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Chapter 1

No Time to Read This Book?

We know what it feels like to be under pressure. Try out a few quick and proven optimization 
stunts described below. They may provide a good enough performance gain right away.

There are several parameters that can be adjusted with relative ease. Here are the 
steps we follow when hard pressed:

Use Intel MPI Library•	 1 and Intel Composer XE2

Got more time? Tune Intel MPI:•	

Collect built-in statistics data•	

Tune Intel MPI process placement and pinning•	

Tune OpenMP thread pinning•	

Got still more time? Tune Intel Composer XE:•	

Analyze optimization and vectorization reports•	

Use interprocedural optimization•	

Using Intel MPI Library
The Intel MPI Library delivers good out-of-the-box performance for bandwidth-bound 
applications. If your application belongs to this popular class, you should feel the 
difference immediately when switching over.

If your application has been built for Intel MPI compatible distributions like 
MPICH,3 MVAPICH2,4 or IBM POE,5 and some others, there is no need to recompile the 
application. You can switch by dynamically linking the Intel MPI 5.0 libraries at runtime:
 
$ source /opt/intel/impi_latest/bin64/mpivars.sh
$ mpirun -np 16 -ppn 2 xhpl
 

If you use another MPI and have access to the application source code, you can 
rebuild your application using Intel MPI compiler scripts:

Use •	 mpicc (for C), mpicxx (for C++), and mpifc/mpif77/mpif90 
(for Fortran) if you target GNU compilers.

Use •	 mpiicc, mpiicpc, and mpiifort if you target Intel Composer XE.
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Using Intel Composer XE
The invocation of the Intel Composer XE is largely compatible with the widely used GNU 
Compiler Collection (GCC). This includes both the most commonly used command line 
options and the language support for C/C++ and Fortran. For many applications you can 
simply replace gcc with icc, g++ with icpc, and gfortran with ifort. However, be aware 
that although the binary code generated by Intel C/C++ Composer XE is compatible with the 
GCC-built executable code, the binary code generated by the Intel Fortran Composer is not.

For example:
 
$ source /opt/intel/composerxe/bin/compilervars.sh intel64
$ icc -O3 -xHost -qopenmp  -c example.o example.c
 

Revisit the compiler flags you used before the switch; you may have to remove some 
of them. Make sure that Intel Composer XE is invoked with the flags that give the best 
performance for your application (see Table 1-1). More information can be found in the 
Intel Composer XE documentation.6

Table 1-1. Selected Intel Composer XE Optimization Flags

GCC ICC Effect

-O0 -O0 Disable (almost all) optimization. Not 
something you want to use for performance!

-O1 -O1 Optimize for speed (no code size increase 
for ICC)

-O2 -O2 Optimize for speed and enable vectorization

-O3 -O3 Turn on high-level optimizations

-ftlo -ipo Enable interprocedural optimization

-ftree-vectorize -vec Enable auto-vectorization (auto-enabled 
with -O2 and -O3)

-fprofile-generate -prof-gen Generate runtime profile for optimization

-fprofile-use -prof-use Use runtime profile for optimization

-parallel Enable auto-parallelization

-fopenmp -qopenmp Enable OpenMP

-g -g Emit debugging symbols

-qopt-report Generate the optimization report

-vec-report Generate the vectorization report

-ansi-alias Enable ANSI aliasing rules for C/C++

(continued)
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For most applications, the default optimization level of -O2 will suffice. It runs fast 
and gives reasonable performance. If you feel adventurous, try -O3. It is more aggressive 
but it also increases the compilation time.

Tuning Intel MPI Library
If you have more time, you can try to tune Intel MPI parameters without changing the 
application source code.

Gather Built-in Statistics
Intel MPI comes with a built-in statistics-gathering mechanism. It creates a negligible 
runtime overhead and reports key performance metrics (for example, MPI to 
computation ratio, message sizes, counts, and collective operations used) in the popular 
IPM format.7

To switch the IPM statistics gathering mode on and do the measurements, enter the 
following commands:
 
$ export I_MPI_STATS=ipm
$ mpirun -np 16 xhpl
 

By default, this will generate a file called stats.ipm. Listing 1-1 shows an example 
of the MPI statistics gathered for the well-known High Performance Linpack (HPL) 
benchmark.8 (We will return to this benchmark throughout this book, by the way.)

GCC ICC Effect

-msse4.1 -xSSE4.1 Generate code for Intel processors with SSE 
4.1 instructions

-mavx -xAVX Generate code for Intel  processors with  
AVX instructions

-mavx2 -xCORE-AVX2 Generate code for Intel  processors with 
AVX2 instructions

-mcpu=native -xHost Generate code for the current machine used 
for compilation

Table 1-1. (continued)
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Listing 1-1. MPI Statistics for the HPL Benchmark with the Most Interesting Fields 
Highlighted

Intel(R) MPI Library Version 5.0
 
Summary MPI Statistics
Stats format: region
Stats scope : full
 
############################################################################
#
# command : /home/book/hpl/./xhpl_hybrid_intel64_dynamic (completed)
# host    : esg066/x86_64_Linux             mpi_tasks : 16 on 8 nodes
# start   : 02/14/14/12:43:33               wallclock : 2502.401419 sec
# stop    : 02/14/14/13:25:16               %comm     : 8.43
# gbytes  : 0.00000e+00 total               gflop/sec : NA
#
############################################################################
# region  : *   [ntasks] = 16
#
#                         [total]       <avg>         min           max
# entries                 16            1             1             1
# wallclock               40034.7       2502.17       2502.13       2502.4
# user                    446800        27925         27768.4       28192.7
# system                  1971.27       123.205       102.103       145.241
# mpi                     3375.05       210.941       132.327       282.462
# %comm                                 8.43032       5.28855       11.2888
# gflop/sec               NA            NA            NA            NA
# gbytes                  0             0             0             0
#
#
#                         [time]        [calls]       <%mpi>        <%wall>
# MPI_Send                2737.24       1.93777e+06   81.10         6.84
# MPI_Recv                394.827       16919         11.70         0.99
# MPI_Wait                236.568       1.92085e+06   7.01          0.59
# MPI_Iprobe              3.2257        6.57506e+06   0.10          0.01
# MPI_Init_thread         1.55628       16            0.05          0.00
# MPI_Irecv               1.31957       1.92085e+06   0.04          0.00
# MPI_Type_commit         0.212124      14720         0.01          0.00
# MPI_Type_free           0.0963376     14720         0.00          0.00
# MPI_Comm_split          0.0065608     48            0.00          0.00
# MPI_Comm_free           0.000276804   48            0.00          0.00
# MPI_Wtime               9.67979e-05   48            0.00          0.00
# MPI_Comm_size           9.13143e-05   452           0.00          0.00
# MPI_Comm_rank           7.77245e-05   452           0.00          0.00
# MPI_Finalize            6.91414e-06   16            0.00          0.00
# MPI_TOTAL               3375.05       1.2402e+07    100.00        8.43
############################################################################
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From Listing 1-1 you can deduce that MPI communication occupies between 5.3 
and 11.3 percent of the total runtime, and that the MPI_Send, MPI_Recv, and MPI_Wait 
operations take about 81, 12, and 7 percent, respectively, of the total MPI time. With 
this data at hand, you can see that there are potential load imbalances between the job 
processes, and that you should focus on making the MPI_Send operation as fast as it can 
go to achieve a noticeable performance hike.

Note that if you use the full IPM package instead of the built-in statistics, you will also 
get data on the total communication volume and floating point performance that are not 
measured by the Intel MPI Library.

Optimize Process Placement
The Intel MPI Library puts adjacent MPI ranks on one cluster node as long as there are cores 
to occupy. Use the Intel MPI command line argument -ppn to control the process placement 
across the cluster nodes. For example, this command will start two processes per node:
 
$ mpirun -np 16 -ppn 2 xhpl
 

Intel MPI supports process pinning to restrict the MPI ranks to parts of the system 
so as to optimize process layout (for example, to avoid NUMA effects or to reduce latency 
to the InfiniBand adapter). Many relevant settings are described in the Intel MPI Library 
Reference Manual.9

Briefly, if you want to run a pure MPI program only on the physical processor cores, 
enter the following commands:
 
$ export I_MPI_PIN_PROCESSOR_LIST=allcores
$ mpirun -np 2 your_MPI_app
 

If you want to run a hybrid MPI/OpenMP program, don’t change the default Intel 
MPI settings, and see the next section for the OpenMP ones.

If you want to analyze Intel MPI process layout and pinning, set the following 
environment variable:
 
$ export I_MPI_DEBUG=4 

Optimize Thread Placement
If the application uses OpenMP for multithreading, you may want to control thread 
placement in addition to the process placement. Two possible strategies are:
 
$ export KMP_AFFINITY=granularity=thread,compact
$ export KMP_AFFINITY=granularity=thread,scatter
 

The first setting keeps threads close together to improve inter-thread 
communication, while the second setting distributes the threads across the system to 
maximize memory bandwidth.
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Programs that use the OpenMP API version 4.0 can use the equivalent OpenMP 
affinity settings instead of the KMP_AFFINITY environment variable:
 
$ export OMP_PROC_BIND=close
$ export OMP_PROC_BIND=spread
 

If you use I_MPI_PIN_DOMAIN, MPI will confine the OpenMP threads of an MPI 
process on a single socket. Then you can use the following setting to avoid thread 
movement between the logical cores of the socket:
 
$ export KMP_AFFINITY=granularity=thread 

Tuning Intel Composer XE
If you have access to the source code of the application, you can perform optimizations 
by selecting appropriate compiler switches and recompiling the source code.

Analyze Optimization and Vectorization Reports
Add compiler flags -qopt-report and/or -vec-report to see what the compiler did to 
your source code. This will report all the transformations applied to your code. It will also 
highlight those code patterns that prevented successful optimization. Address them if you 
have time left.

Here is a small example. Because the optimization report may be very long, Listing 1-2 
only shows an excerpt from it. The example code contains several loop nests of seven loops. 
The compiler found an OpenMP directive to parallelize the loop nest. It also recognized 
that the overall loop nest was not optimal, and it automatically permuted some loops 
to improve the situation for vectorization. Then it vectorized all inner-most loops while 
leaving the outer-most loops as they are.

Listing 1-2. Example Optimization Report with the Most Interesting Fields Highlighted

$ ifort -O3 -qopenmp -qopt-report -qopt-report-file=stdout -c example.F90
 
    Report from: Interprocedural optimizations [ipo]
 
[...]
 
OpenMP Construct at example.F90(8,7)
remark #15059: OpenMP DEFINED LOOP WAS PARALLELIZED
OpenMP Construct at example.F90(25,7)
remark #15059: OpenMP DEFINED LOOP WAS PARALLELIZED
 
[...]
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LOOP BEGIN at example.F90(9,2)
   remark #15018: loop was not vectorized: not inner loop
 
   LOOP BEGIN at example.F90(12,5)
      remark #25448: Loopnest Interchanged : ( 1 2 3 4 ) --> ( 1 4 2 3 )
      remark #15018: loop was not vectorized: not inner loop
 
      LOOP BEGIN at example.F90(12,5)
         remark #15018: loop was not vectorized: not inner loop
 
[...]
 
                  LOOP BEGIN at example.F90(15,8)
                     remark #25446: blocked by 125   (pre-vector)
                     remark #25444: unrolled and jammed by 4   (pre-vector)
                     remark #15018: loop was not vectorized: not inner loop
 
                     LOOP BEGIN at example.F90(13,6)
                        remark #25446: blocked by 125   (pre-vector)
                        remark #15018: loop was not vectorized: not inner loop
 
                        LOOP BEGIN at example.F90(14,7)
                           remark #25446: blocked by 128   (pre-vector)
                           remark #15003: PERMUTED LOOP WAS VECTORIZED
                        LOOP END
 
                        LOOP BEGIN at example.F90(14,7)
                        Remainder
                           remark #25460: Loop was not optimized
                        LOOP END
                     LOOP END
                  LOOP END
 
[...]
 
            LOOP END
         LOOP END
      LOOP END
   LOOP END
LOOP END
 
LOOP BEGIN at example.F90(26,2)
   remark #15018: loop was not vectorized: not inner loop
 
   LOOP BEGIN at example.F90(29,5)
      remark #25448: Loopnest Interchanged : ( 1 2 3 4 ) --> ( 1 3 2 4 )
      remark #15018: loop was not vectorized: not inner loop
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      LOOP BEGIN at example.F90(29,5)
         remark #15018: loop was not vectorized: not inner loop
 
         LOOP BEGIN at example.F90(29,5)
            remark #15018: loop was not vectorized: not inner loop
 
            LOOP BEGIN at example.F90(29,5)
               remark #15018: loop was not vectorized: not inner loop
 
               LOOP BEGIN at example.F90(29,5)
                  remark #25446: blocked by 125   (pre-vector)
                  remark #25444: unrolled and jammed by 4   (pre-vector)
                  remark #15018: loop was not vectorized: not inner loop
 
[...]
               LOOP END
            LOOP END
         LOOP END
      LOOP END
   LOOP END
LOOP END
 

Listing 1-3 shows the vectorization report for the example in Listing 1-2. As you can 
see, the vectorization report contains the same information about vectorization as the 
optimization report.

Listing 1-3. Example Vectorization Report with the Most Interesting Fields Highlighted

$ ifort -O3 -qopenmp -vec-report=2 -qopt-report-file=stdout -c example.F90
 
[...]
 
LOOP BEGIN at example.F90(9,2)
   remark #15018: loop was not vectorized: not inner loop
 
   LOOP BEGIN at example.F90(12,5)
      remark #15018: loop was not vectorized: not inner loop
 
      LOOP BEGIN at example.F90(12,5)
         remark #15018: loop was not vectorized: not inner loop
 
         LOOP BEGIN at example.F90(12,5)
            remark #15018: loop was not vectorized: not inner loop
 
            LOOP BEGIN at example.F90(12,5)
               remark #15018: loop was not vectorized: not inner loop
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               LOOP BEGIN at example.F90(12,5)
                  remark #15018: loop was not vectorized: not inner loop
 
                  LOOP BEGIN at example.F90(15,8)
                     remark #15018: loop was not vectorized: not inner loop
 
                     LOOP BEGIN at example.F90(13,6)
                        remark #15018: loop was not vectorized: not inner loop
 
                        LOOP BEGIN at example.F90(14,7)
                           remark #15003: PERMUTED LOOP WAS VECTORIZED
                        LOOP END
 
[...]
 
                     LOOP END
                  LOOP END
 
                  LOOP BEGIN at example.F90(15,8)
                  Remainder
                     remark #15018: loop was not vectorized: not inner loop
 
                     LOOP BEGIN at example.F90(13,6)
                        remark #15018: loop was not vectorized: not inner loop
 
[...]
 
                        LOOP BEGIN at example.F90(14,7)
                           remark #15003: PERMUTED LOOP WAS VECTORIZED
                        LOOP END
 
[...]
                                                 
                     LOOP END
                  LOOP END
               LOOP END
 
[...]
                            
            LOOP END
         LOOP END
      LOOP END
   LOOP END
LOOP END
 
[...]
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Use Interprocedural Optimization
Add the compiler flag -ipo to switch on interprocedural optimization. This will give the 
compiler a holistic view of the program and open more optimization opportunities for the 
program as a whole. Note that this will also increase the overall compilation time.

Runtime profiling can also increase the chances for the compiler to generate better 
code. Profile-guided optimization requires a three-stage process. First, compile the 
application with the compiler flag -prof-gen to instrument the application with profiling 
code. Second, run the instrumented application with a typical dataset to produce a 
meaningful profile. Third, feed the compiler with the profile (-prof-use) and let it 
optimize the code.

Summary
Switching to Intel MPI and Intel Composer XE can help improve performance because 
the two strive to optimally support Intel platforms and deliver good out-of-the-box (OOB) 
performance. Tuning measures can further improve the situation. The next chapters will 
reiterate the quick and dirty examples of this chapter and show you how to push the limits.
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