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Abstract We consider a class of homogeneous Cournot oligopolies with concave inte-
grated price flexibility and convex cost functions. We provide new results about the semi-
uniqueness and uniqueness of (Cournot) equilibria for the oligopolies that satisfy these
conditions. The condition of concave integrated price flexibility is implied by (but does not
imply) the log-concavity of a continuous decreasing price function. So, our results generalize
previous results for decreasing log-concave price functions and convex cost functions. We
also discuss the particular type of quasi-concavity that characterizes the conditional revenue
and profit functions of the firms in these oligopolies and we point out an error of the literature
on the equilibrium uniqueness in oligopolies with log-concave price functions. Finally, we
explain how the condition of concave integrated price flexibility relates to other conditions
on the price and aggregate revenue functions usually considered in the literature, e.g., their
concavity.

Keywords Equilibrium (semi-)uniqueness · Generalized convexity · Log-concavity ·
Oligopoly · Price flexibility · Price function

1 Introduction

Cournot equilibrium is one of the oldest equilibrium notions in mathematical economics.
Its definition refers to an abstract representation of an oligopoly, which can be described
as follows. A set N := {1, . . . , n} of firms produce a homogeneous good. Each firm
i ∈ N chooses a quantity of production xi from its own feasible production set Xi , where
Xi ⊆ R, facing a production cost ci (xi ), where ci : Xi → R. The aggregate production
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y = ∑
i∈N xi , which is an element of (the Minkowski-sum) Y := ∑

l∈N Xl , is sold to the
market at the price p(y), given by a function p : Y → R. Each firm i ∈ N receives
a profit πi (x) := p(

∑
l∈N xl)xi − ci (xi ). So this defines firm i’s profit function πi :

X1 × · · · × Xn → R. We refer to p as the price function and to ci as the cost function
of firm i . Given this oligopolistic structure, x is called a (Cournot) equilibrium if, for all
i ∈ N , xi ∈ argmaxzi ∈Xi

πi (x1, . . . , xi−1, zi , xi+1, . . . , xn).
The conceptual definition of a Cournot equilibrium implies neither its existence nor its

uniqueness, however both the problem of the existence and that of the uniqueness of an
equilibrium are of interest in economics. The two problems are not unrelated to one another.
In particular, when the existence problem is solved the uniqueness problem reduces to the
problem of equilibrium semi-uniqueness, that is, the problem of the existence of at most one
equilibrium. For a review of many results on these topics see also [3,7].

In this article we are concerned with equilibrium semi-uniqueness in Cournot oligopo-
lies with convex cost functions and concave integrated price flexibility. Henceforth, we shall
assume that either Xi = R+ or Xi = [0, mi ] where mi > 0. In case Xi = [0, mi ], we say that
firm i has a capacity constraint. Our main concern is semi-uniqueness and not uniqueness
because in our case each conditional profit function of each firm1 is quasi-concave and it is
not difficult to see that under additional continuity and compactness conditions various well-
known theorems (as, e.g., that of Nikaido-Isoda or Kakutani fixed point theorem) guarantee
the existence of an equilibrium.

To the best of our knowledge there are no general semi-uniqueness results for Cournot
oligopolies with convex cost functions and concave integrated price flexibility. Important
results, such as those in [5] for concave aggregate revenue and those in [1] for log-concave
price functions do not cover our results because there are price functions with strictly concave
integrated price flexibility (like p(y) = e−√

1+y) which are not log-concave (as in [1]) and to
which there is not associated a concave aggregate revenue function (as in [5]). Our results are
complementary to those in [5] because there exist price functions without concave integrated
price flexibility, to which there is associated a strictly concave aggregate revenue function.
However, we shall prove that all decreasing continuous log-concave price functions have
concave integrated price flexibility.

The organisation of the article is as follows. In Sect. 2 the notion of concave integrated
price flexibility is formally defined and compared with other convexity notions. In Sect. 3
we study the Nash-sum, i.e., the function σ : E → R defined by σ(e) := ∑n

l=1 el where
E is the of equilibria. There we provide sufficient conditions for the Nash-sum to be injec-
tive and sufficient conditions for it to be constant. In Sect. 4 we identify a class of oli-
gopolies with concave integrated price flexibility for which the Nash-sum is injective and
constant, which implies that an oligopoly in this class has at most one equilibrium; also
the existence problem will be considered. Section 5 reconsiders the case of log-concave
price functions. Section 6 concludes and an Appendix contains some results on (generalized)
convexity.

2 Integrated price flexibility

Consider a price function p : Y → R. If p is differentiable at y ∈ Y and p(y) �= 0, the price
flexibility of p at y is defined by

1 I.e., the profit function of a firm as a function of its own production.
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ηp(y) := Dp(y)
y

p(y)
,

i.e., as the elasticity of p at y.2

For a positive continuous price function p : Y → R, the function L p : Y → R is defined
by

L p(y) := y ln p(y) −
y∫

0

ln p(ξ) dξ. (1)

We call this function the integrated price flexibility of p. We use this terminology because
for each y ∈ Y at which p is differentiable, also L p is differentiable and

DL p(y) = ηp(y). (2)

The concavity of the integrated price flexibility is the property we address in this article.
Fact F (in the Appendix) guarantees that a (strictly) decreasing continuous log-concave3

price function p has a (strictly) concave integrated price flexibility L p . Facts A and B1
guarantee that if p is positive and continuous, then the (strict) concavity of L p implies the
(strict) decreasingness of p. Just to provide an example, consider the price function given by
p(y) = δe−(α+βy)γ with positive parameters. For this function Dηp (y) = −βγ (α+βγ y)

(α+βy)2−γ < 0

holds and therefore p has a strictly concave integrated price flexibility.
It is good to compare the property of the concavity of the integrated price flexibility with

three other properties of p that play an important role in oligopoly theory: the concavity of
p, the log-concavity of p and the concavity of the aggregate revenue function r associated
to p, where r : Y → R is defined by r(y) := p(y)y. For simplicity, we shall do this for
the context where the price function p is positive, decreasing and differentiable; the domain
Y of p may be compact or not.

First note that ηp ≤ 0, Dr = p · (ηp + 1) and that the (strict) concavity of the inte-
grated price flexibility of p is equivalent to the (strict) decreasingness of ηp . Historically,
oligopolies with a concave price function belong to the first types studied. A positive con-
cave price function p is log-concave and has a concave associated aggregate revenue r (and
a strictly concave associated aggregate revenue r if p is strictly concave). The log-concavity
of p and the concavity of r have received special attention in the literature (e.g., [1,5,7]).
Concave aggregate revenue functions are compatible with other types of price functions,
like the strictly convex ones. However, Fact H shows that the log-concavity of p and the
concavity of r are quite incompatible when Y = R+. As the log-concavity of p implies the
decreasingness of ηp , the log-concavity of p implies the concavity of the integrated price
flexibility.4 Therefore, also concave price functions have concave integrated price flexibility.
Table 1 illustrates.

It turns out that with our method we can obtain equilibrium semi-uniqueness results also
for price functions that are unbounded at 0, like p(y) = 1/y (y �= 0) (and, for example,5

2 In this article D f is the symbol we use for the derivative of a real function f of one real variable; D+ f
(D− f ) will be used for right (left) derivatives. Furthermore when f is a real function of more than one real
variable, then Di f (D+

i f, D−
i f ) will be used for the (right, left) derivative with respect to the i th variable.

3 Log-concavity of a real-valued function presupposes that this function is positive.
4 And sufficient for the strict concavity of the integrated price flexibility is the log-concavity and the strict
decreasingness of p; see Fact F.
5 Clearly 137 is assigned arbitrarily because the profit functions, and therefore also the set of equilibria, do
not depend on the value of p at 0.
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Table 1 Various concrete price functions

p \ Property p log-concave r concave ηp decreasing

1
1+y No Yes Yes

e−√
1+y No No Yes

1 + 1
1+y No Yes No if Y = R+

{
3 (y ∈ [0, 1])
−y2 + 2y + 2 (y ∈ [1, 2]) Yes Yes Yes

p(0) = 137). In order to handle them we consider the following variant of L p . For q ∈ Y \{0}
and a price function p : Y → R that is positive on Y \ {0} and continuous on Y \ {0}, the
function L̃ p : Y \ {0} → R is defined by

L̃ p(y) := y ln p(y) −
y∫

q

ln p(ξ) dξ. (3)

Also this function will be called integrated price flexibility of p (with respect to q). This
function depends on q , but various of its properties, e.g., its (strict) concavity, do not depend
on q . We say that p has concave (resp. strictly concave) integrated price flexibility if there
exists a q such that L̃ p is concave (resp. strictly concave).

3 Nash-sums

The result in the following lemma gives very weak sufficient conditions in order that 0 be not
an equilibrium when there exist at least two equilibria. In this lemma we assume that each
cost function ci is convex. We recall that this implies that ci is left and right differentiable
at each interior point of its domain and that ci may not be right differentiable at 0, but its
right derivative exists at 0 as an element of R ∪ {−∞}. If firm i has a capacity constraint
mi , then ci may not be left differentiable at mi but its left derivative exists as an element of
R ∪ {+∞}. We write R := R ∪ {−∞,+∞}.
Lemma 1 Suppose each cost function is convex, and

– p is left and right differentiable at each point of Int(Y ),
– D+ p(y) ≤ D− p(y) ≤ 0 (y ∈ Int(Y )),
– in case Y = [0, m], the (left) derivative D− p(m) of p at m exists as an element of R with

D− p(m) ≤ 0.6

Also suppose p is strictly decreasing on Y \ {0} or each cost function is strictly convex. If
there exists more than one equilibrium, then 0 is not an equilibrium. 

Proof By way of contradiction, suppose a = 0 and b are two distinct equilibria. Let yb =∑

l∈N bl . Fix i ∈ N with bi > 0. By Fact A (in the Appendix), p is decreasing on Y \ {0}.
Therefore p(0) := limy↓0 p(y) ∈ R ∪ {+∞} is well-defined. Now the contradiction

p(0) − D+ci (0) ≤ 0 ≤ D− p(yb)bi + p(yb) − D−ci (bi )

≤ p(yb) − D−ci (bi ) < p(0) − D+ci (0)

6 But p need not to be differentiable at m, even not continuous. For example for p : [0, 1] → R defined by
p(y) = 1 + √

1 − y (0 ≤ y < 1), p(1) = 0, we have D− p(1) = −∞.
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follows: the first (second) inequality holds as a (b) is an equilibrium,7 the third holds as
D− p(yb) ≤ 0 and the fourth as p is decreasing on Y \ {0}, ci is convex, and either p is even
strictly decreasing on Y \ {0} or ci is strictly convex. �
Theorem 1 Suppose each cost function is convex, and

– p is left and right differentiable at each point of Int(Y ),
– D− p(y) ≤ D+ p(y) ≤ 0 (y ∈ Int(Y )),
– in case Y = [0, m], the (left) derivative D− p(m) of p at m exists as an element of R with

D− p(m) ≤ 0.

Each of the following conditions is sufficient for the Nash-sum σ to be injective: (I) D+ p(y) <

0 (y ∈ Int(Y )). (II) Each cost function is strictly convex. 

Proof By way of contradiction, suppose a and b are distinct equilibria with σ(a) = σ(b) =:
y. This implies that y ∈ Int(Y ). (An obvious variant of) Fact A implies that p is decreasing
on Y \ {0} and strictly decreasing if condition I holds. Fix i such that ai < bi . As a, b are
equilibria, it follows that D−

i πi (b) ≥ 0 ≥ D+
i πi (a), i.e.,

D− p(y)bi + p(y) − D−ci (bi ) ≥ 0 ≥ D+ p(y)ai + p(y) − D−ci (ai ).

So the inequality D− p(y)bi − D+ p(y)ai ≥ D−ci (bi ) − D+ci (ai ) holds. If condition I
holds, then the left hand side of the last inequality is an element of ]−∞, 0 [ and the right
hand side is an element of [0,+∞]; if condition II holds, then the left hand side of the last
inequality is an element of ]−∞, 0] and the right hand side is an element of ]0,+∞], which
is a contradiction. �
Theorem 2 Suppose each cost function is convex and increasing, p is positive on Y \ {0},
decreasing on Y \ {0} and continuous on Y \ {0} with concave integrated price flexibility
L̃ p. Each of the following conditions is sufficient for the Nash-sum σ to be constant: (I) The
integrated price flexibility is strictly concave. (II) All cost functions are strictly convex. 

Proof By way of contradiction, suppose I or II holds and a, b are equilibria with

ya :=
∑

l∈N

al <
∑

l∈N

bl =: yb.

Let J := {l ∈ N | al < bl}, ỹa := ∑
l∈J al , ỹb := ∑

l∈J bl , s := #J . (Here s is the
number of elements of J .) Note that b �= 0, yb > 0, s ≥ 1, ỹa ≤ ya, ỹb ≤ yb, ỹa <

ỹb, ỹb − ỹa ≥ yb − ya . By Fact B2 we see that p ∈ D≤ and that in case I even p ∈ D<. So
Lemma 1 applies and therefore ya �= 0.

As a and b are equilibria, D+
i πi (a) ≤ 0 ≤ D−

i πi (b) (i ∈ J ), i.e.,

D+ p(ya)ai + p(ya) − D+ci (ai ) ≤ 0 ≤ D− p(yb)bi + p(yb) − D−ci (bi ) (i ∈ J ). (4)

We now prove that

D+ p(ya)ỹa + sp(ya) ≥ D− p(yb)ỹb + sp(yb) (> in case I). (5)

If D− p(yb) = −∞, then (5) holds. Now suppose D− p(yb) �= −∞ and hence p is left
differentiable at yb. First we prove that

D− p(yb)ỹb + sp(yb) ≥ 0. (6)

7 It may be good to note that the arithmetic operations here make sense in R, so for instance undefined
operations like +∞ − ∞ do not occur.
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Well, as bl > 0 for every l ∈ J and b is an equilibrium, we have D− p (yb) bl + p (yb) −
D−cl (bl) ≥ 0 for every l ∈ J , and hence D− p (yb) bl + p (yb) ≥ D−cl (bl) for every l ∈ J
from which it follows (as cost functions are increasing),

D− p (yb) ỹb + sp (yb) =
∑

l∈J

(
D− p (yb) bl + p (yb)

) ≥
∑

l∈J

D−cl (bl) ≥ 0.

So we have D− p(yb)(yb − (yb − ỹb)) + sp(yb) ≥ 0. Noting that yb − ỹb ∈ [0, ya], Fact C
implies

D+ p(ya)(ya − (yb − ỹb)) + sp(ya) ≥ D− p(yb)ỹb + sp(yb) (> in case I).

As D+ p(ya) ≤ 0 and ya − (yb − ỹb) ≥ ỹa , (5) follows.
As each ci is convex (and strictly convex in case II), (5) implies

D+ p(ya)ỹa + sp(ya) −
∑

i∈J

D+ci (ai ) > D− p(yb)ỹb + sp(yb) −
∑

i∈J

D−ci (bi ),

which in turn implies the existence of i ∈ J such that

D+ p(ya)ai + p(ya) − D+ci (ai ) > D− p(yb)bi + p(yb) − D−ci (bi ),

which is in contradiction with (4). �

4 Uniqueness

4.1 Semi-uniqueness

Theorem 3 below, our main result, provides a semi-uniqueness result for a new class of price
functions. The oligopolies in Theorem 3 are the same as in Theorem 2, but with an extra
differentiability assumption for p.

Theorem 3 Suppose each cost function is convex and increasing, p is positive on Y \ {0},
decreasing on Y \ {0} and continuous on Y \ {0} with concave integrated price flexibility L̃ p.
If p is differentiable on the interior of its domain, then each of the following conditions is
sufficient for the existence of at most one equilibrium: (I) The integrated price flexibility is
strictly concave. (II) All cost functions are strictly convex. 

Proof By Theorem 2 the Nash-sum is constant. By Theorem 1 the Nash-sum is injective. It
follows that there exists at most one equilibrium. �

Concerning the explicit monotonicity property of p in Theorem 3 it is interesting to note
that the concavity of L̃ p does not imply the decreasingness of p (consider for example
p(y) = ln(y + 1)). But by Facts A and B1, a positive continuous p with concave integrated
price flexibility L p is decreasing.

4.2 Existence and uniqueness

In order to avoid further technicalities we now investigate the problem of the existence of a
unique Cournot equilibrium assuming the differentiability of p everywhere.

For i ∈ N and k ∈ ∑
l∈N\{i} Xl , firm i’s conditional revenue function r (k)

i : Xi → R is

defined by r (k)
i (xi ) := p(xi + k)xi and firm i’s conditional profit function π

(k)
i : Xi → R

is defined by π
(k)
i := r (k)

i − ci .
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Theorem 4 Suppose cost functions are convex, increasing and continuous, p is positive,
differentiable and has concave integrated price flexibility L p. Then profit functions are con-
tinuous and conditional profit functions are quasi-concave. 

Proof The continuity of the profit functions is clear. In order to prove the quasi-concavity of
the conditional profit functions we fix i ∈ N and k ∈ ∑

l∈N\{i} Xl . Note that r (k)
i is differen-

tiable and Dr (k)
i (xi ) = Dp(xi + k)xi + p(xi + k). Let I := {x ∈ Xi | Dr (k)

i (xi ) > 0}. As
p(k) > 0, we have 0 ∈ I . Fact D implies that I is convex. Let a, b ∈ I with a < b. Fact C
implies Dr (k)

i (b) ≤ Dr (k)
i (a). This implies that r (k)

i is concave on I . As Dr (k)
i (xi ) ≤ 0 (xi ∈

Xi \ I ), r (k)
i is decreasing on the interval Xi \ I . By assumption ci is convex. If I = Xi ,

then r (k)
i − ci is concave and the proof is complete. Now suppose I �= Xi . As I is convex,

it follows that I is bounded; let d := sup I . As the restriction (r (k)
i − ci ) � I is concave

and continuous, also the function (r (k)
i − ci ) � [0, d] is concave and continuous. The set of

maximisers of this function is non-empty and compact. Let z be the greatest one. Noting that
r (k)

i − ci is concave on [0, z], decreasing on Xi \ [0, z] and continuous, it follows that π
(k)
i

is quasi-concave. �
As noted in the Introduction, an oligopoly with quasi-concave conditional profit func-

tions has an equilibrium under additional (standard) assumptions. Such an assumption is:
profit functions are continuous, and if there is a firm without capacity constraint, then p is
decreasing and for each firm i without capacity constraint p(x)x − ci (x) ≤ −ci (0) for x
large enough.

This condition, together with Theorems 3 and 4 and Facts A and B1, implies:

Corollary 1 Suppose each cost function is convex, increasing and continuous, p is positive,
differentiable with concave integrated price flexibility and if there is a firm without capacity
constraint, then for each firm i without capacity constraint p(x)x − ci (x) ≤ −ci (0) for x
large enough.

Each of the following additional conditions is sufficient for the existence of a unique
equilibrium: (I) The integrated price flexibility is strictly concave. (II) All cost functions are
strictly convex. 


5 Log-concave price functions

Consider a continuous (strictly) decreasing log-concave price function p. So L p has (strictly)
concave integrated price flexibility L p by fact F and Theorem 3 implies:

Corollary 2 Suppose the price function is log-concave, decreasing and differentiable and
each cost function is convex and increasing. Then each of the following conditions is sufficient
for the existence of at most one equilibrium: (I) The price function is strictly decreasing. (II)
All cost functions are strictly convex. 


Related to Corollary 2 is Theorem 2.3 in [1] for a duopoly:
Suppose no duopolist has a capacity constraint, the price function is log-concave and strictly
decreasing and each cost function is convex and strictly increasing. If for each duopolist i it
holds that p(x)x − ci (x) < 0 for x large enough, then there exists a unique equilibrium.

Note that in this ‘theorem’ it is not assumed that the price function is differentiable. The
next example, where all conditions of Theorem 2.3 in [1] hold, shows that this theorem is
false:
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Example 1 Consider the following duopoly:

p(y) =
⎧
⎨

⎩

51 − y if y ∈ [0, 1],
99 − 49y if y ∈ [1, 2],
e−100(y−2) if y ∈ [2,+∞ [,

c1(x1) = 49x1, c2(x2) = 49x2.

It is straightforward (using the symmetry of the situation) to verify that ( 9
20 , 11

20 ) and ( 11
20 , 9

20 )

are equilibria. 

As in Example 1 also all conditions of Corollary 2(I) hold, with the exception of the

differentiability of p, it follows that Corollary 2 does not hold anymore when we omit the
assumption that the price function is differentiable.

6 Concluding remarks

As we have explained in the Introduction, and shown in the body of the article, our results
extend (and correct) a result in [1]. It should be clear that, e.g., the results in [1] are not
sufficient to conclude that the triopoly given by

– N = {1, 2, 3},
– p (y) = e−√

1+y ,
– and Xi = R+, ci (xi ) = xi

100 for each firm i ∈ N ,

has a unique Cournot equilibrium; also, the results in [3] (in particular Theorem 6.1) does
not prove this fact.8 So, to the best of our knowledge, the results presented in this article are
new.

Our results build on—and extend—a technique developed in [6]. We conjecture that this
technique can be also used to simplify and shorten the proof of important equilibrium semi-
uniqueness results for oligopolies with convex cost functions and aggregate revenue functions
such as that in Lemma 5 of [5] (which neither implies nor is implied by the results of this
article, as it is clear from the table in Sect. 2).

It is good to remark that in this article, unlike in [5], we cannot guarantee equilibrium
semi-uniqueness when the cost functions are not increasing. The reason is that in the proof
of Theorem 2 we utilize a particular type of quasi-concavity of the conditional revenue func-
tions which implies the crucial inequality (6). As it can be seen from the proof of Theorem 4
this particular quasi-concavity requires that, at each Cournot equilibrium e, the conditional
revenue of a firm i that produces ei > 0 must be either concave and increasing, or concave
and increasing up to some point xi ≥ ei where the conditional revenue is maximized and
decreasing beyond that point, whence (6) follows easily. But this does not keep on hold-
ing—and hence inequality (6) does not generally hold true—if the cost function of firm i is
convex but not increasing. It is good to note that also the conditional profit function of firm i
is concave and increasing up to ei and decreasing beyond that point, thus inheriting the same
type of quasi-concavity of the conditional revenue function; also this fact does not keep on
holding when the cost functions are convex but not increasing.

This particular type of quasi-concavity has a strong connection with the notion of semi-
convexity provided in [4]. We think that this type of generalized convexity could have many

8 The reason is that, adopting the terminology and the definitions of [3], there does not exist a pair (α, β)

such that α ≤ 1, β ≤ 1, 

p
α,β (12) ≤ 0, (α + β) Dp (12) − D2ci (12) ≤ 0 and that (i) either α + β = 1 or

that (ii) α = 1 and β < 0.
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natural applications in economics and, to the best of our knowledge, this is the first article deal-
ing with economic applications that explicitly refers to such a generalized convexity notion.

Finally, a large part of the literature on the semi-uniqueness and uniqueness of Cour-
not equilibrium takes into consideration oligopolies without capacity constraints (or better,
firms’ feasible production sets are assumed to be upper unbounded). As explained in [2],
the assumption of upper unboundedness of the feasible productions sets of the firms is
not an inconsequential assumption and influences some results of the literature on Cournot
equilibrium, in particular when one considers the dynamics. Clearly, the equilibrium semi-
uniqueness and uniqueness results of this article do not depend on the upper unboundedness
of the feasible productions sets of the firms because we allow both upper bounded and upper
unbounded feasible productions sets (note that when we provide sufficient conditions for the
existence of a Cournot equilibrium we impose the upper boundedness of the profit functions,
but the feasible production sets can be either bounded or not).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

Appendix

The presentation here will be self-contained. Consider a function p : Y → R where Y = R+
or Y = [0, m] with m > 0. Define r : Y → R by r(y) := p(y)y. When p is positive and
continuous, the function L p : Y → R is defined by (1) and when p is positive on Y \ {0} and
continuous on Y \ {0}, the function L̃ p : Y → R is defined by (3). We write p ∈ D≤ (D<) if

– p is left and right differentiable at each interior point of its domain and in case Y = [0, m],
the (left) derivative D− p(m) of p at m exists as an element of R

9;
– D+ p(y) ≤ D− p(y) (y ∈ Int(Y ));
– D− p ≤ (<) 0.

The following results for p, L p, L̃ p and r are presented here as Facts:

A. If p ∈ D≤ (D<), then p is (strictly) decreasing on Y \ {0}.
B1. Suppose p is positive and continuous and L p is (strictly) concave. Then p ∈ D≤ (p ∈

D<).
B2. Suppose p is positive on Y \ {0}, continuous on Y \ {0} and decreasing on Y \ {0} and

L̃ p is (strictly) concave. Then p ∈ D≤ (p ∈ D<).
C. Suppose p is positive on Y \ {0}, continuous on Y \ {0}, decreasing on Y \ {0} and L̃ p

is (strictly) concave. Let y1, y2 ∈ Y with 0 < y1 < y2, k ∈ [0, y1] and s ∈ R. Then

D− p(y2)(y2 − k) + sp(y2) ≥ 0

⇒ D+ p(y1)(y1 − k) + sp(y1) ≥ (>) D− p(y2)(y2 − k) + sp(y2).

D. Suppose p is positive, differentiable with concave integrated price flexibility L p . Then,
for each k ∈ Y , the set Hk := {x ∈ (Y − {k}) ∩ Y | Dp(x + k)x + p(x + k) > 0} is
convex.

E. Suppose p is log-concave and strictly decreasing. Then D− p < 0.
F. If p is log-concave, continuous and (strictly) decreasing, then p has (strictly) concave

integrated price flexibility L p .

9 This defines D+ p : Int(Y ) → R and D− p : Y \ {0} → R.
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G. If r is (strictly) concave, then p ∈ D≤ (D<).
H. Suppose Y = R+. If p is log-concave on R++ and non-constant on Y \ {0}, then r is

not concave.

Proof of Fact A As p is right and left differentiable on Int(Y ), p is continuous on Int(Y ).
Together with D+ p(y) ≤ (<) 0 (y ∈ Int(Y )), this implies that p is (strictly) decreasing on
Int(Y ). So, if Y = R+, we are done. Now suppose Y = [0, m]. As D− p(m) ≤ 0, p is even
(strictly) decreasing on ]0, m]. �
Proof of Fact B1 With the exception of D− p ≤ (<) 0 this Fact is a direct consequence of
the (strict) concavity of L p . The important observation here is to realize that D+L p(0) = 0
which can be proved with the rule of de l’Hôpital:

D+L p(0) = lim
h↓0

L p(h) − L p(0)

h
= lim

h↓0

h ln p(h) − ∫ h
0 ln p(ξ) dξ

h

= ln p(0) − lim
h↓0

∫ h
0 ln p(ξ) dξ

h
= ln p(0) − lim

h↓0

ln p(h)

1
= 0.

Let y �= 0. As L p is (strictly) concave, y D− p(y)
p(y)

= D−L p(y) ≤ (<) D+L p(0) = 0. Thus

D− p(y) ≤ (<) 0. �
Proof of Fact B2 Having the proof of Fact B1, we only have to prove that D− p < 0 in
case L̃ p is strictly concave. So suppose there exists y0 ∈ Y \ {0} with D− p(y0) ≥ 0. As
p is decreasing on Y \ {0}, it follows that D− p ≤ 0. So D− p(y0) = 0 and therefore
D− L̃ p(y0) = 0. But D− L̃ p is strictly decreasing and D− L̃ p ≤ 0, which is impossible. �
Proof of Fact C By contradiction, suppose there exist y1, y2, k, s as above and

D− p(y2)(y2 − k) + sp(y2) ≥ 0,

D+ p(y1)(y1 − k) + sp(y1) < (≤) D− p(y2)(y2 − k) + sp(y2).

Since p is positive and decreasing on [y1, y2], 0 < 1
p(y1)

≤ 1
p(y2)

; so

D+ p(y1)
y1 − k

p(y1)
+ s < (≤)

1

p(y1)
(D− p(y2)(y2 − k) + sp(y2))

≤ 1

p(y2)
(D− p(y2)(y2 − k) + sp(y2)) = D− p(y2)

y2 − k

p(y2)
+ s,

and hence

D+ p(y1)
y1 − k

p(y1)
< (≤) D− p(y2)

y2 − k

p(y2)
. (7)

As L̃ p is (strictly) concave, we have D+ L̃ p(y1) ≥ (>) D− L̃ p(y2). As p is decreasing on
Y \ {0}, this leads to

0 ≥ D+ p(y1)
y1

p(y1)
≥ (>) D− p(y2)

y2

p(y2)
.

This implies (noting that y1 > 0, 0 ≤ y1−k
y1

≤ y2−k
y2

and y2−k
y2

> 0)

y1 − k

y1
D+ p(y1)

y1

p(y1)
≥ (>)

y2 − k

y2
D− p(y2)

y2

p(y2)
,

which is a contradiction with (7). �
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Proof of Fact D For x ∈ (Y − {k}) ∩ Y denote Dp(x + k)x + p(x + k) by g(x). It is suf-
ficient to prove that Hk \ {0} is convex. We provide the proof by contradiction. So suppose
x1, x2 ∈ Hk \{0} with x1 < x2 and g(x3) ≤ 0 where x3 = t x1+(1−t)x2 for some t ∈ ]0, 1 [.
We have g(x3) ≤ 0 < 1

5 g(x2) < g(x2). As g is a derivative, g is also a Darboux-function.
Therefore there exists x4 ∈ ]x3, x2 [ with g(x4) = 1

5 g(x2) > 0. So we have

Dp(x2 + k)(x2 + k − k) + p(x2 + k) > 0, 0 < x4 + k < x2 + k, k ∈ [0, x4 + k].
By Facts A and B1, p is decreasing. Fact C implies that Dp(x4 + k)x4 + p(x4 + k) ≥
Dp(x2 + k)x2 + p(x2 + k). It follows that 0 < g(x2) ≤ g(x4) = 1

5 g(x2), which is impossi-
ble. �
Proof of Fact E By way of contradiction, assume that there exists y0 ∈ Y \ {0} with
D− p(y0) ≥ 0. As p is strictly decreasing, D− p/p ≤ 0 holds. This implies D− p(y0) ≤ 0.
So D− p(y0) = 0. As p is log-concave, D− p/p is decreasing. As D− p(y0)/p(y0) = 0, it
follows that D− p/p vanishes on the proper interval ]0, y0], and so does also D− p. As p is
also continuous on this interval, it follows that p is constant on this interval and therefore
not strictly decreasing on this interval, which is a contradiction with the strict decreasingness
of p. �
Proof of Fact F First we note that sufficient for the (strict) concavity of a function f defined
on a real interval is that f is continuous, its left derivative D− f is well defined and (strictly)
decreasing, and real-valued on the interior of its domain. Well, L p has all these properties. In
fact, we only have to prove that D−L p is (strictly) decreasing. As p is (strictly) decreasing

(using Fact E) we have D− p
p ≤ (<) 0 , so D−L p ≤ (<) 0. As p is log-concave, D− p

p is

decreasing and therefore also D−L p is (strictly) decreasing. �
Proof of Fact G As r is a (strictly) concave function it holds that r is left and right differ-
entiable at each interior point of its domain. As p(y) = r(y)/y (y �= 0), this implies also
that p is left and right differentiable at each point of Int(Y ). As r is (strictly) concave, it
holds for all y ∈ Int(Y ) that D+r(y) ≤ D−r(y) ≤ (<)

r(y)−r(0)
y−0 . So D+ p(y)y + p(y) ≤

D− p(y)y + p(y) ≤ (<) p(y) and thus D+ p(y) ≤ D− p(y) ≤ (<) 0. In case Y = [0, m],
the proof of D− p(m) ≤ (<) 0 is similar. �
Proof of Fact H By way of contradiction, assume that r is concave. As r is concave, r(0) =
0, r ≥ 0 and r is somewhere positive, it follows that limy→+∞ r(y) exists as an element of
R and

lim
y→+∞ r(y) > 0.

By Facts A and G, p is decreasing on R++. So there exists z > 0 with D+ p(z) < 0.

Let α := ln p(z) and β := D+ ln p(z) = D+ p(z)
p(z) < 0. Let l : R → R be defined by

l(y) := α +β(y − z). Since l is affine, l(z) = ln p(z) and ln p is concave on R++, it follows
that ln p(y) ≤ l(y) (y ∈ R++). Therefore, r(y) = p(y)y ≤ eα−βz+βy y (y ∈ R++), whence
a contradiction because limy→+∞ r(y) = 0. �
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