 0492
MCL 183 88 0.587 0409  0.536

MKE 115 88 0496 0.664 0.574

The figures of CFinder and MCL derive from literature [17]
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balanced on both dataset and there is no significantly
difference on the values of Acc between MCL and MKE,
MCL is slightly inferior to MKE algorithm.

Function enrichment analysis

To assess the biological significance of the predicted
protein complexes, we can calculate the P-value of the
probability that the proteins with common function
appear in the predicted protein complexes. P-value
reflects the extent to which a given function enrich a
protein complex, which is defined as

< (1) (62)
k—1 . C—‘
P—value=1—2 ' '

= ()

Let N denote the total number of nodes in protein-pro-
tein interaction network and C represent the number of
proteins within the predicted protein complex, let k and
F denote the number of proteins with a given function in
protein complex and in PPI network, respectively. If
P-value of the predicted protein complex is very low,
then it explains that the probability of occurrence of
these proteins in the network together exhibiting a given
function as a protein complex is very small.

Generally speaking, the function corresponding to the
minimal P-value of the predicted protein complex is
taken as its primary function or annotation function.
Here, we adopt SGD’s GO::TermFinder [18] to calculate
P-value of the predicted protein complexes in the biologi-
cal process of GeneOntology, as shown in Table 2. The
P-value of these predicted protein complexes found on
Krogan and Collins datasets are very low, far smaller
than the usual threshold 0.01, which has great biological
significance. Among the 10 protein complexes listed
from Krogan and Collins datasets, there are 6 predicted
protein complexes that can match with reference protein
complexes 100%. That is to say, they are the real protein
complexes, which firmly prove that MKE can effectively
identify the protein complexes with biological signifi-
cance and even perfectly matched with reference protein
complexes.

(12)

Semantic similarity and co-localization enrichment

Co-localization enrichment analysis is based on the fact
that a protein complex can be formed only when its con-
stituents are to be found in the same cellular compart-
ment, and also that protein complex tends to be
responsible for a given biological function and a molecular
process [19]. For a single protein complex, the co-localiza-
tion enrichment ratio is the maximum fraction of proteins
in the complex which are found at the same localization.
For a protein complex set, the co-localization enrichment
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is the mean co-localization enrichment ratio of all com-
plexes in the set, weighted by the sizes of the complexes,
as shown in (13)

n ..
max; i,

LN (13)

L=
m

Where, the number of predicted protein complexes
and reference cellular compartment protein complexes
are respectively m and n, N; is the size of the predicted
protein complex j, li; is the number of nodes that are
found both in reference cellular compartment protein
complex i and predicted protein complex j.

The GO (Gene Ontology) semantic similarity of the
protein complex refers to the average degree of associa-
tion of all protein pairs [20]. The GO semantic similarity
of the protein complex set can be obtained by calculat-
ing weighted average of all protein complexes. In gen-
eral, the protein complex with higher GO semantic
similarity shows that the probability of proteins within
the protein complex expressing the similar function is
greater. This paper employs genome co-localization
reference dataset compiled by literature [21]. In a pro-
tein complex set predicted by a given algorithm, the
more protein complexes positioning in the same cellular
compartment indicates the stronger recognition capabil-
ity of the algorithm. This paper adopts the genome co-
localization reference dataset from literature [21] and
the ProCope [22] tool to analyze the GO semantic simi-
larity and co-localization enrichment on the results pre-
dicted by each algorithm on Krogan and Collins dataset.

In the Table 3 the figures of Reference dataset derived
from literature [21], on Krogan dataset, the GO seman-
tic similarity and Co-localization scores of CFinder are
0.144 and 0.125 lower than that of MKE respectively, so
it is natural that the arithmetic mean of MKE is much
greater than that of CFinder. Compared to MCL, the
co-localization enrichment of MKE is 0.109 lower than
that of MCL, but the GO semantic similarity of the
MKE algorithm is 0.197 higher than that of MCL.
Finally, by calculating the arithmetic mean of these two
metrics, we find that the result of MKE is 0.044 higher
than that of MCL. On Collins dataset, CFinder algo-
rithm behaves with high consistency as on Krogan data-
set. However, the GO semantic similarity of MCL is
0.042 lower than that of MKE, whereas the Co-localiza-
tion score of MCL is 0.201 higher than that MKE calcu-
lated. The latter indicator produces a significant
difference that leads to the lower arithmetic mean of
MKE compared to MCL. In view of this outcome, we
make a further analysis. As shown in Table 3 the indica-
tors calculated by each algorithm on Collins dataset are
all increased when compared to the Krogan dataset,
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Table 2 The five protein complexes with minimal p-value by MKE mining algorithm

Dataset ID  P-value Identification Gene Ontology term
Krogan 1 4.78e-47 26 out of 26 genes, 100.0% RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
2 9.26e-41 15 out of 15 genes, 100.0% chromatin disassembly
3 247e-30 19 out of 21 genes, 90.5% mitochondrial translation
4 7.92e-26 19 out of 23 genes, 82.6% modification-dependent protein catabolic process
5 3.80e-19 17 out of 17 genes, 100.0%  transcription from RNA polymerase Il promoter
Collins 1 1.98e-91 67 out of 93 genes, 72.0% cytoplasmic translation
2 1.07e-28 25 out of 25 genes, 100.0%  transcription from RNA polymerase Il promoter
3 142e-41 24 out of 24 genes, 100.0% mitochondrial translation
4 6.79e-28 14 out of 15 genes, 93.3% mRNA 3"-end processing
5 517e-44 16 out of 16 genes, 100.0% chromatin disassembly

which proves the specificity of different networks. MCL
performs better on Collins dataset than on Krogan data-
set, indicating that one algorithm is not applicable to all
kinds of networks. Moreover, referring to Table I, MCL
finds much more clusters than that MKE predicted
which may be an advantage when calculating the Co-
localization score.

Therefore, by and large, although MKE algorithm is
not better than all of the selected algorithms, MKE per-
forms better than algorithm CFinder on the aspects of
GO semantic similarity and co-localization enrichment,
and can effectively detect the protein complexes with
biological significance in the protein-protein interaction
network.

Conclusion

Due to the complexity of structure and the limitations
of the experimental validation of the protein-protein
interaction network, there is no convincing and strict
definition regarding the verification standard of the pro-
tein complex up to now. Therefore, for protein complex
mining, the detecting standard of the protein complex
should be first confirmed. That is to say, what is the
structure of the protein complex needs to be defined.

Table 3 GO semantic similarity and Co-localization
enrichment analysis by algorithm MKE

Dataset Method GO semantic Co-localization Arithmetic
similarity score score mean
Krogan CFinder 0482 0448 0465
MCL 0429 0.682 0.556
MKE 0.626 0.573 0.600
Collins CFinder 0.725 0616 0671
MCL 0.783 0.900 0.842
MKE 0.825 0.699 0.762
Reference 0.984 0.768 0.876

The figures of Reference dataset come from literature [21]

The formation of the protein-protein interaction net-
work follows its intrinsic law and the PPI network gradu-
ally develops by some protein complexes with inherent
links. The criticality is an important property of the pro-
tein complex. Critical proteins can always be discovered
within protein complexes, which are the high-degree
nodes with many adjacent nodes. The protein nodes with
higher degree tend to exhibit the criticality on biological
properties as kernels and play an important role in the
protein complex. Thus one or multiple critical nodes can
be taken as kernels around which there are a lot of adja-
cent protein nodes closely connecting with each other,
and the periphery of these adjacent proteins have also
some adjacent nodes. All these nodes construct a rela-
tively independent set which is able to implement some
relatively independent biological functions. In other
words, such protein sets are most likely to construct pro-
tein complexes.

Inspired by the community formation law of the com-
plex social network and the centrality-lethality rule, and
combining the idea of critical protein nodes detection, this
paper proposes a new protein complex mining algorithm
MKE based on multistage kernel extension. MKE is the
first algorithm to identify the innermost kernel of the pro-
tein complex, namely taking the critical nodes with high
degree and more adjacent nodes as the first level kernel of
the protein complex. Then MKE expands the first level
kernel to be the second level kernel of the protein complex
by adding the weighted best neighbour node into the cur-
rent kernel, and repeatedly goes on expansion stage-by-
stage to construct protein complex, and then MKE merges
overlapped protein complexes to form the protein com-
plex set. MKE has better accuracy compared with the clas-
sical clique percolation method and markov clustering
algorithm. MKE also performs better than classical clique
percolation method both on Gene Ontology semantic
similarity and co-localization enrichment and can effec-
tively identify protein complexes with biological signifi-
cance in the PPI network.



Shen et al. BMC Bioinformatics 2014, 15(Suppl 12):57
http://www.biomedcentral.com/1471-2105/15/512/S7

Additional material

Additional file 1: Supplementary Algorithms and Time Complexity
Analysis. A collection of algorithms and their corresponding time
complexity analysis is available in Additional_file_1.pdf. Format: PDF. size:
123KB

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

XS designed the protein complexes mining algorithm based on multistage
kernel extension and weighted best neighbour node. YL implemented the
protein complexes mining algorithm and run the experiments. YZ and JY
helped plan the experiments analysed and contributed to writing the
manuscript. TH and XTH supervised and helped conceive the study. All
authors read and approved the final manuscript.

Acknowledgements

This research is supported by the Self-determined Research Funds of CCNU
from the Colleges’ Basic Research and Operation of MOE(No.
CCNU14A02008, No. CCNU13C01001), the International Cooperation Project
of Hubei Province (No. 2014BHEQ017), the Program of Introducing Talents of
Discipline to Universities (under grant No. B07042), the National Natural
Science Foundation of China (under grant No. 31371275) and the Natural
Science Foundation of Hubei Province (under grant 2013CKB024).

Declarations

Publication of this article has been funded by NSF IIP 1160960, NSF IIP
1332024.

This article has been published as part of BMC Bioinformatics Volume 15
Supplement 12, 2014: Selected articles from the IEEE International
Conference on Bioinformatics and Biomedicine (BIBM 2013): Bioinformatics.
The full contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/512.

Authors’ details

School of Computer, Central China Normal University, Wuhan, 430079,
China. “College of Computing and Informatics, Drexel University,
Philadelphia, PA, USA.

Published: 6 November 2014

References

1. Ma XK, Gao L: Discovering protein complexes in protein interaction
networks via exploring the weak ties effect. BVMC Systems Biology 2012,
6(Suppl 1).

2. Dezsl Z, Oltvai AD, and BarabésiO AL: Bioinformatics analysis of
experimentally determined protein complexes in the yeast
saccharomyces cerevisiae. Genome Res 2003, 13:2450-2454.

3. Girvan M, Newman MEJ: Community Structure in Social and Biological
Networks. Proc Natl Acad Sci USA 2002, 99:7821-7826.

4. Antonio DS, Hirotomo F, O'Meara Paul: Topology of small-world networks
of Protein-Protein complex structures. Bioinformatics 2005,
21(8):1311-1315.

5. Stefan W: Scale-free behavior in protein domain networks. Molecular
Biology And Evolution 2001, 18(9):1694-1702.

6. Wuchty Stefan, Ravasz Erszébet, Barabési Albert-LaszI6: The architecture of
biological networks. Complex Systems Science in Biomedicine 2006, 165-181.

7. Traver Hart G, Lee L, Edward RM: A high accuracy consensus map of yeast
Protein complexes reveals modular nature of gene essentiality. BMC
Bioinformatics 2007, 8(1):236.

8. Elena Zotenko, Julidan Mestre, O'Leary Dianne P, Przytycka Teresa M: Why
Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential:
Reexamining the Connection between the Network Topology and
Essentiality. PLoS Computational Biology 2008, 4(8):e1000140.

9. Jeong H, Mason SP, Barabdsi AL, et al: Lethality and centrality in Protein
networks. Nature 2001, 411(6833):41-42.

20.

21,

22.

Page 9 of 9

Krogan N, Gerard C, Yu Haiyuan, et al- Global landscape of protein
complexes in the yeast Saccharomyces cerevisiae. Nature 2006,
440:637-643.

Collins SR, Patrick K, et al: Toward a comprehensive atlas of the physical
interactome of Saccharomyces cerevisiae. Mol Cell 2007, 6:439-450,
Proteomics.

Palla G, Derenyi |, Farkas |, Vicsek T: Uncovering the overlapping
community structure of complex networks in nature and society. Nature
2005, 435(7043):814-818.

Satuluri V, Srinivasan PA, and Duygu U: Markov Clustering of Protein
Interaction Networks with Improved Balance and Scalability. Proceedings
of the First ACM International Conference on Bioinformatics and
Computational Biology 2010 Niagara Falls, NY, USA;247-256.

Mewes HW, Amid C, Arnold R, et al: MIPS: analysis and annotation of
proteins from whole genomes. Nucl Acids Res 2004, 32(sup. 1):D41-44.

Pu S, Wong J, Turner B, Cho E, Wodak SJ: Up-to-date catalogues of yeast
protein complexes. Nucleic Acids Res 2009, 37:825-831.

Brohee S, van Helden J: Evaluation of clustering algorithms for protein
protein interaction networks. BMC Bioinformatics 2006, 7:488.

Nepusz Tamads, Yu Haiyuan, Paccanaro Alberto: Detecting overlapping
protein complexes in protein-protein interaction networks. Nature 2012,
471-472, Methods 9.

Boyle El, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO::
TermFinder-open source software for accessing Gene Ontology
information and finding significantly enriched Gene Ontology terms
associated with a list of genes. Bioinformatics 2004, 20(18):3710-3715.
Friedel C, Krumsiek J, and Zimmer R: Bootstrapping the interactome:
unsupervised identification of protein complexes in yeast. Computational
Molecular Biology 2008, 4955:3-16.

Schlicker A, Domingues F, Rahnenfuhrer J, et al: A new measure for
functional similarity of gene Products based on gene ontology. BMC Bio-
informatics 2006, 7(1):302.

Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS,

O'Shea EK: Global analysis of protein localization in budding yeast.
Nature 2003, 425:686-691.

Krumsiek J, Friedel CC, Zimmer R: ProCope-Protein complex Prediction
and evaluation. Bio-informatics 2008, 24(18):2115-2116.

doi:10.1186/1471-2105-15-512-57

Cite this article as: Shen et al: An efficient protein complex mining
algorithm based on Multistage Kernel Extension. BMC Bioinformatics
2014 15(Suppl 12):57.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ) -
www.biomedcentral.com/submit ( BiolMed Central



http://www.biomedcentral.com/content/supplementary/1471-2105-15-S12-S7-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S12
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S12
http://www.ncbi.nlm.nih.gov/pubmed/23046740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23046740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14559778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14559778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14559778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12060727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12060727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15659419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15659419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11333967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11333967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17200106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17200106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19095691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19095691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16776819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16776819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14562095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18635566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18635566?dopt=Abstract

	Abstract
	Background
	Methods
	Results

	Introduction
	Methods
	Constructing directed and weighted network graph
	Defining the weighted best neighbour node
	Identifying the first level kernel of protein complex
	Identifying the second level kernel of protein complex
	Mining protein complexes by multistage kernel extension

	Results and discussion
	Analysing extended level parameter α
	Accuracy of algorithms
	Function enrichment analysis
	Semantic similarity and co-localization enrichment

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

