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Abstract. In this paper we propose two methods to derive different kinds of
node neighborhood based similarities in a network. The first similarity measure
focuses on the overlap of direct and indirect neighbors. The second similarity
compares nodes based on the structure of their possibly also very distant neigh-
borhoods. Both similarities are derived from spreading activation patterns over
time. Whereas in the first method the activation patterns are directly compared,
in the second method the relative change of activation over time is compared. We
applied both methods to a real world graph dataset and discuss some of the results
in more detail.

1 Introduction

It is essential for many experts of various fields to consider all or at least the bigger part
of their accessible data before making decisions, to make sure that no important pieces
of information are ignored or underestimated. In many areas the amount of available
data grows rapidly and manual exploration is therefore not feasible. Many of these
datasets consist of units of information, e.g. genes, or proteins in biomedical datasets,
or terms and documents in text datasets, as well as relations between these units, and
thus can be represented as networks, with units of information represented as nodes or
vertices and their relations as edges.

For analysts and experts it can be interesting to find nodes in such networks that are
directly or indirectly connected to given query nodes in order to find a community, or
a dense subgraph located around a given query node. In terms of biomedical networks,
proteins can be found interacting with a query protein, or sharing certain properties.
In social networks a circle of friends or acquaintances of a person can be determined,
and in textual networks frequently shared terms or documents, according to a query
can be discovered. To identify and extract closely connected nodes to certain query
nodes, often methods based on spreading activation are used, especially in the field of
information retrieval [9,10,4].

Besides finding nodes, which are part of the community of a query node and thereby
closely positioned to it, the discovery of structurally similar nodes can be desirable,
too. Nodes are structurally similar if the connection structure of their neighborhoods is
similar. An overlap of neighborhoods is not required, which means that the nodes can
be located far away from each other. For instance structurally similar individuals in so-
cial networks may play the same role in their community. In biomedical networks, for
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example, proteins can be found playing the same role in their metabolic pathways. Ad-
ditionally the comparison of communities of the query node and its structurally similar
result nodes, can lead to new insights as well. For instance information such as the num-
ber and size of sub-communities, the number and connectedness of central nodes, and
the structural position of the query, and result nodes in their corresponding community,
can be interesting.

Experts and analysts do not always know exactly what to look for, or where. Thus
the usage of classical information retrieval systems, requiring specific queries, is of-
ten not sufficient. Methods that suggest unknown, interesting and potentially relevant
pieces of information around a certain topic can help to find a focus, induce new ideas,
or support creative thinking. In [11,18] these pieces of information are described as do-
main bridging associations, or bisociations. The underlying data is thereby organized
in a bisociative network or BisoNet, consisting of units of information and their rela-
tions [6,17]. A bisociation pattern based on the structural similarity of two subgraphs
from different knowledge domains is defined in [17,18].

In contrast to nodes of bisociations based on bridging concepts and bridging graphs,
nodes of bisociations based on structural similarity do not necessarily have to be po-
sitioned close to each other. These patterns of bisociation link domains, which may
not have any direct connections by means of the abstract concepts they have in com-
mon, are represented by the structure of their node neighborhood. A prodrug that passes
the blood-brain barrier by carrier-mediated transport, and soldiers who pass the gate
of Troy hidden in a wooden horse are examples of the kind of bisociation, described
in [18]. Both the prodrug as well as the soldiers cannot pass the barrier or gate without
the help of a carrier. The abstract concept of using a carrier in order to pass a barrier
is represented by the structure of the corresponding subgraph. Finding nodes that are
structurally similar to a query node, extracting densely connected, direct and indirect
neighbor nodes, and comparing these subgraphs can lead to the discovery of structural
bisociations.

Therefore two different kinds of node similarities can be used, structural and spatial
similarity. We propose two methods to derive these two kinds of similarities between
nodes in a graph from spreading activation processes. The first method is based on the
comparison of activation vectors, yielding a spatial similarity. The second method is
based on the comparison of change of activation, the velocity, yielding a structural sim-
ilarity. The focus of this article is the definition and explanation of these two similarities
and their application to a real world dataset in order to estimate their suitability.

The article is organized as follows. The next section concerns related work about
spreading activation and node similarities. Section 3 defines the preliminaries of spread-
ing activation processes on graphs and the underlying framework. The concept of sig-
nature vectors, which can be derived from spreading activation processes to represent
nodes is introduced in Section 4. In Section 5 we introduce two kinds of node similar-
ities based on the comparison of activation vectors and signature vectors. This is fol-
lowed by Section 6, which describes the application of these similarities on the Schools-
Wikipedia1 (2008/09) data. Finally Section 7 concludes the article.

1 http://schools-wikipedia.org/

http://schools-wikipedia.org/
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2 Related Work

In the field of graph analysis different kinds of node equivalences, especially in the
context of role assignments have been made [8]. Thereby nodes can be considered
equivalent based on different properties, such as neighborhood identity, neighborhood
equivalence, automorphic mapping, equal role assignments to neighboring nodes, and
others. Networks from real world data are usually noisy and irregular, which makes
finding equivalent nodes unlikely. Thus a relaxed notion of equivalence, in the sense
that nodes are defined similarly to a certain extent, based on certain properties, is useful
for a robust comparison of nodes [20].

Approaches which are conceptually similar to the comparison of activation pattern of
nodes, from spreading activation processes are given in [22,23,19]. These approaches,
like spreading activation, base on an iterative process, consider nodes to be more similar
the more their direct and indirect neighborhood overlaps. The aim of these approaches
is to detect dense clusters and communities. Since they also take into account an overlap
of indirect node neighborhoods as well, they are more robust than measures comparing
only the direct neighborhoods, such as e.g. the Jaccard index [14].

Each of these approaches suffers from different drawbacks. In [22] the characteris-
tic node vectors of the corresponding normalized adjacency matrix are projected onto
a lower dimensional space. Then the values of the projected vectors of each node are
replaced iteratively by the mean of their neighbor values. Due to the projection into a
lower dimensional space, information can get missing. In [23] node distances are deter-
mined, based on random walks, which are iterative processes as well. Nodes are similar
if the probability of reaching other nodes in a specified number of iterations is simi-
lar. Here only walks of a certain length are considered when computing the distances.
However, a more general variant of the algorithm considers walks of different lengths
as well. Taking into account all computed iterations, as in [19] may yield to higher ac-
curacy. In [19] all iteration results are accumulated with a decay to decrease the impact
of the global node neighborhood. Since the accumulated and normalized activation val-
ues are used as similarities the method may yield asymmetric similarities on directed
graphs.

In our approach we compare the computed activation pattern by means of a well
known similarity measure, the cosine similarity, yielding symmetric values. Thus our
method can be applied to directed graphs as well. We do not use a lower dimensional
node representation by means of a projection into a lower dimensional space and hence
may not lose information. We consider all iteration results up to a maximal number of
iterations and not only walks of a certain length.

Additionally we propose a second node similarity derived from the comparison of ac-
tivation changes in each iteration. Based on this method nodes are similar if the structure
of their neighborhood is similar, although the neighborhood does not need to overlap at
all. This yields a completely different similarity compared to those mentioned above.

Originally spreading activation was proposed by Quillian [24,25] and Collins et
al. [9] to query information networks. The method facilitates the extraction of sub-
graphs, nodes and edges directly and indirectly related to a given query. Initially the
nodes representing the query are activated. The activation is than spread iteratively to



Node Similarities from Spreading Activation 249

adjacent nodes, which are activated with a certain level as well until a termination cri-
terion is reached or the process converges. The subset of activated nodes, their level
of activation, as well as the induced subgraph compose the final result. The level of
activation of nodes is often used as relevancy heuristic.

Spreading activation has been applied in many fields of research from seman-
tic networks [25], associative retrieval [27], to psychology [9,1,2], information re-
trieval [26,4,10,3] and others [13,28,21,16,12]. Most of these approaches use a set of
common heuristic constraints [10] in order to restrict the dynamics of the process, such
as distance constraints to terminate the process after a certain number of iterations, or
fan out constraints to avoid excessive spreading. In [5] it is shown that pure (constraint
free) spreading activation with a linear activation function on a connected and not bi-
partite graph always converges to the principal eigenvector of the adjacency matrix of
the graph.

Usually the level of activation itself, which is sometimes normalized or accumulated
over the iterations, represents the relevancy or similarity of nodes to a given query. We
propose the comparison of (accumulated) activation patterns, as well as the change of
activation patterns to determine similarities between nodes of the underlying network.

In the next section the preliminaries of spreading activation and its framework, that
we use in this work are defined.

3 Spreading Activation

Activation is spread on a graph G = (V,E,w), with V as the set of nodes V =
{1, . . . , n}, E ⊆ V × V as the set of edges and w(u, v) as the weight of the edge
connecting u and v, with u, v ∈ V , w(u, v) = 0 if (u, v) /∈ E. For an ease of exposi-
tion we assume that the graph G is undirected, however our results easily generalize to
directed graphs. The activation state at a certain time k is denoted by a(k) ∈ R

n with
a
(k)
v as the activation of node v ∈ V . Each state a(k) with k > 0 is obtained from the

previous state a(k−1) by the three families of functions described below.

– Input function: combines the incoming activation from adjacent nodes.
– Activation function: determines the state of activation based on the incoming acti-

vation.
– Output function: determines the outgoing activation based on the current activation.

The initial state a(0) defines the activation of nodes representing the query. In each
iteration activation is spread to adjacent nodes activating them with a certain level as
well. The process is usually terminated after a certain number of iterations, activated
nodes or convergence.

3.1 Linear Standard Scenario

In our approach we use a linear standard scenario described in [5] for which conver-
gence is shown for non-bipartite connected graphs. The input, activation, and output
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function can be combined to one function. Given a graph G = (V,E,w) and an activa-
tion state a(k−1) at time k − 1, the activation of a certain node v at time k is defined by

a(k)v =
∑

u∈N(v)

w(u, v) · a(k−1)
u , ∀v ∈ V , (1)

with N(v) = {u | {u, v} ∈ E} as the set of neighbors of v. Furthermore the spreading
activation process can be described in matrix notation. With W ∈ R

n×n as the weight
matrix defined by (W )uv = w(u, v) a single iteration can be stated as a(k) = Wa(k−1)

leading to
a(k) = W ka(0) . (2)

Note that this holds for undirected graphs only. In general an iteration can be stated as
a(k) = (WT )ka(0), holding for directed graphs as well. In order to prevent the activa-
tion values from increasing heavily or vanishing, the activation vector is normalized by
its Euclidean length after each iteration.

a(k) =
W ka(0)∥∥W ka(0)

∥∥ . (3)

Rescaling does not change the direction of the activation vector, so convergence to the
principal eigenvector v1 of W is still ensured since lim

k→∞
a(k) = v1

‖v1‖ .

4 Node Signatures

Convergence of the spreading activation process yields to query independent results. No
matter from which node(s) spreading processes have been started initially, the activation
state becomes equal after a sufficient number of iterations. From iteration to iteration,
activation vectors change their directions towards the direction of the principal eigen-
vector of the weight matrix W . How quickly a process converges can be described by
its velocity and depends on the node(s) from which it was started. For each node the
corresponding convergence speed can be determined and represented as a vector, called
signature vector.

The velocity represents the change of direction of activation patterns between each
subsequent iterations. A velocity vector at time k of a spreading process started at v ∈ V
is defined as

δ(k)(v) =

{
0 , if k = 0

a(k)(v)− a(k−1)(v) , else
, (4)

with 0 as a vector of all 0 and a(k)(v) as the activation vector at iteration k of a spreading
process started at node v, whereas

a
(0)
i (v) =

{
1 , if i = v
0 , else

,

for all i ∈ V . A norm of a velocity vector represents the amount of change, the step size
of the process towards the principal eigenvector of the adjacency matrix. In this work
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we use the l2 norm as step size ‖·‖. Based on the step sizes of each iteration k up to
a maximum number of iterations kmax, with 0 ≤ k ≤ kmax, the signature vector of
each node is defined. This vector provides information about the convergence speed of
a spreading process, starting from a certain node v and is defined as

τk(v) =
∥∥∥δ(k)(v)

∥∥∥ , (5)

with τ(v) ∈ R
kmax .

5 Node Similarities

Two kinds of node similarities can be derived based on the comparison of activation
and convergence behaviors of spreading activation processes starting from each node.
On the one hand nodes can be considered similar if their activation vectors are similar
(activation similarity). On the other hand nodes can be considered similar if the change
of activation from one iteration to another is similar (signature similarity).

These two kinds of similarities compare nodes based on two different properties,
(direct and indirect) neighborhood overlap or neighborhood similarity. A neighborhood
overlap between two nodes means that a part of the neighborhood of these two nodes is
identical. This consequently means, the larger the overlap the closer the nodes are in the
graph. This property yields a spatial similarity measure and is taken into account when
activation vectors are compared (activation similarity). A neighborhood similarity of
two nodes means that their neighborhood is structurally equivalent to a certain degree
but not necessarily identical [20], which can be determined when comparing the change
of activation vectors (signature similarity). This property yields a structural similarity
measure.

Two node partitionings based on these two different properties are illustrated in
Figure 1. The partitioning is indicated by the shading of the nodes. Nodes with the same
shade are considered maximally similar (with a similarity value of 1) w.r.t. an equiva-
lent (Figure 1a) or identical (Figure 1b) neighborhood. In Figure 1a the white as well as
the black nodes are structurally equivalent since they are automorphic images of each
other [8]. In Figure 1b the leaf nodes {4, 5, 6, 7}, {8, 9, 10, 11} and {12, 13, 14, 15} are
the most similar nodes, due to their identical neighborhood, depicted by the shading
gray, black, and white. Even if the leaf nodes are structurally equivalent only those with
an identical neighborhood are highly similar. Furthermore the three nodes in the middle
{1, 2, 3} are not equal based on the comparison of their neighborhood. Node 3 is more
similar to {12, 13, 14, 15} than to 1 or 2 when comparing their pattern of activation.

The two different similarity measures derived from spreading activation processes
allow on the one hand for the identification of structurally similar nodes to a given
query node, even if they are located far apart in the graph via the signature similarity.
On the other hand a densely connected subgraph of direct and indirect neighbors can
be extracted for each node applying the activation similarity measure. In the following,
these two node similarities are formalized and described in detail.
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Fig. 1. Two node partitionings, indicated by the shading based on two different node properties,
equivalent and identical neighborhood. In 1a the white nodes are structurally equivalent as well as
the black nodes, which can be determined by the comparison of the signature vectors (signature
similarity). In 1b the leaf nodes are divided into three partitions white, gray, and black, since their
neighborhood is only partially identical. In addition node 3 is more similar to the white nodes,
node 2 to the black nodes, and node 1 to the gray nodes than to others, which can be determined
by the comparison of the accumulated activation vectors (activation similarity).

5.1 Activation Similarity

The first similarity described is based on the comparison of activation vectors and
named activation similarity. The sequence of activation states of a spreading process
started from a certain node describes the node relative to its local and global neighbor-
hood in the graph. Dependent on its neighborhood many or few nodes will be activated
and activation will spread fast or slow. Nodes close to the initially activated node will
get activated sooner than nodes further apart from this node. Furthermore nodes will get
activated to a higher level, at least in the primary iterations, if many walks of different
lengths exist, connecting these nodes with the initially activated node. Nodes that are
similarly connected to a shared neighborhood will induce similar activation states.

The level of activation a
(k)
i (v) of a node i ∈ V at a time k, induced by a spreading

process started at node v, reflects the reachability of i from node v along (weighted)
connecting walks of length k. The more (highly weighted) walks of length k exist con-
necting i and v, the higher the level of activation. A query node u inducing a similar
level of activation a

(k)
i (u) at node i at iteration k is consequently similarly connected

to i along (weighted) connecting walks of length k.
Comparing the activation pattern of iterations k ≥ 1 allows for the determination of

the direct and indirect neighborhood overlap of nodes, whereas measures like the cosine
similarity

σcos(u, v) =
|N(u) ∩N(v)|√|N(u)| |N(v)|
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or Jaccard index [14]

σjaccard(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

based on the characteristic vectors of nodes allow for a comparison of the direct node
neighborhood only. Figure 2 depicts a graph for which the cosine node similarities
have been computed and indicated by the node shading. The nodes 1 and 3 have a
cosine similarity of 1, since their direct neighborhood (node 2) is identical. The nodes
1 and 2 have a similarity of 0, as well as nodes 2 and 3. Although they are direct
neighbors, the related similarity is 0 since the particular direct neighborhoods do not
overlap. Consideration of the indirect neighborhood via connecting walks of lengths
greater than 1 (k > 1) by applying activation similarity (with 5 iterations) still yields
a similarity of 1 for nodes 1 and 3 due to their identical neighborhood, but a similarity
greater than 0 for nodes 1 and 2 as well as for nodes 2 and 3. For the detection of dense
subgraphs, comparison of the direct node neighborhoods only is too strict. Not all of
the nodes in a dense subregion necessarily share a direct neighborhood. Taking into
account the indirect k-neighborhoods yields a more robust similarity measure.

���

Fig. 2. Nodes 1 and 3 (white) have a cosine node similarity of 1, since their direct neighborhood
is identical. Although nodes 1 and 2, as well as 2 and 3 are direct neighbors their cosine similarity
is 0 since their direct neighborhood is not overlapping.

In [23] it is stated that in terms of random walks of length k starting from a node v
the probability is high for other nodes to be reached if they are located in the same dense
subgraph or community as node v. For an additional node u, the probability of reaching
these nodes is high as well if it is located in the same community. Since random walks
are driven by power iterations of the transition matrix of a graph they can be seen as
spreading activation processes on a normalized weight matrix.

Considering not only walks of a certain length k as in [23] but all connecting walks
of different lengths as in [19] provides a more detailed representation of the local and
global neighborhood of a node. Accumulating all activation vectors a(k)(v) from a
spreading process starting from v with a decay α results in a final activation vector
a∗(v) defined by

a∗(v) =
kmax∑

k=1

αka(k)(v) (6)

with 0 < α < 1. The decay α decreases the impact of longer walks and ensures
convergence for kmax → ∞ for l2 normalized systems [5]. It is reasonable to decrease
the contribution of longer walks in order to keep more information about the local
neighborhood of v. The above mentioned form is closely related to the centrality index
of Katz [15]. We do not want to let the series fully converge since activation vectors
of latter iterations do not contribute much to the final activation based on the decay α,
and become more and more similar due to convergence of the spreading processes. We



254 K. Thiel and M.R. Berthold

chose kmax based on the convergence behavior of the underlying graph as well as the
decay factor α.

Before a similarity on the final activation vectors is defined it needs to be considered
that nodes with very high degrees will be activated to a higher level. They are more
likely to be reached even if they are not located in the same dense region as the node
from which activation has spread initially. To take this into account we normalize, re-
lated to [23], the final activation by the degree of the corresponding node. The degree
normalized final activation vector is thereby denoted as

â∗(v) = D− 1
2a∗(v) = D− 1

2

(
kmax∑

k=1

αka(k)(v)

)
(7)

with D as the (weighted) degree matrix defined by (D)ii = d(i), (D)ij = 0 for i �=
j, ∀i and d(i) =

n∑
j=1

(W )ij . Based on these normalized final activation vectors we define

the activation similarity between two nodes u and v

σact(u, v) = cos(â∗(v), â∗(u)) (8)

=
〈â∗(u), â∗(v)〉
‖â∗(u)‖ ‖â∗(v)‖

=

n∑
i=1

a∗i (u)a
∗
i (v)d(i)

−1

‖â∗(u)‖ ‖â∗(v)‖ ,

with 〈x,y〉 as the inner product between vectors x,y ∈ R
n. The more nodes are simi-

larly activated in both spreading processes, one starting at node u and one at v, the more
similar u and v are. This measure allows for a detection of dense communities and re-
quires a direct and indirect neighborhood overlap, as can be seen in Figure 1b. Node 1
is more similar to {4, 5, 6, 7} than to 2 or 3 even if 1 is automorphically equivalent to 2
and 3. In [20] this kind of node similarity is categorized as closeness similarity.

The computation of node similarities proposed in [19] can be seen in terms of spread-
ing activation as well. The accumulated and normalized activation values themselves
represent the similarities between the activated nodes and the node at which the spread-
ing process started. As stated, their method is applicable only on undirected graphs. For
directed graphs the activation values are not necessarily symmetric, yielding asymmet-
ric similarities.

5.2 Signature Similarity

The second similarity is based on the comparison of the amount of activation changes
during spreading activation processes and named signature similarity. For each node a
signature vector can be determined, consisting of velocity vector norms (see Section 4).
The direction of the velocity vectors represent the change of direction of the activation
patterns and their norms represent the step size between subsequent iterations towards
the principal eigenvector of the weight matrix W . By the comparison of the signature
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vectors a structural similarity can be derived. In this work we use the cosine measure to
compare the signature vectors, thus the signature similarity is denoted as

σsig(u, v) = cos(τ(u), τ(v)) (9)

=
〈τ(u), τ(v)〉
‖τ(u)‖ ‖τ(v)‖

=

kmax∑
k=1

∥∥δ(k)(u)
∥∥ ∥∥δ(k)(v)

∥∥

‖τ(u)‖ ‖τ(v)‖ .

Nodes that are similar due to the activation similarity have to be close to each other
in the graph, since the same direct and indirect neighbor nodes need to be activated
similarly. The signature similarity is not based on the activation pattern itself but on the
amount of change of these patterns. If the structure of the neighborhood of two nodes
is similar, the change of activation will be similar too, and thus the signature similarity
will yield higher values as if the structure is different.

A similar step size between two subsequent iterations yields from a similar structure,
i.e. the nodes {1, 2, 3} (black) of Figure 1a are not distinguishable by their signature
vectors, since they are automorphic images from each other. Whereas the activation
vectors of these nodes are different, as well as the corresponding velocity vectors, the
amount of change of direction of the activation vectors in each iteration is equal. Nodes
do not necessarily have to be located in the same densely connected region to have
a high signature similarity. This makes the signature similarity not a closeness but a
structural similarity measure. Nodes with a structurally similar neighborhood have a
high signature similarity even if they are located far apart from each other. An over-
lapping neighborhood is thereby not necessary, which can be seen in Figure 1a, where
all the leaf nodes (white) have a signature similarity value of 1, even if their direct
neighborhood is not overlapping at all.

6 Experiments

To demonstrate our approach we apply the two kinds of node similarities to the Schools-
Wikipedia2 (2008/09) dataset. The first aim is to find result nodes that are structurally
similar to given query nodes by using the signature similarity. Secondly we want to find
nodes that are closely connected (directly or indirectly) to the query nodes or interesting
result nodes, respectively, using the activation similarity, and extract the corresponding
subgraphs. Since the extraction of communities is not the aim of this work we do not fo-
cus on this issue. Instead we consider the induced subgraph of the k most similar nodes
based on the activation similarity according to a query node, as dense local neighbor-
hood, or community of that query.

Once structurally similar nodes have been detected and the corresponding commu-
nities have been extracted and illustrated by means of centrality layouts, we manually
compare these subgraphs in order to find structural coherences. We are thereby inter-
ested in the status or rank of the result nodes in their community and the most central

2 http://schools-wikipedia.org/

http://schools-wikipedia.org/
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nodes. Our assumption is that the communities of the result nodes are similar, in these
terms, to the community of the query node.

6.1 Schools-Wikipedia

The Schools-Wikipedia (2008/09) dataset consists of a subset of the English Wikipedia3

dataset, with around 5500 articles. The articles are grouped into 154 different categories,
consisting of 16 main or top-level categories, where each article is assigned to at least
one category. As in Wikipedia, articles can reference other articles via hyperlinks. In
Schools-Wikipedia external links have been filtered.

To create the graph, each article is considered as a unit of information and modeled
as a node. Each hyperlink that connects articles is considered as a relation between two
units of information and represented as an undirected edge connecting the correspond-
ing nodes. The resulting graph consists of four connected components, whereas three
of the components consist only of one node and are also filtered. Convergence of all
spreading activation processes on the filtered graph is ensured by connectedness, non-
bipartiteness and undirectedness. Table 1 lists some basic properties of the remaining
graph.

Table 1. Basic graph properties of the filtered Schools-Wikipedia graph

Schools-Wikipedia graph properties
Number of nodes 5536
Number of edges 190149
Minimal node degree 1
Maximal node degree 2069
Average node degree 68.7
Diameter 5

We applied spreading activation processes as described in Section 3 to the graph, in
order to compute the activation and signature similarities between all nodes, defined
in Section 5. Since the spreading activation processes converge quickly due to the un-
derlying graph structure, indicated e.g. by the small diameter, we only computed the
first 10 iterations of each spreading process to compute the similarities. Concerning the
activation similarity we used a decay value of α = 0.3 to compute the accumulated
activation vectors in order to focus on the local neighborhood of nodes. The choice of
parameters is not discussed in this work. Here it is sufficient to mention that further
iterations (> 10) do not contribute significantly to both similarities due to the small
decay as well as the small diameter and thus fast convergence.

In our experiment we wanted to find well-known, scholarly persons from different
areas of research, which play similar roles in their communities. Our focus is on well-
known people, since the results can be reasonably evaluated based on general knowl-
edge. The query consists of the node of the well-known Italian physicist Galileo Galilei.

3 http://en.wikipedia.org/wiki/Main_Page

http://en.wikipedia.org/wiki/Main_Page
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To find the structurally most similar persons, all nodes, which are assigned to the Peo-
ple category are sorted based on their corresponding signature similarity to the query.
Since we focused only on people with a similar structural position, we filtered out all
nodes not belonging to the People category. Additionally we were interested in the
nodes belonging to the community around Galileo Galilei. Therefore we considered all
nodes, not only those assigned to the People category and sorted them according to their
activation similarity to the query. Table 2 lists the 10 most similar nodes, as well as
the 16th and 17th nodes of the People category, based on the signature similarity,
and the 10 most similar nodes, as well as the 16th and 17th nodes of all categories
based on the activation similarity, compared to Galileo Galilei.

Table 2. 10 most similar nodes to Galileo Galilei and the 16th and 17th nodes; left assigned to the
People category, based on the signature similarity; right of all categories, based on the activation
similarity.

Galileo Galilei
Rank Signature similarity Activation Similarity
1 Galileo Galilei Galileo Galilei
2 Isaac Newton Johannes Kepler
3 Johannes Kepler Heliocentrism
4 Aristotle Nicolaus Copernicus
5 Leonhard Euler Isaac Newton
6 Mary II of England Phil. Nat. Principa Mathematica
7 James Clerk Maxwell Kepler’s laws of planetary motion
8 Anne of Great Britain Classical mechanics
9 James I of England History of physics
10 Henry VII of England Astronomy
...

...
...

16 Plato Newton’s laws of motion
17 Euclid General relativity

It can be seen that Galileo himself is the most similar node, which makes sense in
terms of the cosine similarity used on activation and signature vectors. Nodes such as
Heliocentrism, Astronomy, History of physics, etc. are part of his closer community,
reasonably, since he worked primarily in these fields and played a major role in them.
Among others Galileo is called “the father of modern physics”. Other important sci-
entists who played a major role in these areas as well, such as Nicolaus Copernicus,
Johannes Kepler, and Isaac Newton are also part of his community.

On inspecting the structurally similar nodes, the names Plato and Euclid attract our
attention; they are the 16th and 17th structurally most similar nodes of the People cat-
egory. Both men played a major role in their areas of research too, philosophy and
mathematics, respectively, which are different to those of Galileo. Plato contributed
significantly to the foundations of Western philosophy and Euclid is said to be the “fa-
ther of geometry”. Newton and Kepler, have a high signature similarity as well and
played - like Galilei - a major role in their areas of research too. However, their areas of
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Fig. 3. The subgraph of the 30 most similar nodes to Galileo Galilei based on activation similarity.
The used layout is a centrality layout, based on eigenvector centrality.

research do not differ to Galilei’s as much as those of Plato and Euclid do. In terms of
structural bisociations, structurally similar nodes, that represent units of information in
unrelated fields of knowledge are potentially more interesting, than those in the same
or similar fields. As a result of this fact and due to their high degree of popularity, Plato
and Euclid were chosen in order to compare their communities.

We extracted the induced subgraphs of their communities consisting of the 30 most
similar nodes based on the corresponding activation similarities. We used 30 nodes,
since the subgraphs of this size can be visualized in a reasonable manner and both struc-
tural similarities as well as differences can be shown. Figure 3 shows the community
around Galileo, Figure 4a that around Plato and Figure 4b that around Euclid.

Nodes are represented as circles, whereas the corresponding size and the size of
the label is proportional to their degree. The nodes of the corresponding persons are
emphasized by dark gray; their direct neighbors are light gray and all other nodes white.
The layout of all graphs is a centrality layout based on eigenvector centrality [7]. The
eigenvector centrality is, like other centrality indices, a measure to quantify the status of
nodes in a graph. The higher the value compared to others, the more central or important
the node, and the more central its position in the visualization. In contrast, the lower the
value, the lower its status or importance and the more peripherical the position.
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Fig. 4. Two subgraphs of the 30 most similar nodes to Plato (4a) and Euclid (4b), based on the
activation similarity. The used layout is a centrality layout, based on the eigenvector centrality.

It can be seen that Galileo, Plato, and Euclid are connected to most of the nodes of
their communities. Galileo has 23 direct neighbors, Plato 22 and Euclid 21. Their neigh-
borhoods can roughly be partitioned into three semantic groups: the fields they worked
in, topics and issues important in these particular fields and other important persons
who contributed significantly to these fields as well. In the case of Galileo, the fields of
research are Physics, Astronomy, Classical mechanics etc. Important topics and issues
in these fields are e.g. Gravitation, Mass, and Force and other important persons who
worked in these fields are e.g. Nicolaus Copernicus, Isaac Newton or Johannes Kepler.
In the case of Plato, the fields of research are Philosophy and Philosophy of mind. Im-
portant topics are e.g. Emotion and Logic and other important persons are Aristotle and
Socrates. In the case of Euclid, the fields of research are Mathematics and Euclidean
geometry. Important issues are e.g. Angle and Triangle and other important persons
are Pythagoras and David Hilbert. Even if Galileo, Plato, and Euclid are directly con-
nected to most of the nodes in their community, the most central nodes are, however the
fields for which (among others) they are famous for: History of physics, Philosophy,
and Mathematics. Nevertheless their status is very central compared to all other nodes
in the corresponding communities.

In all three subgraphs there exist other nodes with a similar centrality. In Galiliei’s
community these nodes are Isaac Newton, Johannes Kepler, Physics, Astronomy, and
Gravitation, in Plato’s Aristotle, and Anchient Greece and in Euclid’s Geometry, Eu-
clids Elements, and History of mathematics. All of these nodes, except Euclids Elements
and Gravitation have a high signature similarity according to Galilei, even though some
nodes, such as Aristotle are not part of his community and thus do not have a high de-
gree of activation similarity. However, the signature similarity of Euclids Elements and
Gravitation is also not very low. The nodes are part of the 270 most similar nodes of
all categories. Additionally it can be seen that in the case of Galileo and Plato, there
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Fig. 5. The subgraph of the 30 most similar nodes to Pinworm, based on the activation similarity.
The used layout is a centrality layout, based on the eigenvector centrality.

is one slightly more central node in the People category: Isaac Newton and Aristotle,
respectively. In all three communities the most peripheric nodes are not connected to
Galileo, Plato and Euclid.

In a nutshell, structural coherences of nodes with high signature similarity and their
corresponding communities can be seen based on various aspects, such as their own
status or centrality and those of other nodes, their connectedness, their degree as well
as the density of their community, etc.

On the one hand very similar nodes to a certain query, based on signature similarity,
are interesting to show structural coherences. On the other, very dissimilar nodes are
also interesting to show structural differences. The most dissimilar node to Galileo is
Pinworm. Again we extracted the 30 nodes most similar to Pinworm, based on acti-
vation similarity, and illustrated the induced subgraph in Figure 5 using the centrality
layout.

Nodes are represented as circles, whereas size and labelsize are proportional to their
degree, up to a certain maximum size. The Pinworm node is emphasized by dark gray,
its direct neighbors are light gray and all other nodes white. The structural differences
of the Pinworm node as well as its community can be seen clearly. Pinworm has, as
well as almost all other nodes a very peripheric position. Additionally the most central
position is shared by the two nodes Animal and Biological classification, which are
connected to all nodes of the community. In addition the density of the community is
much lower then those of the communities of Galilei, Plato, or Euclid.

7 Conclusion

In this work we have shown how two kinds of similarities to compare nodes in a graph
can be derived from spreading activation processes. The activation similarity is based
on the comparison of accumulated activation vectors and yields a spatial or closeness
similarity. The signature similarity is based on the comparison of norms of velocity
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vectors and yields a structural similarity. By applying both kinds of similarities we can
find structurally similar nodes on the one hand, which are not necessarily located close
together, and dense subgraphs or communities around nodes on the other. We applied
this procedure to the Schools-Wikipedia (2008/09) dataset and preliminary results are
very encouraging: the nodes of Euclid, and Plato for example, are structurally similar to
that of Galileo Galilei. By comparing their communities structural similarity was able
to be confirmed manually. The experiments suggested that the combination of these
two kinds of similarities is a promising tool in terms of identification and extraction of
structural bisociations.

Open Access. This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are credited.
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