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Abstract Mixture models are ubiquitous in applied sci-

ence. In many real-world applications, the number of

mixture components needs to be estimated from the data. A

popular approach consists of using information criteria to

perform model selection. Another approach which has

become very popular over the past few years consists of

using Dirichlet processes mixture (DPM) models. Both

approaches are computationally intensive. The use of

information criteria requires computing the maximum

likelihood parameter estimates for each candidate model

whereas DPM are usually trained using Markov chain

Monte Carlo (MCMC) or variational Bayes (VB) methods.

We propose here original batch and recursive expectation-

maximization algorithms to estimate the parameters of

DPM. The performance of our algorithms is demonstrated

on several applications including image segmentation and

image classification tasks. Our algorithms are computa-

tionally much more efficient than MCMC and VB and

outperform VB on an example.

Keywords Clustering � Dirichlet processes � Expectation-

maximization � Finite mixture models

1 Introduction

Finite mixture models are used in numerous applications

for density estimation and model-based clustering [14]. In

many cases, the number of components of the mixture is

unknown and needs to be estimated from the data. Two

popular approaches have been developed to address this

problem in the literature.

The standard approach consists of performing model

selection using an information criterion such as Akaike

information criterion or Bayesian information criterion. This

requires computing the maximum likelihood estimates of

the parameters for each model candidate. This is typically

performed using the celebrated expectation-maximization

(EM) algorithm [7] which allows us to find easily local

maxima of the likelihood function. However, if the number

of model candidates is large, then this approach is expensive.

Over the past few years, an alternative approach has

become very popular in machine learning and pattern rec-

ognition. It relies on the class of Dirichlet process mixture

(DPM) models. In this approach, a prior on the number of

components of the mixture is implicitly introduced through

the so-called stick-breaking construction [4, 10]. DPM

models have attractive properties but are unfortunately

difficult to learn and inference is typically carried out using

VB [4] or Markov chain Monte Carlo (MCMC) methods

[10]. Both approaches are very computationally intensive.

The main contributions of our paper is to present here ori-

ginal batch and recursive EM algorithms for parameter esti-

mation in DPMs which allows us to do jointly parameter and

model selection. We additionally propose an original method

to select automatically the scale parameter of the DPM model

which has a crucial influence on the inference results.

Batch EM algorithms need to compute an expectation

w.r.t the whole data set before updating the parameters and
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can be quite computationally intensive for large data sets.

Our batch EM algorithm for DPM is no exception. To

mitigate this problem, recursive EM ideas have appeared

over the past few years where we compute an expectation

w.r.t a single data point before updating the parameters

[12, 17, 18, 20]. The algorithms discussed in these refer-

ences have enjoyed some successes but suffer from several

drawbacks. In particular, if the parameters we are interested

in are constrained to a manifold—e.g., the simplex or the

space of positive definite matrices—then the update rules

described in earlier work rely on some complex reprojection

steps. The recursive EM algorithm for DPMs proposed here

follows the alternative approach initiated in [1, 16] for

standard finite mixture of Gaussians. Such recursive EM

approaches have surprisingly not been widely adopted,

whereas they do not suffer from the problems encountered

by the algorithms presented in [12, 17, 18, 20] and are a

direct extension of the batch EM algorithm. We demonstrate

these EM algorithms on various datasets and show that they

can outperform state-of-the-art variational Bayesian

approaches developed for DPM for a fraction of their

computational complexity [4]. To be precise, we should

mention that our EM algorithms are only applicable to a

truncated version of the DPM model where the number of

possible components is restricted to a large number. Similar

truncation approaches have been adopted in [4, 10].

The rest of this paper is organized as follows: in Sect. 2,

we review the class of finite mixture models and the batch

and recursive EM algorithm in this framework. In Sect. 3,

we present the class of DPM models and present original

batch and recursive EM algorithms to fit a truncated ver-

sion of the DPM models. We demonstrate the performance

of our model and algorithms in Sect. 4.

2 Finite mixture models and EM algorithms

2.1 Finite mixture model

Let y1; . . .; yT 2 Y be independent and identically distrib-

uted random variables. We model the distribution of

the observations using a parametric family of pdfs

fgðyjUÞ; U 2 Ug: We assume that gðyjUÞ is a mixture of

k components

gðyjUÞ ¼
Xk

i¼1

pifiðyjhiÞ

where U ¼ ðp1; . . .; pk; h1; . . .; hkÞ; fiðy; hiÞ the probability

density function of the ith component, pi C 0 andP
i=1
k pi = 1. Further, we will introduce the missing data

x1; . . .; xT where xn 2 f1; . . .; kg corresponds to the

component associated with yn; that is, we have

gðyjUÞ ¼
Xk

i¼1

f ðx ¼ i; yjUÞ

where

f ðx; yjUÞ ¼ pxfxðyjhxÞ:

We give here two illustrative examples:

Example 1 Mixture of multivariate Gaussians.

For observations in Y ¼ R
d; we have

gðyjUÞ ¼
Xk

i¼1

piNðy; mi;RiÞ

where Nðz; m;RÞ is the multivariate Gaussian density of

argument z, mean m and covariance R: In this case, we

have U ¼ fðpi;mi;RiÞ; i ¼ 1; . . .; kg and

log f ðx;yjUÞ ¼ logpx�
n

2
logð2pÞ � 1

2
log jRxj

� 1

2
ðy�mxÞTR�1

x ðy�mxÞ

¼ �n

2
logð2pÞ þ

Xk

i¼1

logpi�
1

2
log jRi

�
j

�1

2
yTR�1

i y� 1

2
mT

i R�1
i mi� yTR�1

i mi

�
� diðxÞ

where di(x) = 1 if x = i and 0 otherwise.

Example 2 Mixture of Poisson distributions.

We have Y ¼ N and

gðyjUÞ ¼
Xk

i¼1

piPðy; kiÞ

where Pðz; kÞ is the Poisson distribution of argument z and

mean k. In this case we have

log f ðx;yjUÞ¼ logpx� y logðkxÞ� logðy!Þ�kx

¼� logðy!Þþ
Xk

i¼1

ðlogpi� y logðkiÞ�kiÞ �diðxÞ

In the rest of the paper, we will limit ourselves to the

multivariate Gaussian case but the algorithms presented

later on can be applied to any scenario where fi(y; hi)

belongs to the exponential family.

2.2 Batch and recursive EM algorithms for finite

mixture models

2.2.1 Batch EM

For any generic sequence {zt}, we use the notation zi:j ¼
ðzi; ziþ1; . . .; zjÞ: Consider we are interested in maximizing

the likelihood of the observations y1:T. The EM algorithm
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is an iterative algorithm which proceeds as follows at

iteration j:

UðjÞ ¼ arg max
U2U

QðU;Uðj�1ÞÞ

where

QðU;Uðj�1ÞÞ ¼ E½log f ðx1:T ; y1:T jUÞjy1:T ;U
ðj�1Þ�:

We can also easily modify this EM algorithm to maximize

the penalized likelihood associated with a prior distribution

pðUÞ.

Example 1 (continued) We have

QðU;Uðj�1ÞÞ¼
XT

t¼1

Xk

i¼1

logpi�
1

2
log jRij�

1

2
yT

t R�1
i yt

�

�1

2
mT

i R�1
i mi�yT

t R�1
i mi

�
�Prðxt¼ ijyt;U

ðj�1ÞÞ

where

Prðxt ¼ ijyt;U
ðj�1ÞÞ ¼

pðj�1Þ
i � N yt; m

ðj�1Þ
i ;Rðj�1Þ

i

� �

Pk
l¼1 pðj�1Þ

l � N yt; m
ðj�1Þ
l ;Rðj�1Þ

l

� � :

In this case, the Q function is maximized for

pðjÞi ¼
PT

t¼1 E diðxtÞjy1:T ;U
ðj�1Þ� �

T

¼
PT

t¼1 Prðxt ¼ ijyt;U
ðj�1ÞÞ

T
; ð1Þ

m
ðjÞ
i ¼

PT
t¼1 E ytdiðxtÞjy1:T ;U

ðj�1Þ� �
PT

t¼1 E diðxtÞjy1:T ;U
ðj�1Þ� �

¼
PT

t¼1 yt Prðxt ¼ ijyt;Uðj�1ÞÞ
TpðjÞi

; ð2Þ

RðjÞi ¼
PT

t¼1 E yty
T
t diðxtÞjy1:T ;U

ðj�1Þ� �
PT

t¼1 E diðxtÞjy1:T ;U
ðj�1Þ� � � m

ðjÞ
i m

ðjÞT
i

¼
PT

t¼1 yty
T
t Prðxt ¼ ijyt;U

ðj�1ÞÞ
TpðjÞi

� m
ðjÞ
i m

ðjÞT
i :

ð3Þ

2.2.2 Recursive EM

In a recursive framework, we want to be able to update the

parameter estimate UðtÞ at the time index t based on the

new observation yt. Most of the recursive EM algorithms

proposed in the literature rely on updates of the form

[12, 17, 18]

UðtÞ ¼ ð1� ctÞUðt�1Þ þ ctIðUðt�1ÞÞr log gðytjUÞjUðt�1Þ ð4Þ

where IðUðt�1ÞÞ is the complete Fisher information matrix

and {ct} is a non-decreasing stepsize sequence. The main

issue with this approach is that if some components of the

parameter U are restricted to a manifold then the update (4)

does not guarantee they will remain in this manifold. This

is, for example, the case for the Gaussian mixture models

where ðp1; . . .; pkÞ have to lie on the simplex and

ðR1; . . .;RkÞ have to be positive definite. To handle these

problems, a standard approach requires the use of repro-

jection algorithms or the use of an alternative parameteri-

zation. This is not elegant and can perform poorly in

practice.

The general algorithm we are proposing here is inspired

from [1] (see also for a related approach [16]). It bypasses

elegantly these problems by directly working with the

sufficient statistics appearing in the standard batch EM

algorithm. If we denote by S(x, y) the sufficient statistics

appearing in the EM algorithm, i.e. for multivariate

Gaussian mixtures

Sðx; yÞ ¼ ðd1ðxÞ; . . .; dkðxÞ; yd1ðxÞ; . . .; ydkðxÞ; yyTd1ðxÞ;
. . .; yyTdkðxÞÞ;

ð5Þ

then we simply use the following modified recursive

Expectation update:

SðtÞ ¼ ð1� ctÞSðt�1Þ þ ctE½Sðxt; ytÞjyt;U
ðt�1Þ�: ð6Þ

Then given S(t), we use the standard M-step of the EM

algorithm to obtain UðtÞ: The algorithm is thus a minor

modification of the standard EM algorithm and does

require neither reprojection nor reparameterization.

In practice we use ct = t-a for 0.5 \ a B 1. This

algorithm can be rewritten as a stochastic approximation

algorithm minimizing the Kullback–Leibler distance over h
between the distribution of the observations and the para-

metric family fgðyjUÞ; U 2 Ug: A proof of convergence

relying on stochastic approximation is sketched in [16] (see

[5] for an introduction).

Example 1 (continued) In the multivariate Gaussian case,

the sufficient statistics are given by (5) and thus the update

(6) proceeds as follows: we have

SðtÞ ¼ a
ðtÞ
1:k; b

ðtÞ
1:k; c

ðtÞ
1:k

� �

where

a
ðtÞ
i ¼ ð1� ctÞa

ðt�1Þ
i þ ct Prðxt ¼ ijyt;U

ðt�1ÞÞ; ð7Þ

b
ðtÞ
i ¼ ð1� ctÞb

ðt�1Þ
i þ ctyt Prðxt ¼ ijyt;U

ðt�1ÞÞ; ð8Þ

c
ðtÞ
i ¼ ð1� ctÞc

ðt�1Þ
i þ ctyty

T
t Prðxt ¼ ijyt;U

ðt�1ÞÞ: ð9Þ

and we use

pðtÞi ¼
a
ðtÞ
iPk

j¼1 a
ðtÞ
j

; ð10Þ
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m
ðtÞ
i ¼

b
ðtÞ
i

a
ðtÞ
i

; ð11Þ

RðtÞi ¼
c
ðtÞ
i

a
ðtÞ
i

� m
ðtÞ
i m

ðtÞT
i : ð12Þ

3 Dirichlet process mixtures and EM algorithms

3.1 Dirichlet process mixtures

The previous examples assume that the number of com-

ponents of the mixture is fixed and known. However, in

practice the number of components is often unknown and

needs to be estimated from the data. To achieve this, we

rely on DPM models which are a very popular class of

models in the literature (see for example [4, 10]). In this

model, we have

gðyjUÞ ¼
X1

i¼1

pifiðyjhiÞ

where the infinite sequence of weights {pi} is defined as

follows: we have p1 = v1 and for i [ 1

pi ¼ vi

Yi�1

j¼1

ð1� vjÞ ð13Þ

where {vi} is an infinite sequence of i.i.d. random vari-

ables distributed according to a beta distribution of

parameters (1, a). Here a is an hyperparameter such that

the higher a the higher the number of significant com-

ponents. Equation 13 corresponds to the so-called stick-

breaking prior representation of the Dirichlet process [10].

In the rest of the paper, we will always consider a C 1;

this corresponds to selecting a bounded prior density for

vi. The selection of the parameter a has a crucial influence

on the inference results and we present in the next section

a principled approach to select it automatically from the

data.

For sake of implementation, we will consider here a

truncated Dirichlet prior where we select a large value N

and we set vN = 1. It is shown in [10] than even for very

large datasets this truncation has virtually no effect if N is

taken reasonably large, i.e. N = 100. In this case the

parameter U of interest is given by U ¼ ðv1:N�1; h1:NÞ:

3.2 Batch and recursive EM algorithms for truncated

DPMs

Inference in DPMs models is usually performed using

MCMC methods [10] or VB approaches [4]. For very large

datasets, these approaches remain too computationally

intensive. We show here how we can simply apply the

batch and recursive EM algorithms in this framework when

the parameter a is given and then discuss a procedure to

estimate it automatically from the data.

3.2.1 Batch EM

Given the observations y1:T we want to estimate U ¼
ðv1:N�1; h1:NÞ: In this case, we have

QðU;Uðj�1ÞÞ�
XT

n¼1

ðlogf1ðynjh1Þþlogv1ÞPrðxn¼1jyn;U
ðj�1ÞÞ

þ
XN

k¼2

XT

n¼1

logfkðynjhkÞþlogvkþ
Xk�1

l¼1

logð1�vlÞ
 !

�Prðxn¼kjyn;U
ðj�1ÞÞ

þ
XN�1

k¼1

ða�1Þlogð1�vkÞ

¼
XN

k¼1

XT

n¼1

logfkðynjhkÞPrðxn¼kjyn;U
ðj�1ÞÞ

 !

þ
XN�1

k¼1

logvk

XT

n¼1

Prðxn¼kjyn;U
ðj�1ÞÞ

" #

þ
XN�1

k¼1

logð1�vkÞ

� a�1þ
XN

l¼kþ1

XT

n¼1

Prðxn¼ljyn;U
ðj�1ÞÞ

" #

where : means ‘‘equal’’ up to an additive constant inde-

pendent of the first argument of Q.

By maximizing this expression in vi we obtain

as we have set a C 1. From the expression of v1:N-1
(j) , we

can compute the weights p1:N
(j) using (13). The expressions

for the other parameter updates h1:N are similar to the

standard finite mixture case.

v
ðjÞ
i ¼

PT
n¼1 Prðxn ¼ ijyn;U

ðj�1ÞÞ
PT

n¼1 Prðxn ¼ ijyn;U
ðj�1ÞÞ þ a� 1þ

PN
l¼iþ1

PT
n¼1 Prðxn ¼ ljyn;U

ðj�1ÞÞ
ð14Þ
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3.2.2 Recursive EM

The recursive EM algorithm can also be implemented

straightforwardly in the DPM case. To update the param-

eters h1:N, we use the same update equations as for the

recursive EM algorithm described previously. To update

p1:N
(t) , we simply compute a1:N-1

(t) recursively in time using

(7). Based on a1:N-1
(t) , we obtain the estimates v1:N-1

(t) using

v
ðtÞ
i ¼

a
ðtÞ
i

a
ðtÞ
i þ a� 1þ

PN
l¼iþ1 a

ðtÞ
l

From these estimates we obtain the estimates of p1:N
(t) using (13).

3.2.3 Learning the parameter a

We show here that it is also possible to come up with

modified EM algorithms which updates the parameter a by

maximizing an approximation of the marginal likelihood of

a. In the batch case, this proceeds as follows:

Ideally, we would like to also implement an EM type

procedure to maximize the marginal likelihood of the

observations with respect to a. Assume U is known for the

time being, then an EM algorithm would proceed as follows:

aðjÞ ¼ arg max
a

Qða; aðj�1ÞÞ

where

Qða; aðj�1ÞÞ ¼ E½log f ðx1:T ; y1:T ja;UÞjy1:T ; a
ðj�1Þ;U�:

After a few calculations, we obtain

Qða; aðj�1ÞÞ ¼ ðN � 1Þ log aþ
XN�1

k¼1

E½logBðCkðx1:TÞ

þ 1;C[ kðx1:TÞ þ aÞjy1:T ; a
ðj�1Þ;U� þ C

ð15Þ

where C is a constant independent of a, Ci(x1:T) is the

number of latent variables equal to i,C[i(x1:T) the number

of latent variables strictly superior to i and Bðu; vÞ is the

Beta function defined for u,v [ 0 by

Bðu; vÞ ¼
Z1

0

tu�1ð1� tÞv�1
dt:

Unfortunately, computing Q(a, a(j-1)) has complexity

OðTNÞ: Using the convexity of the log-Beta function [8],

it is, however, possible to establish that

XN�1

k¼1

E½logBðCkðx1:TÞ þ 1;C[kðx1:TÞ þ aÞjy1:T ; a
ðj�1Þ;U�

�
XN�1

k¼1

logBðCk þ 1;C[k þ aÞ:

where

Ck ¼ E½Ckðx1:TÞjy1:T ; a
ðj�1Þ;U�;

C[k ¼ E½C[kðx1:TÞjy1:T ; a
ðj�1Þ;U�:

We propose to approximate Q(a,a(j-1)) by

Qða;aðj�1ÞÞ � ðN � 1Þ logaþ
XN�1

k¼1

logBðCk þ 1;C [ k þ aÞ:

Finally, to maximize this approximate Q(a, a(j-1)), we used

a fixed-point iteration in the spirit of [15] where we update

a N � 1
PN�1

k¼1 WðCk þ C[k þ aÞ �WðC[k þ aÞ

where WðxÞ ¼ dCðxÞ
dx

is the digamma function, that is the

derivative of the log CðxÞ function.

In the batch case, we alternative update steps for a and

standard update steps for U: In the on-line case, we only

update a after each pass on the data where U is updated.

4 Simulation results

In order to assess the proposed model and algorithms, it

will be necessary to examine the following:

1. estimation accuracy and computational complexity

2. ability of the proposed EM for DPM model against

finite mixture models

3. competitiveness against other inference methods for

DP, e.g., VB

4. estimation capability of scale parameter.

The proposed batch EM algorithm for DPM performs well

in the experiments reported below. It would also be worth

conducting performance comparison of batch and recursive

EM algorithms since the latter is an interesting alternative

to the former. Specifically, the following experiments are

conducted using synthetic data:

• Section 4.1 compares batch and recursive EM algo-

rithms in terms of estimation accuracy and computa-

tional complexity. In order to make the comparison

clear, the underlying mixture model is finite.

• Section 4.2.1 examines the performance of the proposed

batch EM for DPM model instead of finite mixture model.

In order not to blur the comparison, we first fix a.

Estimation of a is reported in Sect. 4.3 below.

• Section 4.2.2 compares the proposed recursive EM

algorithms for DPM model with standard recursive EM

algorithm for finite mixture model.

• Section 4.2.3 compares the proposed EM algorithm for DP

with VB, another iterative maximization based algorithm.

Pattern Anal Applic (2013) 16:55–67 59

123



After these comparisons, we use the EM algorithm with

DPM to perform image segmentation. Finally, we demon-

strate the performance of the EM algorithm with DPM in

an image classification context.

4.1 Batch versus recursive EM for finite mixture

models

We consider a mixture of three two-dimensional Gaussian

distributions with parameters p1 = p2 = 0.3, p3 = 0.4,

m1¼
3

3

� �
; m2¼

�3

3

� �
; m3¼

0

�3

� �
;

R1¼
1 �0:5

�0:5 1

� �
; R2¼

1 0:5

0:5 1

� �
; R3¼

1 0

0 0:5

� �
:

This is a rather simple problem where the components only

mildly overlap. We simulated 10,000 data points from this

mixture and compare the results on the batch and recursive

EM algorithms by running 1,000 realizations of both

algorithms. For each realization, the initialization is ran-

dom but similar for the batch and recursive EM algorithms.

We run the recursive algorithm only once while we per-

form 30 iterations of the batch algorithms. In Fig. 1, we

display the histogram in red of the log-likelihood of the

parameter estimates for these 100 realizations associated

with the batch algorithm for 1, 10, 20, and 30 iterations and

the histogram in blue obtained using one single pass

through the data for the recursive algorithm.

We see that essentially half the realizations of the

recursive EM algorithm converge toward the same mode as

the batch EM algorithm. The computational complexity of

a pass of the batch EM is in OðTkd2 þ kd3Þ whereas it is in

OðTkd3Þ for the recursive EM algorithm.1 As the recursive

EM converges much faster then this suggests that an effi-

cient approach to perform parameter estimation for very

large datasets consists of using a small run of the recursive

EM algorithm and picking the parameter estimate associ-

ated with the highest likelihood instead of iterating a

standard batch EM algorithm.

4.2 R versus DPM

In many scenarios, we do not know the number of com-

ponents of the mixture. In this context, we can try to either

fit a standard finite mixture model with a large number k of

components, say k = 100. Alternatively, we can fit a

(truncated) DPM model with say N = 100. The DPM

model penalizes implicitly models with a large number of

components, whereas the standard finite mixture model

does not include such a penalty term.

4.2.1 Batch EM algorithm

We consider the same parameters as in the previous

experiment but only 1,000 datapoints. In order to assess the

performance of the proposed EM for DPM, in the first

place, we perform experiments with a fixed first. We fit the

DPM model with an empirical value a = 2 (a = 1 yields

very similar results) which the authors had obtained

through preliminary experiments and run the batch EM

algorithm. Since the experiments to be reported below are

successful, the next issue would be to estimate a auto-

matically. In Sect. 4.3 below, a is estimated using the

procedure discussed in Sect. 3.2.3.

After 100 iterations the parameters associated with those

components with the largest mixture parameters (relabeled

1,2,3 for convenience) are given by

bp1 ¼ 0:3; bp2 ¼ 0:29; bp3 ¼ 0:41;

bm1 ¼
�3:03

2:95

� �
; bm2 ¼

2:91

3:08

� �
; bm3 ¼

�3:74

2:96

� �
;

bR1 ¼
1:32 0:42

0:42 0:83

� �
; bR2 ¼

1:34 �0:36

�0:36 0:72

� �
;

bR3 ¼
0:93 0

0 0:49

� �
:

The parameters are satisfactorily estimated. We display in

Fig. 2 the estimates of p1:100 and in Fig. 3 the estimates of the

components of m1:100 as a function of the iteration number.

We next consider a more difficult problem where

p1 = p2 = 0.3, p3 = 0.4,

m1¼
2

2

� �
; m2¼

�2

2

� �
; m3¼

0

�1

� �
;

R1¼
1 �0:5

�0:5 1

� �
; R2¼

1 0:5

0:5 1

� �
; R3¼

1 0

0 0:5

� �
:

Compared with the previous example, the components

overlap significantly. Figure 4 demonstrates the estimated

p1:100. The algorithm still appears functional. This example

will also be used in the following argument:

4.2.2 Recursive EM algorithm

We simulated 10,000 data points from the second example

in the previous section with more overlap than the first one.

We ran 100 realizations of both the recursive EM for finite

mixture model and for DPM model. For each realization,

the initialization is random but similar for the two recursive

1 We can get also implementation of order OðTkd2 þ kd3Þ for the

recursive EM, by using Sherman-Morrison-Woodbury formula for

updating of the inverse matrix of Rt and Sylvester’s determinant

theorem for updating of the log determinant of Rt.
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EM algorithms. Out of these 100 runs, 35 runs of the

recursive EM for DPM gave only three pi such that

pi [ 0.05 among p1:100, whereas only one run of the

recursive EM for the standard finite model provided such a

result. The recursive EM algorithm associated with the

standard finite mixture model fails spectacularly in many
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Fig. 1 Histograms of log-likelihood of the estimates for 100 realizations: one single pass on-line EM (blue) versus batch EM (red) after 1 (up
left), 10 (up right), 20 (bottom left) and 30 (bottom right) iterations
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cases by fitting far too many components or a single one.

The recursive EM for DPM provides far more reasonable

and reliable results in all the experiments we conducted.

4.2.3 EM versus variational inference for DPM

In a Bayesian framework, we assign a prior distribution to

the parameters of interest and inference relies on the

associated posterior distribution. Unfortunately, the pos-

terior distribution does not admit a closed-form expression

and needs to be approximated. A standard approach con-

sists of using iterative sampling algorithms such as MCMC

methods but these techniques are computationally expen-

sive [2]. An alternative method to approximate the pos-

terior is variational Bayes (VB) [3, 20]. VB provides an

analytical approximation to the posterior which is obtained

by maximizing a lower bound of the marginal likelihood.

VB has become very popular over the past few years and

has been recently applied to DPM [4].

We compare here the batch EM algorithm to VB

approximations for standard finite mixture of Gaussians

and DPM. We apply all the algorithms to synthetic data

obtained from a mixture of seven two-dimensional

Gaussian distributions with parameters p1 = p2 = p3 =

p4 = p5 = p6 = 0.14, p 7 = 0.16 and

l1¼
�5:0

0:0

� �
; l2¼

�5:0

5:0

� �
; l3¼

0:0

5:0

� �
;

l4¼
5:0

5:0

� �
; l5¼

5:0

0:0

� �
; l6¼

5:0

�5:0

� �
; l7¼

3:0

7:0

� �

R1¼R2¼
1:0 0:0

0:0 3:0

� �
; R3¼R4¼

3:0 0:0

0:0 1:0

� �

R5¼R6¼R7¼
1:5 0:5

0:5 3:0

� �
:
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We simulated 100 data points from this mixture to estimate

parameters. Initialization of the parameters and hyperpa-

rameters was the same in both algorithms, except for the

prior on a. In VB, we assumed the gamma prior for a with

mean 2.0. We ran the batch EM algorithm with a set equal

to 2.0. We also ran the batch and on-line EM algorithms

which estimate a using the procedure discussed in

Sect. 3.2.3. We truncate the DPM model at N = 100 for

both the VB and EM algorithms. For the joint prior dis-

tribution on the mean and covariance parameters, we used

an inverse-Wishart normal.

We assess the performance of the EM and VB algo-

rithms by comparing the Kullback–Leibler distance

between the true distribution and the observations

pðyjUtrueÞ and the predictive distribution p(y|y1:T) estimated

through the algorithms. We have

KL ¼
Z

pðyjUtrueÞ log
pðyjUtrueÞ
pðyjy1:TÞ

dy � 1

P

XP

k¼1

pðy	k jUtrueÞ
pðy	k jy1:TÞ

where fy	kgk¼1;...;P are sampled from pðyjUtrueÞ: We use

P = 500 in our experiments. For the EM algorithm, we use

pðy	k jy1:TÞ � pðy	k jÛÞ

where Û is the MAP parameter estimate. For VB, we use

pðy	k jy1:TÞ �
Z

pðy	k jUÞqðUjy1:TÞdU;

where qðUjy1:TÞ is the variational posterior. The results are

presented in Fig. 5 below. In this example, EM outper-

forms significantly VB.

Figure 5 shows the Kullback–Leibler distance for pre-

dictive density estimates associated with

• batch EM for DPM model with a fixed at 2.0 (denoted

by DPMAP a = 2.0)

• batch EM for DPM model with a estimated (denoted by

DPMAP a = Auto)

• recursive EM for DPM model with a estimated

(denoted by DPMAP recursive)

• VB for DPM model with a fixed at 2.0 (denoted by

DPVB a = 2.0)

• VB for DPM model with a learned (denoted by DPVB

a = Auto).

The proposed batch and recursive EM for DPM model

outperformed VB at least in this experiment. For a

reference purpose, Fig. 5 also gives box plots of the

Kullback–Leibler distance associated with

• batch EM for finite mixture model with the number of

components fixed at 5, 10, and 20, respectively

(denoted by MAP5, MAP10, and MAP20)

• VB for finite mixture model with the number of

components fixed at 5, 10, and 20, respectively

(denoted by VB5, VB10, and VB20).

From the experiments performed in this section, we

have the following observations:

1. The proposed batch EM algorithm for DPM model captured

the true parameters well as demonstrated in Sect. 4.2.1.

2. The proposed recursive EM algorithm for DPM model

outperformed the standard recursive EM algorithm for

finite mixture model as shown in Sect. 4.2.2.
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Fig. 5 Kullback–Leibler distance for predictive density estimates

using EM and VB. MAP denotes MAP EM, while VB denotes

variational inference without DPM; MAPX denotes the fact that the

number of components is fixed to X. DPMAP and DPVB indicate

MAP and VB with DPM. a = 2.0 means that a is fixed at 2.0,

whereas a = Auto means that a is estimated from the data
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3. The proposed batch and recursive EM algorithms for

DPM model outperformed VB algorithm as demon-

strated in Sect. 4.2.3.

4. The batch and the recursive EM algorithms with a
estimation are also competitive.

5. The proposed algorithm gave reasonable results on

image segmentation and image classification problems.

The two figures in Fig. 6 display the estimated mixture

components with DPM and VB. Crosses and dotted

ellipses, respectively, indicate the mode of the mean and

covariance of each component. We only display compo-

nents with mixing weights pi C 0.0001.

Note that when the components are truncated at N, there

are N parameter vectors, ðpi; hiÞ; i ¼ 1; . . .;N estimated by

the proposed EM algorithm. The thresholding was simply

introduced to ease the presentation of the results. This same

is also applied to other experiments. Note also that the VB

estimate gives rise to a spurious component near the center

of the dataset. Another two figures in Fig. 7 show the

mixing weights estimated by DPM and VB.

4.3 Image segmentation

We present an application of our algorithm to image seg-

mentation [13]. Each pixel corresponds to a point in R
3;

each component corresponds to a specific color R, G or B.

We build a Gaussian mixture model for the distribution of

the pixels. We then estimate the number of significant
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components (i.e. whose estimated mixing weights pi is

such that pi [ 0.01) and the parameters of these compo-

nents using the DPM model and the EM algorithm. Each

pixel is then attributed to the component having the highest

posterior probability.

We apply this algorithm to an image taken from

Berkeley Segmentation Dataset (BSDS No. 253036). The

size of the image is 481 9 321; hence this corresponds to

154,401 observations. After having applied the batch EM

algorithm to this dataset, we identified 16 significant

components. We display in the original image in Fig. 8 and

its segmented version in Fig. 9.

While image segmentation algorithm often involves

detailed high-level operations, the method used in the

present experiment is a simple RGB component clustering,

and yet it appears to have captured at least several

important segmented components. Observe that the tree

and the elephants are segmented in a relatively crisp

manner. The algorithm also appears to have captured the

segmented sky as well as the clouds. The textures associ-

ated with the foreground grasses are also discernible. More

specifically, all the elephants belonged to the same class

with mixing parameter 0.04 where average value of (R, G,

B) is (72, 76, 68). This class also contained the tree in the

center. The sky consisted of four components:

• mixing parameter = 0.34, (R, G, B) = (173, 197, 230)

• mixing parameter = 0.17, (R, G, B) = (212, 229, 242)

• mixing parameter = 0.11, (R, G, B) = (177, 190, 216)

• mixing parameter = 0.06, (R, G, B) = (236, 253, 254).

The foreground grasses consisted of two components:

• mixing parameter = 0.08, (R, G, B) = (95, 102, 57)

• mixing parameter = 0.07, (R, G, B) = (115, 113, 63).

4.4 Image classification

Our aim is to classify some images based on PCA-SIFT

features [11]. We selected five categories from the Caltech

Database [9]: airplanes, cars, faces, leaves, and motorbikes.

Figure 10 shows some of the images from the dataset.

For each category C 2 f1; 2; 3; 4; 5g; we approximate

the distribution of the features using a Gaussian DPM

model using 100 training data, i.e. we estimate a vector of

parameter UC using the EM algorithm. For each new

image, we then extract a vector of features and compute its

likelihood for each of the possible Gaussian DPM model.

We select the category of the new image as the one cor-

responding to the highest likelihood.

For each category, we use 50 test images. Given an

image, the PCA-SIFT detects 50–300 features points and a

36-dimensional vector is associated with each feature

point. To reduce the computational cost and the number of

parameters, we use only diagonal covariance matrices with

N = 100 and a = 2.0 for the mixture model. The result

was compared with a standard bag-of-features model using

a naive Bayes classifier where the feature vectors are dis-

cretized using a K-means algorithm [6]. For example, in

Fig. 11, K = 100 means that the number of discretized

features is 100.

The results are displayed in Fig. 11.

Figure 11 indicates that, at least in this example, the

proposed algorithm achieves the highest accuracy. Fig-

ure 12 illustrates some of the classification results. The red

circles represent PCA-SIFT features. The rightmost pic-

ture, which was incorrectly categorized by the proposed

algorithm, appears to carry several feature points around

the building in the back.

Fig. 8 Original image Fig. 9 Segmented image using DPM model
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5 Discussion

DPM models have become a very popular class of statis-

tical models to perform inference in mixture models when

the number of components is unknown. Standard approa-

ches to fit DPM rely either on MCMC or VB methods.

Note that MCMC computation requires typically several

thousand iterations [2]. Our experience on VB tells us that

Fig. 10 A few images from the Caltech database

Fig. 11 Classification accuracy

of the two algorithms. DP

corresponds to the proposed EM

algorithm for Gaussian.

K - x indicates naive Bayes

with x discretized features

Fig. 12 Test images: the first

four are correctly classified as

airplanes, the fifth one is

misclassified
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a typical VB needs 15–30 iterations before convergence.

Since the proposed recursive EM is a single pass scheme, it

is less expensive than MCMC and VB.

In order to consider the complexity of VB, note that the

iteration formula for the basic parameters of VB are similar

to those of batch EM given in (1)–(3) (Sect. 2). Therefore,

the complexity of the covariance matrix statistics compu-

tation is of order O(Tkd2). For the computation of the test

distribution q(z), there are k log determinants as well as

k inverse matrix computations. This gives rise to O(kd3).

Adding those two, we have O(Tkd2 ? kd3) for the com-

plexity of VB which is the same as the complexity of the

batch EM described in Sect. 4.1.

We have proposed here original EM-type algorithms to

fit DPM models. These batch and recursive EM algorithms

are computationally efficient and perform well in the set of

experiments we have conducted. We believe that these

methods complement the current set of tools available to fit

DPM and are an attractive alternative.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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