
1

Chapter 1

No Time to Read This Book?

We know what it feels like to be under pressure. Try out a few quick and proven optimization
stunts described below. They may provide a good enough performance gain right away.

There are several parameters that can be adjusted with relative ease. Here are the
steps we follow when hard pressed:

Use Intel MPI Library•	 1 and Intel Composer XE2

Got more time? Tune Intel MPI:•	

Collect built-in statistics data•	

Tune Intel MPI process placement and pinning•	

Tune OpenMP thread pinning•	

Got still more time? Tune Intel Composer XE:•	

Analyze optimization and vectorization reports•	

Use interprocedural optimization•	

Using Intel MPI Library
The Intel MPI Library delivers good out-of-the-box performance for bandwidth-bound
applications. If your application belongs to this popular class, you should feel the
difference immediately when switching over.

If your application has been built for Intel MPI compatible distributions like
MPICH,3 MVAPICH2,4 or IBM POE,5 and some others, there is no need to recompile the
application. You can switch by dynamically linking the Intel MPI 5.0 libraries at runtime:

$ source /opt/intel/impi_latest/bin64/mpivars.sh
$ mpirun -np 16 -ppn 2 xhpl

If you use another MPI and have access to the application source code, you can
rebuild your application using Intel MPI compiler scripts:

Use •	 mpicc (for C), mpicxx (for C++), and mpifc/mpif77/mpif90
(for Fortran) if you target GNU compilers.

Use •	 mpiicc, mpiicpc, and mpiifort if you target Intel Composer XE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81095109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 1 ■ No time to read this Book?

2

Using Intel Composer XE
The invocation of the Intel Composer XE is largely compatible with the widely used GNU
Compiler Collection (GCC). This includes both the most commonly used command line
options and the language support for C/C++ and Fortran. For many applications you can
simply replace gcc with icc, g++ with icpc, and gfortran with ifort. However, be aware
that although the binary code generated by Intel C/C++ Composer XE is compatible with the
GCC-built executable code, the binary code generated by the Intel Fortran Composer is not.

For example:

$ source /opt/intel/composerxe/bin/compilervars.sh intel64
$ icc -O3 -xHost -qopenmp -c example.o example.c

Revisit the compiler flags you used before the switch; you may have to remove some
of them. Make sure that Intel Composer XE is invoked with the flags that give the best
performance for your application (see Table 1-1). More information can be found in the
Intel Composer XE documentation.6

Table 1-1. Selected Intel Composer XE Optimization Flags

GCC ICC Effect

-O0 -O0 Disable (almost all) optimization. Not
something you want to use for performance!

-O1 -O1 Optimize for speed (no code size increase
for ICC)

-O2 -O2 Optimize for speed and enable vectorization

-O3 -O3 Turn on high-level optimizations

-ftlo -ipo Enable interprocedural optimization

-ftree-vectorize -vec Enable auto-vectorization (auto-enabled
with -O2 and -O3)

-fprofile-generate -prof-gen Generate runtime profile for optimization

-fprofile-use -prof-use Use runtime profile for optimization

-parallel Enable auto-parallelization

-fopenmp -qopenmp Enable OpenMP

-g -g Emit debugging symbols

-qopt-report Generate the optimization report

-vec-report Generate the vectorization report

-ansi-alias Enable ANSI aliasing rules for C/C++

(continued)

Chapter 1 ■ No time to read this Book?

3

For most applications, the default optimization level of -O2 will suffice. It runs fast
and gives reasonable performance. If you feel adventurous, try -O3. It is more aggressive
but it also increases the compilation time.

Tuning Intel MPI Library
If you have more time, you can try to tune Intel MPI parameters without changing the
application source code.

Gather Built-in Statistics
Intel MPI comes with a built-in statistics-gathering mechanism. It creates a negligible
runtime overhead and reports key performance metrics (for example, MPI to
computation ratio, message sizes, counts, and collective operations used) in the popular
IPM format.7

To switch the IPM statistics gathering mode on and do the measurements, enter the
following commands:

$ export I_MPI_STATS=ipm
$ mpirun -np 16 xhpl

By default, this will generate a file called stats.ipm. Listing 1-1 shows an example
of the MPI statistics gathered for the well-known High Performance Linpack (HPL)
benchmark.8 (We will return to this benchmark throughout this book, by the way.)

GCC ICC Effect

-msse4.1 -xSSE4.1 Generate code for Intel processors with SSE
4.1 instructions

-mavx -xAVX Generate code for Intel processors with
AVX instructions

-mavx2 -xCORE-AVX2 Generate code for Intel processors with
AVX2 instructions

-mcpu=native -xHost Generate code for the current machine used
for compilation

Table 1-1. (continued)

Chapter 1 ■ No time to read this Book?

4

Listing 1-1. MPI Statistics for the HPL Benchmark with the Most Interesting Fields
Highlighted

Intel(R) MPI Library Version 5.0

Summary MPI Statistics
Stats format: region
Stats scope : full

##
#
command : /home/book/hpl/./xhpl_hybrid_intel64_dynamic (completed)
host : esg066/x86_64_Linux mpi_tasks : 16 on 8 nodes
start : 02/14/14/12:43:33 wallclock : 2502.401419 sec
stop : 02/14/14/13:25:16 %comm : 8.43
gbytes : 0.00000e+00 total gflop/sec : NA
#
##
region : * [ntasks] = 16
#
[total] <avg> min max
entries 16 1 1 1
wallclock 40034.7 2502.17 2502.13 2502.4
user 446800 27925 27768.4 28192.7
system 1971.27 123.205 102.103 145.241
mpi 3375.05 210.941 132.327 282.462
%comm 8.43032 5.28855 11.2888
gflop/sec NA NA NA NA
gbytes 0 0 0 0
#
#
[time] [calls] <%mpi> <%wall>
MPI_Send 2737.24 1.93777e+06 81.10 6.84
MPI_Recv 394.827 16919 11.70 0.99
MPI_Wait 236.568 1.92085e+06 7.01 0.59
MPI_Iprobe 3.2257 6.57506e+06 0.10 0.01
MPI_Init_thread 1.55628 16 0.05 0.00
MPI_Irecv 1.31957 1.92085e+06 0.04 0.00
MPI_Type_commit 0.212124 14720 0.01 0.00
MPI_Type_free 0.0963376 14720 0.00 0.00
MPI_Comm_split 0.0065608 48 0.00 0.00
MPI_Comm_free 0.000276804 48 0.00 0.00
MPI_Wtime 9.67979e-05 48 0.00 0.00
MPI_Comm_size 9.13143e-05 452 0.00 0.00
MPI_Comm_rank 7.77245e-05 452 0.00 0.00
MPI_Finalize 6.91414e-06 16 0.00 0.00
MPI_TOTAL 3375.05 1.2402e+07 100.00 8.43
##

Chapter 1 ■ No time to read this Book?

5

From Listing 1-1 you can deduce that MPI communication occupies between 5.3
and 11.3 percent of the total runtime, and that the MPI_Send, MPI_Recv, and MPI_Wait
operations take about 81, 12, and 7 percent, respectively, of the total MPI time. With
this data at hand, you can see that there are potential load imbalances between the job
processes, and that you should focus on making the MPI_Send operation as fast as it can
go to achieve a noticeable performance hike.

Note that if you use the full IPM package instead of the built-in statistics, you will also
get data on the total communication volume and floating point performance that are not
measured by the Intel MPI Library.

Optimize Process Placement
The Intel MPI Library puts adjacent MPI ranks on one cluster node as long as there are cores
to occupy. Use the Intel MPI command line argument -ppn to control the process placement
across the cluster nodes. For example, this command will start two processes per node:

$ mpirun -np 16 -ppn 2 xhpl

Intel MPI supports process pinning to restrict the MPI ranks to parts of the system
so as to optimize process layout (for example, to avoid NUMA effects or to reduce latency
to the InfiniBand adapter). Many relevant settings are described in the Intel MPI Library
Reference Manual.9

Briefly, if you want to run a pure MPI program only on the physical processor cores,
enter the following commands:

$ export I_MPI_PIN_PROCESSOR_LIST=allcores
$ mpirun -np 2 your_MPI_app

If you want to run a hybrid MPI/OpenMP program, don’t change the default Intel
MPI settings, and see the next section for the OpenMP ones.

If you want to analyze Intel MPI process layout and pinning, set the following
environment variable:

$ export I_MPI_DEBUG=4

Optimize Thread Placement
If the application uses OpenMP for multithreading, you may want to control thread
placement in addition to the process placement. Two possible strategies are:

$ export KMP_AFFINITY=granularity=thread,compact
$ export KMP_AFFINITY=granularity=thread,scatter

The first setting keeps threads close together to improve inter-thread
communication, while the second setting distributes the threads across the system to
maximize memory bandwidth.

Chapter 1 ■ No time to read this Book?

6

Programs that use the OpenMP API version 4.0 can use the equivalent OpenMP
affinity settings instead of the KMP_AFFINITY environment variable:

$ export OMP_PROC_BIND=close
$ export OMP_PROC_BIND=spread

If you use I_MPI_PIN_DOMAIN, MPI will confine the OpenMP threads of an MPI
process on a single socket. Then you can use the following setting to avoid thread
movement between the logical cores of the socket:

$ export KMP_AFFINITY=granularity=thread

Tuning Intel Composer XE
If you have access to the source code of the application, you can perform optimizations
by selecting appropriate compiler switches and recompiling the source code.

Analyze Optimization and Vectorization Reports
Add compiler flags -qopt-report and/or -vec-report to see what the compiler did to
your source code. This will report all the transformations applied to your code. It will also
highlight those code patterns that prevented successful optimization. Address them if you
have time left.

Here is a small example. Because the optimization report may be very long, Listing 1-2
only shows an excerpt from it. The example code contains several loop nests of seven loops.
The compiler found an OpenMP directive to parallelize the loop nest. It also recognized
that the overall loop nest was not optimal, and it automatically permuted some loops
to improve the situation for vectorization. Then it vectorized all inner-most loops while
leaving the outer-most loops as they are.

Listing 1-2. Example Optimization Report with the Most Interesting Fields Highlighted

$ ifort -O3 -qopenmp -qopt-report -qopt-report-file=stdout -c example.F90

 Report from: Interprocedural optimizations [ipo]

[...]

OpenMP Construct at example.F90(8,7)
remark #15059: OpenMP DEFINED LOOP WAS PARALLELIZED
OpenMP Construct at example.F90(25,7)
remark #15059: OpenMP DEFINED LOOP WAS PARALLELIZED

[...]

Chapter 1 ■ No time to read this Book?

7

LOOP BEGIN at example.F90(9,2)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #25448: Loopnest Interchanged : (1 2 3 4) --> (1 4 2 3)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

[...]

 LOOP BEGIN at example.F90(15,8)
 remark #25446: blocked by 125 (pre-vector)
 remark #25444: unrolled and jammed by 4 (pre-vector)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(13,6)
 remark #25446: blocked by 125 (pre-vector)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(14,7)
 remark #25446: blocked by 128 (pre-vector)
 remark #15003: PERMUTED LOOP WAS VECTORIZED
 LOOP END

 LOOP BEGIN at example.F90(14,7)
 Remainder
 remark #25460: Loop was not optimized
 LOOP END
 LOOP END
 LOOP END

[...]

 LOOP END
 LOOP END
 LOOP END
 LOOP END
LOOP END

LOOP BEGIN at example.F90(26,2)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #25448: Loopnest Interchanged : (1 2 3 4) --> (1 3 2 4)
 remark #15018: loop was not vectorized: not inner loop

Chapter 1 ■ No time to read this Book?

8

 LOOP BEGIN at example.F90(29,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #25446: blocked by 125 (pre-vector)
 remark #25444: unrolled and jammed by 4 (pre-vector)
 remark #15018: loop was not vectorized: not inner loop

[...]
 LOOP END
 LOOP END
 LOOP END
 LOOP END
 LOOP END
LOOP END

Listing 1-3 shows the vectorization report for the example in Listing 1-2. As you can
see, the vectorization report contains the same information about vectorization as the
optimization report.

Listing 1-3. Example Vectorization Report with the Most Interesting Fields Highlighted

$ ifort -O3 -qopenmp -vec-report=2 -qopt-report-file=stdout -c example.F90

[...]

LOOP BEGIN at example.F90(9,2)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

Chapter 1 ■ No time to read this Book?

9

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(15,8)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(13,6)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(14,7)
 remark #15003: PERMUTED LOOP WAS VECTORIZED
 LOOP END

[...]

 LOOP END
 LOOP END

 LOOP BEGIN at example.F90(15,8)
 Remainder
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(13,6)
 remark #15018: loop was not vectorized: not inner loop

[...]

 LOOP BEGIN at example.F90(14,7)
 remark #15003: PERMUTED LOOP WAS VECTORIZED
 LOOP END

[...]

 LOOP END
 LOOP END
 LOOP END

[...]

 LOOP END
 LOOP END
 LOOP END
 LOOP END
LOOP END

[...]

Chapter 1 ■ No time to read this Book?

10

Use Interprocedural Optimization
Add the compiler flag -ipo to switch on interprocedural optimization. This will give the
compiler a holistic view of the program and open more optimization opportunities for the
program as a whole. Note that this will also increase the overall compilation time.

Runtime profiling can also increase the chances for the compiler to generate better
code. Profile-guided optimization requires a three-stage process. First, compile the
application with the compiler flag -prof-gen to instrument the application with profiling
code. Second, run the instrumented application with a typical dataset to produce a
meaningful profile. Third, feed the compiler with the profile (-prof-use) and let it
optimize the code.

Summary
Switching to Intel MPI and Intel Composer XE can help improve performance because
the two strive to optimally support Intel platforms and deliver good out-of-the-box (OOB)
performance. Tuning measures can further improve the situation. The next chapters will
reiterate the quick and dirty examples of this chapter and show you how to push the limits.

References
1. Intel Corporation, “Intel(R) MPI Library,” http://software.intel.com/en-us/

intel-mpi-library.

2. Intel Corporation, “Intel(R) Composer XE Suites,”
http://software.intel.com/en-us/intel-composer-xe.

3. Argonne National Laboratory, “MPICH: High-Performance Portable MPI,” www.mpich.
org.

4. Ohio State University, “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE,”
http://mvapich.cse.ohio-state.edu/overview/mvapich2/.

5. International Business Machines Corporation, “IBM Parallel
Environment,” www-03.ibm.com/systems/software/parallel/.

6. Intel Corporation, “Intel Fortran Composer XE 2013 - Documentation,”
http://software.intel.com/articles/intel-fortran-composer-xe-
documentation/.

7. The IPM Developers, “Integrated Performance Monitoring - IPM,” http://ipm-hpc.
sourceforge.net/.

8. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL : A Portable
Implementation of the High-Performance Linpack Benchmark for Distributed-
Memory Computers,” 10 September 2008, www.netlib.org/benchmark/hpl/.

9. Intel Corporation, “Intel MPI Library Reference Manual,” http://software.intel.
com/en-us/node/500285.

http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-composer-xe
http://www.mpich.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://www-03.ibm.com/systems/software/parallel/
http://software.intel.com/articles/intel-fortran-composer-xe-documentation/
http://software.intel.com/articles/intel-fortran-composer-xe-documentation/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://www.netlib.org/benchmark/hpl/
http://software.intel.com/en-us/node/500285
http://software.intel.com/en-us/node/500285

	Chapter 1: No Time to Read This Book?
	Using Intel MPI Library
	Using Intel Composer XE
	Tuning Intel MPI Library
	Gather Built-in Statistics
	Optimize Process Placement
	Optimize Thread Placement

	Tuning Intel Composer XE
	Analyze Optimization and Vectorization Reports
	Use Interprocedural Optimization

	Summary
	References

