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Abstract Starting from the Oppenheimer–Snyder model,
we know how in classical general relativity the gravitational
collapse of matter forms a black hole with a central space-
time singularity. It is widely believed that the singularity
must be removed by quantum-gravity effects. Some static
quantum-inspired singularity-free black hole solutions have
been proposed in the literature, but when one considers sim-
ple examples of gravitational collapse the classical singular-
ity is replaced by a bounce, after which the collapsing matter
expands for ever. We may expect three possible explanations:
(i) the static regular black hole solutions are not physical, in
the sense that they cannot be realized in Nature, (ii) the final
product of the collapse is not unique, but it depends on the ini-
tial conditions, or (iii) boundary effects play an important role
and our simple models miss important physics. In the latter
case, after proper adjustment, the bouncing solution would
approach the static one. We argue that the “correct answer”
may be related to the appearance of a ghost state in de Sitter
spacetimes with super Planckian mass. Our black holes have
indeed a de Sitter core and the ghost would make these con-
figurations unstable. Therefore we believe that these black
hole static solutions represent the transient phase of a gravi-
tational collapse but never survive as asymptotic states.

1 Introduction

In classical general relativity, under the main assumptions of
the validity of the strong energy condition and of the exis-
tence of global hyperbolicity, the collapse of matter inevitable
produces a singularity of the spacetime [1,2]. At a sin-
gularity, predictability is lost and standard physics breaks
down. According to the weak cosmic censorship conjecture,
spacetime singularities formed from collapse must be hid-
den behind an event horizon and the final product of the
collapse must be a black hole [3]. In 4-dimensional general
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relativity, the only uncharged black hole solution is the Kerr
metric [4,5], which reduces to the Schwarzschild solution in
the spherically symmetric case. The Oppenheimer–Snyder
model is the simplest fully analytic example of gravitational
collapse, describing the contraction of a homogeneous spher-
ically symmetric cloud of dust [6]. It clearly shows how the
collapse produces a spacetime singularity and the final prod-
uct is a Schwarzschild black hole.

In analogy with the appearance of divergent quantities in
other classical theories, it is widely believed that spacetime
singularities are a symptom of the limitations of classical
general relativity, to be removed by quantum-gravity effects.
While we do not have yet any robust and reliable theory
of quantum gravity, the resolution of spacetime singulari-
ties has been investigated in many quantum-gravity inspired
models. Very different approaches have studied corrections to
the Schwarzschild/Kerr solution, finding black hole metrics
in which the curvature invariants are always finite [7–13].1

In the same spirit, one can study the modifications to the
Oppenheimer–Snyder solution and to other models of col-
lapse. In this case, the singularity is replaced by a bounce,
after which the cloud starts expanding [14–18]. It is there-
fore disappointing that the quantum-gravity corrected model
of collapse does not reproduce the quantum-gravity corrected
black hole solution.

In this paper, we want to investigate this apparent contra-
dictory result. First, we determine both the quantum-gravity
corrected static black hole metric and the quantum-gravity
corrected homogeneous collapse solution within the same
theoretical framework, since the ones reported in the liter-
ature come from different models. We find that the prob-
lem indeed exists. Second, we try to figure out the possible
reason. One possibility is that the static regular black hole
spacetimes are ad hoc solutions, but they cannot be created

1 We note that it may also be possible that the quantum corrections
that smooth out the singularity may be intrinsically quantum and not
reducible to the metric form. In such a case, the metric description would
simply break down.
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in a collapse and therefore they are physically irrelevant. The
collapse always produces an object that bounces. Another
possible explanation is that the final product of the collapse
depends on the initial conditions. The collapse of a homoge-
neous cloud creates an object that bounces, while with other
initial conditions (not known at present) the final product is a
static regular black hole. Lastly, it is possible that the simple
homogeneous collapse oversimplifies the model, ingoing and
outgoing energy fluxes between the interior and the exterior
solutions are important, and, after proper readjustment that
seems to be difficult to have under control within an analytic
approach, the collapsing model approaches the static regular
black hole solution. Our quantum-gravity inspired theories
are unitary, super-renormalizable or finite at quantum level,
and there are no extra degrees of freedom at perturbative
level around flat spacetime. This should rule out the possi-
bility that the explanation of our puzzle is due to the fact that
these models may not be consistent descriptions of quan-
tum gravity. However, these theories display a ghost state in
de Sitter spacetime when the cosmological constant exceeds
the square of the Planck mass. This fact may be responsible
for our finding and answers the question in the title of this
paper. Our black holes have indeed a de Sitter core with an
effective cosmological constant larger than the square of the
Planck mass when the black hole mass exceeds the Planck
mass. The presence of a ghost makes the solutions unstable
and therefore they cannot be the final product of the gravita-
tional collapse.

The content of the paper is as follows. In the next sec-
tion, we briefly review the classical homogeneous and spher-
ically symmetric collapse model. In Sect. 3, we derive
the spherically symmetric black hole solutions in a super-
renormalizable and asymptotically free theory of gravity with
the family of form factors proposed by Krasnikov [19] and
Tomboulis [20]. In Sect. 4, we study the spherically symmet-
ric homogeneous collapse in the same models. Summary and
conclusions are in Sect. 5.

2 Black holes and gravitational collapse in classical
general relativity

The most general spherically symmetric metric describing a
collapsing cloud of matter in comoving coordinates is given
by

ds2 = −e2νdt2 + R′2

G
dr2 + R2d�2, (1)

where d�2 represents the line element on the unit two-sphere
and ν, R, and G are functions of t and r . The energy-
momentum tensor is given by

T μ
ν = diag(−ρ(r, t), pr (r, t), pθ (r, t), pθ (r, t)), (2)

and the Einstein equations reduce to

κ2

2
ρ = F ′

R2 R′ , (3)

κ2

2
pr = − Ḟ

R2 Ṙ
, (4)

ν′ = 2
pθ − pr

ρ + pr

R′

R
− p′

r

ρ + pr
, (5)

Ġ = 2
ν′

R′ ṘG, (6)

where the ′ denotes a derivative with respect to r , and the ˙
denotes a derivative with respect to t . The function F(r, t) is
called Misner–Sharp mass and is defined by

F = R(1 − G + e−2ν Ṙ2). (7)

The whole system has a gauge degree of freedom that can be
fixed by setting the scale at a certain time. One usually sets
the area radius R(r, t) to be equal to the comoving radius r at
the initial time ti = 0, i.e. R(r, 0) = r . We can then introduce
a scale factor a

R(r, t) = ra, (8)

which will go from 1, at the initial time, to 0, at the time of
the formation of the singularity. The condition to describe
collapse is ȧ < 0.

For a homogeneous perfect fluid, pr = pθ = p(t).
The simplest case is the gravitational collapse of a cloud of
dust, p = 0, which is the well-known Oppenheimer–Snyder
model [6]. From Eq. (3), we see that F is proportional to the
amount of matter enclosed within the shell labeled by r at the
time t . For dust, from Eq. (4) it follows that F is independent
of t , so there are no inflows and outflows through any spher-
ically symmetric shell of radial coordinate r . If rb denotes
the comoving radial coordinate of the boundary of the cloud,
F(rb) = 2MSch, where MSch is the Schwarzschild mass of
the vacuum exterior. Let us note that in the general case of
a perfect fluid this is not true, and for a non-vanishing pres-
sure the homogeneous spherically symmetric interior must
be matched with a non-vacuum Vaidya exterior spacetime.
Equation (5) reduces to ν′ = 0 and one can always choose the
time gauge in such a way that ν = 0. From Eq. (6), we find
that G is independent of t and we can write G = 1+ f (r). In
the homogeneous marginally bound case (representing par-
ticles that fall from infinity with zero initial velocity), f = 0
and therefore G = 1.

In the homogeneous spherically symmetric gravitational
collapse of a cloud of dust, one finds that the energy density
is given by

ρ(t) = ρ0

a3 , (9)
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where ρ0 is the energy density at the initial time ti = 0, and
the scale factor is

a(t) =
(

1 −
√

3ρ0

2
t

)2/3

. (10)

The model has a strong curvature singularity for a = 0,
which occurs at the time ts = 2/

√
3ρ0, as can be seen from

the divergence of the Kretschmann scalar,

Rμνρσ Rμνρσ = 12
ä2a2 + ȧ4

a4 . (11)

The boundary of the cloud collapses along the curve
R(rb, t) = rba(t) and the whole cloud becomes trapped
inside the event horizon at the time ttr < ts for which
R(rb, ttr) = 2MSch = r3

bρ0/3, so

ttr = ts − 4MSch

3
. (12)

For p �= 0, the exterior solution is not Schwarzschild, but
the Vaidya spacetime, because there is a non-vanishing flux
through the boundary rb and F(rb, t) does depend on time.
In the radiation case, one finds

ρ(t) = ρ0

a4 , (13)

a(t) =
(

1 − 2

√
ρ0

3
t

)1/2

, (14)

where ρ0 is the energy density at the initial time ti = 0 and
the singularity occurs at the time ts = √

3/ρ0/2. Like in the
dust model, the final outcome is a Schwarzschild black hole.
For the generic case of a perfect fluid with equation of state
p = ωρ, the scale factor is (for ω �= −1)

a(t) =
(

1 − t

ts

) 2
3(ω+1)

, (15)

where ts is the time of the formation of the singularity

ts = 2

(ω + 1)
√

3ρ0
. (16)

The time of the formation of the event horizon is still given
by R(rb, ttr) = F(rb, ttr) and occurs before the time ts.

3 Quantum-gravity inspired black holes

We start from the classical Lagrangian of the renormalized
theory in [21],

L = −√−g

{
1

κ2 R − Gμν V −1(−�	) − 1

κ2�	

Rμν

}
, (17)

where �	 = pμ pμ/	2 and we use the signature
(−,+,+,+). The main properties of our theoretical frame-
work are discussed in Appendix A, where we show that the

theories studied in this paper are unitary, super-renormaliz-
able or finite at the quantum level, and there are no extra
degrees of freedom (ghosts or tachyons) in flat spacetime.
We note that we are not considering “local higher derivative
theories of gravity”, but “weakly nonlocal theories of grav-
ity”. Here by nonlocality we mean that we have an operator
with an infinite number of derivatives, while in a local theory
the number of these derivatives would be finite. We use the
term “weakly” because it is only the whole sum that makes
the theory nonlocal. However, the nonlocality is not enough
to have a good theory. We need the propagator to be the stan-
dard one times an entire function without zeros, singularities
or poles in the whole complex plane. In this case, the theory
does not have ghosts by construction, because the residue of
the propagator at the pole is the same as the one of general
relativity. The regularization of the solutions is thus due to the
choice of the form factor and to the absence of interactions at
high energy or, in other words, to asymptotic freedom. More
details can be found in [17]. The equations of motion for the
theory up to terms quadratic in the curvature are

Gμν + O(R2
μν) = κ2

2
V (−�	)Tμν. (18)

The right hand side can be considered as an effective energy-
momentum term, defined by Sμν = V (−�	)Tμν . Within
this approximation, the left hand side is compatible with the
Bianchi identity, so the effective energy-momentum tensor
is conserved,

∇μSμν = ∇μ[V (−�	)Tμν] = 0. (19)

Now we want to solve the field equations for a static and
spherically symmetric source. From the static property, the
four-velocity is uμ = (u0, �0); that is, only the timelike com-
ponent is non-zero, and u0 = (−g00)

−1/2. For simplicity,
we consider a point source. The T 0

0 component is given by
T 0

0 = −M δ(r)

4πr2 = −Mδ3(�x). Spherical or Cartesian-like
coordinates are adopted to make calculations easier. In the
spherically symmetric case, the metric is assumed to have
the Schwarzschild form,

ds2 = −F(r)dt2 + dr2

F(r)
+ r2d�2 (20)

where F(r) is

F(r) = 1 − 2m(r)

r
(21)

and m(r) is the mass enclosed within the radius r .
The effective energy-momentum tensor is defined by

Sμ
ν ≡ V (−�	)T μ

ν = diag(−ρe, pe
r , pe

θ , pe
θ ). (22)
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Fig. 1 Effective energy density as a function of the radial coordinate
for the Krasnikov form factor. Left panel ρe(r) for M = 10 and n = 1
(solid line), 5 (dotted line), and 10 (dashed line). Right panel as in the

left panel for M = 1. The two plots have exactly the same shape and
only differ in the scale of the vertical axis

The S0
0 component can be rewritten as

ρe(�x) = V (−�	)Mδ(3)(�x)

= M
∫

d3k

(2π)3 V

(
− k2

	2

)
ei �k·�x

= M

2π2

∫ ∞

0
k2 sinkr

kr
V

(
− k2

	2

)
dk, (23)

where r = |�x |. This is the representation for the effective
energy density, and, once the form factor is specified, it can be
numerically solved to get ρe(r). The radial integral contains
the term sinkr

kr . If we expand the sine function, we have

ρe(r) = M

2π2

∫ ∞

0
k2V

(
− k2

	2

)
dk + O(r2). (24)

Independently of the choice of the form factor V (z), the lead-
ing term is a constant, which means that at r = 0 we will
always have a positive effective energy density proportional
to the mass M and fully determined by V (z). As long as the
convergence velocity of V (z) is larger than k−3, we are able
to get a finite effective energy density. In classical general
relativity, V (z) = 1 and the result is not finite.

The covariant conservation and the additional condition
gtt = −g−1

rr completely determines Sμν . The Einstein equa-
tions give

dm

dr
= κ2

4
ρer2, (25)

1

F

dF

dr
= 2[m(r) + κ2

4 pe
r r3]

r [r − 2m(r)] , (26)

d pe
r

dr
= − 1

2F

dF

dr
(ρe + pe

r ) + 2

r
(pe

θ − pe
r ). (27)

From Eq. (25), we find the mass enclosed in the radius r

m(r) = κ2

4

∫ r

0
dr ′r ′2ρe(r ′). (28)

At r = 0, m = 0, and F = 1. For r → ∞, m is a constant
and F(r) → 1. We have thus solutions with two or more
horizons. Moreover, at r = 0 a constant energy density gives
a de Sitter spacetime, independently of the choice of the form
factor. Here the effective cosmological constant is of order
κ2 M	3 and this, as argued at the end of this paper, may be
the key ingredient of the answer to our question.

We now consider two specific form factors, proposed,
respectively, by Krasnikov [19] and by Tomboulis [20]:

V (z) = e−|z|n , (29)

V (z) = e− 1
2 [γE +(0,pγ+1(z)2)+ln pγ+1(z)2]. (30)

Here pγ+1(z) is a polynomial of order γ + 1. The super-
renormalizability of the theory requires γ ≥ 3 and in what
follows we will only consider the minimal renormalizable
theory with γ = 3. In the low energy limit, z ≡ −�	 → 0,
and to recover general relativity we need V (z) → 1. So
pγ+1(0) = 0. Moreover, we should expect deviations from
general relativity when z �= 0, so for any z > 0 we have
pγ+1(z) �= 0. This argument is in accordance with the restric-
tion for pγ+1(z). We can therefore consider three cases:
pγ+1(z) = z4, and pγ+1(z) = z4 ± 6z3 + 10z2. The lat-
ter two cases are taken as a generalization of the first one.

Figure 1 shows ρe(r) obtained from the numerical inte-
gration of Eq. (23) with the Krasnikov form factor and
n = 1, 5, 10. The left panel is for M = 10, the right panel for
M = 1. Since ρe(r) ∝ M , if we change M we change the
scale, without altering the shape of ρe(r). For n ≥ 2, ρe is not
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Fig. 2 F as a function of the radial coordinate for the Krasnikov form
factor. Left panel F(r) for M = 10 and n = 1 (solid line), 5 (dotted
line), and 10 (dashed line). The three curves cross at least two times the

F = 0 axis and therefore every black hole has at least two horizons.
Right panel as in the left panel for M = 1. These configurations have
no horizon as a consequence of the small mass
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Fig. 3 Effective energy density as a function of the radial coordinate for the Tomboulis form factor. Left panel ρe(r) for M = 10 and pγ+1(z) = z4

(solid line) and z4 + 6z3 + 10z2 (dashed line). Right panel ρe(r) for M = 10 and pγ+1(z) = z4 (solid line) and z4 − 6z3 + 10z2 (dashed line)

monotonic and can assume negative values. Because of that,
it is possible to have more than two horizons. These plots
show also that the effective energy density ρe approaches a
finite value for r → 0. Figure 2 shows the corresponding
F(r) functions. For M = 10, we find at least two horizons,
while for M = 1 there is no horizon. For a large n, the oscil-
lations of ρe are stronger and therefore it is possible to form
more than two horizons. However, this multi-horizon situa-
tion only exists when M ∼ 10 and n is large. For instance,
we found that there are just two horizons when M = 100
and n = 10.

Figures 3 and 4 are for the Tomboulis form factor. Fig-
ure 3 shows the effective energy density ρe(r): like for the
Krasnikov form factor, ρe is finite for r = 0 and it has an
oscillatory behavior near ρe = 0, so that it can be negative at
some radii. Figure 4 shows the function F(r). For M = 10

we have two horizons, while there is no horizon when M = 1.
The choice of pγ+1(z) mainly affects the region r < 2M .

4 Nonlocal gravity inspired collapse

Now we want to find the quantum-gravity corrected solution
of the gravitational collapse for a homogeneous and spher-
ically symmetric cloud. The scale factor a(t) is determined
through the propagator approach. We first write the metric as
a flat Minkowski background plus a fluctuation hμν ,

gμν = ημν + κ hμν,

ds2 = −dt2 + a(t)2dxi dx jδi j , (31)

where ημν = diag(−1, 1, 1, 1). The conformal scale factor
a(t) and the fluctuation hμν(t, �x) are related:

123



96 Page 6 of 13 Eur. Phys. J. C (2015) 75 :96

0 10 20 30 40 50
8

6

4

2

0

r

F
r

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

r

F
r

Fig. 4 F as a function of the radial coordinate for the Tomboulis form
factor. Left panel F(r) for M = 10 and pγ+1(z) = z4 (solid line),
z4 + 6z3 + 10z2 (dotted line), and z4 − 6z3 + 10z2 (dashed line). The

three curves cross two times the F = 0 axis and therefore every black
hole has two horizons. Right panel as in the left panel for M = 1. These
configurations have no horizon as a consequence of the small mass

a2(t) = 1 − κh(t),

h(t = −t0) = 0,

gμν(t = −t0) = ημν,

hμν(t, �x) = −h(t) diag(0, δi j ) ≡ −h(t) Iμν. (32)

After a gauge transformation, we can rewrite the fluctuation
in the usual harmonic gauge,

hμν(x) → h′
μν(x) = hμν(x) + ∂μξν + ∂νξμ,

ξμ(t) = 3κ

2

(∫ t

0
h(t ′)dt ′, 0, 0, 0

)
. (33)

The fluctuation now reads

h′
μν(t, �x) = h(t) diag(3,−δi j ),

h′μ
μ (t, �x) = −6h(t). (34)

We can then switch to the standard gravitational “barred”
field h̄′

μν defined by

h̄′
μν = h′

μν − 1

2
ημν h′ λ

λ = 2h(t) Iμν, (35)

satisfying ∂μh̄′
μν = 0. The Fourier transform of h̄′

μν is

˜̄h′
μν(E, �p) = 2h̃(E)(2π)3δ3( �p) Iμν. (36)

The classical solution for the homogeneous and spher-
ically symmetric gravitational collapse is known. We can
thus compute the Fourier transform h̃(E) defined in (36).
For ω �= −1, we have

h̃(E) = 2πδ(E)

κ
+

2
(

4
3(ω+1)

+ 1
)

sin
(

π
2

4
3(ω+1)

)

κt
4

3(ω+1)

0 |E | 4
3(ω+1)

+1
. (37)

In the case of radiation and dust, we have

h̃(E) = 2πδ(E)

κ
+ 2

κt0 E2 , (radiation), (38)

h̃(E) = 2πδ(E)

κ
+ 4

( 4
3

)
√

3κt4/3
0 |E |7/3

, (dust). (39)

The gauge independent part of the graviton propagator for the
theory (17) and energy-momentum tensor T̃ ρσ (p) is [21]

O−1
μνρσ (p) = V (p2/	2)

p2

(
P(2)

μνρσ − 1

2
P(0)

μνρσ

)

⇒ h̄′
μν(x) = κ

∫
d4 p

(2π)4 O−1
μνρσ (p)T̃ ρσ (p) ei px , (40)

where P(2)
μνρσ and P(0)

μνρσ are the graviton projectors,

P(2)
μνρσ = 1

2
(θμρθνσ + θμσ θνρ) − 1

3
θμνθρσ ,

P(0)
μνρσ = 1

3
θμνθρσ (41)

and θμν = ημν − kμkν/k2. Therefore

h(t) = κ

∫
d4 p

(2π)4 V

(−p2

	2

)
h̃(E, �p) ei px

= κ

∫
dE

2π
V

(
E2

	2

)
h̃(E)e−i Et , (42)

where

h̃(E, �p) = (2π)3δ3( �p)h̃(E). (43)

If we know the classical solution a(t), we can find the
distribution h̃(E) that provides the correct solution for
V (−p2/	2) = 1. We can then use a different form factor
to find the corresponding quantum-gravity corrected scale
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Fig. 5 Scale factor a(t) (left panel) and energy density ρ(t) (right
panel) for the gravitational collapse of a homogeneous and spherically
symmetric cloud of radiation in the Krasnikov model. The solid line is

for the classical solution and the singularity occurs at the time t = 0
when a = 0. The dotted line is for the Krasnikov model with n = 2,
while the dashed line is for the one with n = 6
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Fig. 6 As in Fig. 5 for the dust case

factor a(t). Here we want to find the solutions for the grav-
itational collapse of a cloud of dust and radiation with the
form factors of Krasnikov and Tomboulis.

Figure 5 shows the scale factor a(t) (left panel) and the
energy density (right panel) for the Krasnikov form factor
with n = 2 and 6 in the case of a cloud of radiation, ω =
1/3. The dust case is shown in Fig. 6. Classically, the scale
factor a(t) monotonically decreases and finally vanishes. The
corresponding energy density ρ(t) therefore diverges at the
time t = 0. In the quantum-gravity corrected picture, we find
a bounce: a(t) reaches a minimum and then start increasing.
Far from the bounce, the classical and the quantum solutions
are similar, while the difference becomes important at high
densities.

The calculations with the Tomboulis form factor turn out
to be significantly more complicated. We thus use the fol-
lowing approximated form factor:

V (z) ≈
⎧⎨
⎩

e− 1
2 pγ+1(z)2 ≈ 1 − 1

2 pγ+1(z)2 if |pγ+1(z)| ≤ 1,

e− γE
2 1

|pγ+1(z)| if |pγ+1(z)| > 1.

(44)

As shown in Fig. 7, such an approximated form factor is
very similar to the exact one, with a tiny deviation near
z = ±1. While such an approximated form factor has a
discontinuity at z = ±1, the Fourier transform is appli-
cable as the limits at z = ±1 in both directions are well
defined. Here we have only studied the minimal renormal-
izable theory with γ = 3 and have chosen pγ+1(z) = z4.
The part |pγ+1(z)| > 1 is trivial and we can obtain an ana-
lytic result. For the other part of the integral, we need to use
a regularization prescription and separate the finite and the
divergent parts. The detailed calculation is in Appendix B.
Figures 8 and 9 show, respectively, the radiation and the dust
case. The qualitative behavior of the scale factor a(t) and the
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Fig. 7 Exact (solid line) and approximated (dashed line) Tomboulis
form factor

energy density ρ(t) is the same as the one of the Krasnikov
model.

5 Summary and conclusions

In the present paper, we have studied both the static black
hole solution and the homogeneous spherically symmetric
collapse of a cloud of matter in a super-renormalizable and
asymptotically free theory of gravity. The spacetime singu-
larity predicted in classical general relativity is removed in
both cases. In the literature there were so far some scattered
results in different theoretical frameworks. Here we have
studied this issue in more detail within the Krasnikov and
Tomboulis models.

Static and spherically symmetric singularity-free black
hole solutions have been obtained. At the origin, the effec-

tive energy density is always finite and positive, indepen-
dently of the exact expression of the form factor V (z). In
other words, these black holes have a de Sitter core in their
interior, where the effective cosmological constant is of order
κ2 M	, κ2 = 32πGN, M is the black hole mass, and 	 is the
energy scale of the theory which is naturally to expect to be
close to the Planck mass. The singularity of the spacetime is
therefore avoided due to the repulsive behavior of the gravi-
tational force. For a large family of form factors, the effective
energy density can be negative in some regions, which even-
tually provides the possibility of having multi-horizon black
holes. In the homogeneous and spherically symmetric col-
lapse of a cloud of matter, the formation of the singularity
is always replaced by a bounce. Far from the bounce, the
collapse follows the classical solution, while it departs from
it at high densities. Strictly speaking, asymptotic freedom
is sufficient to remove the singularity, but the presence of a
bounce requires also a repulsive character for gravitational
field in the high energy regime.

In conclusion, we have provided some convincing exam-
ples that show how the final products of the quantum-gravity
corrected collapse solutions are not the quantum-gravity cor-
rected Schwarzschild black hole metrics. This is not the result
that one would expect a priori. There may be three natural
explanations.

1. Static regular black holes cannot be created in any phys-
ical process. In this case, even if they are solution of a
theory, they are much less interesting than their classical
counterparts that can be created in a collapse.

2. The final product of the gravitational collapse is not
unique. The collapse of a homogeneous and spherically
symmetric cloud of matter does not produce a static regu-
lar black hole, but the collapsing matter bounces and then

4 2 0 2 4 6 8 10
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0.4

0.6
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t
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t
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0.0
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t
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ρ

Fig. 8 Scale factor a(t) (left panel) and energy density ρ(t) (right
panel) for the gravitational collapse of a homogeneous and spheri-
cally symmetric cloud of radiation in the Tomboulis model. The solid

line is for the classical solution and the singularity occurs at the time
t = 0 when a = 0. The dotted line is for the Tomboulis model with
pγ+1(z) = z4
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Fig. 9 As in Fig. 8 for the dust case

expands. With different initial conditions, not known at
the moment, static regular black holes may form.

3. The simple example of a homogeneous cloud of matter
oversimplifies the picture and misses important physics.
As discussed in Sect. 2, in the classical dust case we
have a homogeneous interior and a Schwarzschild exte-
rior without ingoing or outgoing flux through any spher-
ical shell of comoving radial coordinate r . However, that
is not true in general, and the exterior spacetime is a gen-
eralized Vaidya solutions with ingoing or outgoing flux
of energy. This means that the homogeneous solution is
not stable and must evolve to an inhomogeneous model.
While the bounce can still occur, after it the collapsing
matter may not expand forever. The boundary effects are
important and, after proper readjustment that can unlikely
be described without a numerical strategy, the collapse
approaches the static black hole solution.

The possibility 1 excludes the possibilities 2 and 3, but the
latter may also coexist. Here we have focused on the asymp-
totically free gravity theory with the Lagrangian given in
Eq. (17), and we have shown that the issue indeed exists.
The theoretical model is not sick, and therefore we cannot
attribute the problem to the fact that we are considering a non-
consistent quantum theory. However, it is easy to compute the
propagator for this class of theories around de Sitter space-
time background and to show the presence of a ghost when
the cosmological constant exceeds the square of the Planck
mass (this work is in preparation). This fact may explain the
fact that our static black holes are not the final product of
the gravitational collapse. These black holes have indeed a
de Sitter core in which the effective cosmological constant is
κ2 M	. If the black hole mass M exceeds the Planck mass,
there is a ghost and the black hole is unstable. Therefore the
solutions here presented cannot be the final product, but only
an intermediate phase of the gravitational collapse.
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Appendix A: Theoretical framework

For the theories studied in this paper, the classical action is

S =
∫

d4x
2
√|g|
κ2

[
R − Gμν

V (−�/	2)−1 − 1

� Rμν

]
,

(A1)

where Gμν is the Einstein tensor and κ2 = 32πGN. All the
non-polynomiality is in the form factor V (−�/	2), which
must be an entire function. 	 is the Lorentz invariant energy
scale and it is not subject to infinite or finite (non analytic)
renormalizations. The natural value of 	 is of order the
Planck mass and in this case all the observational constraints
are satisfied. Indeed, at classical level all the corrections to
the Einstein–Hilbert action are suppressed by 1/	, and if
the value of 	 is large the theory can reduce to general rel-
ativity at low energies. At quantum level, the introduction
of nonlocal operators in the action could potentially lead to
strong nonlocalities generated by the renormalization group
flow toward the infrared, in disagreement with observations.
This is not the case here, as a consequence of the Donoghue
argument [22] and of the fact that our action only involves
entire functions.

The entire function V (−�/	2) must have no poles in
the whole complex plane, in order to ensure unitarity, and
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must exhibit at least logarithmic behavior in the ultraviolet
regime, to give super-renormalizablitity at the quantum level.
The theory is uniquely specified once the form factor is fixed,
because the latter does not receive any renormalization: the
ultraviolet theory is dominated by the bare action (that is,
counterterms are negligible). In this class of theories, we only
have the graviton pole. Since V (z) is an entire function, there
are no ghosts and no tachyons, independently of the number
of time derivatives present in the action. This is the main rea-
son to introduce a non-polynomial Lagrangian. At the phe-
nomenological level the form factor could be experimentally
constrained, for example measuring the corrections to the
gravitational potential, or hypothetically measuring a cross
section in a scattering process at high energy. Concerning the
difficulties with particular form factors and nonlocal opera-
tors, we note that the class of operators introduced by Kras-
nikov and by Tomboulis are well defined in the Euclidean as
well as in the Lorentzian case, because (k2

E)2 = (k2)2, where
kE is the momentum in the Euclidean space [19].

More details on the ultraviolet and infrared properties of
this class of theories can be found in [17]. We note that here
it is possible to anti-screen gravity in the UV without intro-
ducing extra degrees of freedom because the theory is char-
acterized by an entire function that goes to zero in the UV.
We present two different ways to see this below.

Tree-level unitarity The general and clear way to address
the unitarity problem in Lagrangian formalism can be sum-
marized as follows (for more details, see [23–27]): (1) we
calculate the propagator expanding the action to the sec-
ond order in the graviton fluctuation, (2) we calculate the
amplitude with general external energy tensor sources, and
(3) we evaluate the residue at the poles. A general theory
is well defined if “tachyons” and “ghosts” are absent, in
which case the corresponding propagator has only first poles
at k2 − M2 = 0 with real masses (no tachyons) and with pos-
itive residues (no ghosts). In our class of theories, we only
have one pole in k2 = 0 with positive residue.

When we introduce a general source, the linearized action
including the gauge-fixing reads

LhT = 1

2
hμνOμνρσ hρσ − g hμνT μν, (A2)

where

O−1
μνρσ (p) = V (p2/	2)

p2

(
P(2)

μνρσ − 1

2
P(0)

μνρσ

)
, (A3)

P(2)
μνρσ and P(0)

μνρσ are the graviton projectors

P(2)
μνρσ = 1

2
(θμρθνσ + θμσ θνρ) − 1

3
θμνθρσ

P(0)
μνρσ = 1

3
θμνθρσ , (A4)

and θμν = ημν − kμkν/k2. The transition amplitude in
momentum space is

A = g2 T μν O−1
μνρσ T μν, (A5)

where g is an effective coupling constant. To make the anal-
ysis more explicit, we can expand the sources using the fol-
lowing set of independent vectors in the momentum space:

kμ = (k0, �k), k̃μ = (k0,−�k), ε
μ
i = (0, �ε),

i = 1, . . . , D − 2, (A6)

where �εi are unit vectors orthogonal to each other and to �k.
The symmetric stress-energy tensor reads

T μν = akμkν + bk̃μk̃ν + ci jε
(μ
i ε

ν)
j

+ d k(μk̃ν) + ei k(με
ν)
i + f i k̃(με

ν)
i . (A7)

The conditions kμT μν = 0 and kμkνT μν = 0 place con-
strains on the coefficients a, b, d, ei , f i . Introducing the spin
projectors and the conservation of the stress-energy tensor
kμT μν = 0 in (A5), the amplitude results

A = g2
{

TμνT μν − T 2

D − 2

}
e−H(k2/	2)

k2 , (A8)

where T = T μ
μ . Clearly, there is only the graviton pole in

k2 = 0 and the residue at k2 = 0 is

Res (A)
∣∣
k2=0 = g2

[
(ci j )2 − (cii )2

D − 2

] ∣∣∣
k2=0

. (A9)

For D > 3, we find that Res (A)
∣∣
k2=0 > 0 (because H(0) =

0), which means that the theory is unitary. Instead, for D = 3
the graviton is not a dynamical degree of freedom and the
amplitude is zero.

As an example of this quantum transition, we can con-
sider the interaction of two static point particles. Here T μ

ν =
diag(ρ, 0, 0, 0) with ρ = M δ(�x) and the amplitude (A8)
simplifies to

A = g2 M2
(

D − 3

D − 2

)
e−H(k2/	2)

k2 , (A10)

which is positive in D > 3 and zero for D = 3 since, again,
there are no local degrees of freedom in D = 3.

Källén–Lehmann (KL) representation Any action in the
class of theories here presented is defined in terms of an entire
function with no zeros, singularities, nether poles. Therefore
the usual derivation of the KL decomposition goes straight-
forward. Let us construct step by step such representation for
a weakly nonlocal prototype theory. It is easy to show that
∫

d3 �p
(2π)32E �p

=
∫

d4 p

(2π)4 δ(p2 − m2
λ)θ(p0)e−H(p2−m2

λ).

(A11)
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Therefore a complete set of states satisfy

1 = |0〉〈0| +
∑
λ

∫
d3 �p

(2π)32E �p
|λ �p〉〈λ �p| (A12)

where we defined the state λ �p by boosting of an arbitrary
boost �p a momentum zero state λ0 and we summed over all
�p. Assuming 〈0|φ(x)|0〉 = 0 and Lorentz invariance of φ(0),

〈0|φ(x)|λ �p〉 = e−i px 〈0|φ(0)|λ �p〉 = e−i px 〈0|φ(0)|λ0〉
∣∣∣

p0=E �p
.

(A13)

We thus get for x0 > y0

〈0|φ(x)φ(y)|0〉
∣∣∣
x0>y0

=
∑
λ

∫
d3 �p

(2π)32E �p
e−i p(x−y)

∣∣∣
p0=E �p

|〈0|φ(0)|λ0〉|2

=
∑
λ

∫
CF

d4 p

(2π)4

i

(p2 − m2
λ) eH(p2−m2

λ)
e−i p(x−y)

|〈0|φ(0)|λ0〉|2

=
∑
λ

e−H(−�−m2
λ)

∫
CF

d4 p

(2π)4

i

(p2 − m2
λ)

e−i p(x−y)

|〈0|φ(0)|λ0〉|2

→
∑
λ

e−H(−�−m2
λ)

∫
R

d4 p

(2π)4

i

(p2 − m2
λ + iε)

e−i p(x−y)

|〈0|φ(0)|λ0〉|2

=
∑
λ

∫
R

d4 p

(2π)4

i e−H(p2−m2
λ)

(p2 − m2
λ + iε)

e−i p(x−y)

|〈0|φ(0)|λ0〉|2, (A14)

where the contour CF is closed in the lower half p0-plane,
while the integral along the real axes is evaluated displacing
the poles for Re(p0) > 0 in the lower half plane and for
Re(p0) < 0 in the upper half plane (in our gravitational
theory mλ = 0). An analog relation is obtained for x0 < y0,
therefore:

〈0|T(φ(x)φ(y))|0〉 =
∑
λ

∫
R

d4 p

(2π)4

i e−H(p2−m2
λ)

(p2 − m2
λ + iε)

× e−i p(x−y)|〈0|φ(0)|λ0〉|2. (A15)

The matrix element is Lorentz invariant and only depends
on the mass of the state mλ, therefore we can write (A15)
making use of the definite positive spectral density function
ρ(s) defined by

ρ(s) =
∑
λ

δ(s − m2
λ) |〈0|φ(0)|λ0〉|2, (A16)

as follows:

〈0|T(φ(x)φ(y))|0〉 =
∫ +∞

0
ds �F (x − y; s)ρ(s), (A17)

where we defined the function

�F (x − y; m2
λ) =

∫
R

d4 p

(2π)4

i e−H(p2−m2
λ)

(p2 − m2
λ + iε)

e−i p(x−y),

(A18)

in analogy with the Feynman propagator. The spectral rep-
resentation sees all the poles, but in this case they are the
same as in general relativity, because we have introduced a
function with no poles or zeros. In the case of a local theory
with a finite number of derivatives, this is impossible and the
theory is sick.

We expect a single particle state to contribute to ρ(s) as
an isolated delta

〈0|T(φ(x)φ(y))|0〉 =
∫ +∞

0
ds
∫

R

d4 p

(2π)4

× i e−H(p2−m2
λ)

(p2 − m2
λ + iε)

e−i p(x−y)

×δ(s − m2
λ) Z (Z > 0). (A19)

Appendix B: Integrals with the Tomboulis form factor

We use the approximated form factor in Eq. (44). Let us first
consider the radiation case. For |pγ+1(z)| ≥ 1, the integral
is trivial. When |pγ+1(z)| ≤ 1, we have

∫ 1

−1

dE

2π

(
1 − pγ+1(z)2

2

)
2

t0 E2 ei Et . (B1)

The second term with pγ+1(z)2 is trivial, in the sense that it
has an analytic result. We thus want to find the solution of the
first term which, apart a constant coefficient, has the form

I ≡
∫ 1

−1
dE

eiEt

En
, (B2)

where n is an even integer, so that the integral gives a real
result and is an even function of t . In the case of radiation,
n = 2.

This integral can be calculated with the residue theorem.
We introduce a small number μ, so that the pole of order n at
E = 0 is reduced to n simple poles. To include all the poles,
we can consider contour integrals of both the upper and the
lower circles. Writing E = ρeiθ , dE = i Edθ , and we have

I +
∫ θ=π

θ=0
ρ=1

dE
eiEt

En
≡ I + I1 =2π i

∑
μi in upper
unit circle

Res

(
eiEt

En + μn

)

+π i
∑
μi on

real axis

Res

(
eiEt

En + μn

)
(B3)
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and

I +
∫ θ=−π

θ=0
ρ=1

dE
eiEt

En
≡ I + I2

= 2π i
∑

μi in the lower
unit circle

Res

(
eiEt

En +μn

)

−π i
∑

μi on the
real axis

Res

(
eiEt

En +μn

)
.

(B4)

The combination of the two equations gives the result of I

I = −1

2
(I1 + I2) + D, (B5)

where

I1 + I2 =
∫ π

θ=0
dθ{e−t sin θ sin[(n − 1)θ − t cos θ ]

+ et sin θ sin[(n − 1)θ + t cos θ ]}, (B6)

and the divergence D of order μn−1 is given by

D = π i

⎛
⎜⎜⎝

∑
μi in the upper

unit circle

−
∑

μi in the lower
unit circle

⎞
⎟⎟⎠Res

(
eiEt

En + μn

)
.

(B7)

For radiation, n = 2 and we have

I = −1

2

∫ π

θ=0
dθ{e−t sin θ sin[θ − t cos θ ]

+ et sin θ sin[θ + t cos θ ]} + π

μ
, (B8)

where the divergent part is D = π
μ

for μ → 0.
The dust case is slightly different and it is more convenient

to choose the exponential form for approximation of V (z),
so the integral is

I ≡
∫ 1

−1
dE

1

|E |α e− E16
2 eiEt = 2 Re

∫ 1

0
dE

1

Eα
e− E16

2 eiEt ,

(B9)

where α > 0 is not an integer. With the transform for the
integration variable E = ρeiθ , dE = iEdθ , and applying
the contour integral we have

I1 + I2 + IR + Ir ≡
(∫ ρ=1

ρ=0
θ=0

+
∫ ρ=0

ρ=1
θ=2π

+
∫ θ=2π

θ=0
ρ=1

+
∫ θ=0

θ=2π
ρ→0

)

dE
1

Eα
e− E16

2 eiEt = 0. (B10)

The first two terms I1 + I2 can be simplified as

I1 + I2 = 2
∫ 1

0
dρ

1

ρα
e− 1

2 ρ16
eiρt e−iπα(i sin απ). (B11)

The integration of the unit circle gives the finite part of the
required integral, and the integration around the origin gives
the divergent part of order α − 1,

IR = i
∫ 2π

0
dθ e− 1

2 cos 16θ−t sin θ ei[− 1
2 sin 16θ+t cos θ+(1−α)θ],

(B12)

Ir = i
∫ 0

2π

dθ

× 1

μα−1 e− μ16

2 cos 16θ−μt sin θ e
i

[
− μ16

2 sin 16θ+μt cos θ+(1−α)θ

]

� i
∫ 0

2π

dθ
ei(1−α)θ

μα−1 . (B13)

Finally, we can get the result

I = − 1

sin απ

∫ 2π

0
dθe

−
(

1
2 cos 16θ+t sin θ

)

× cos

[
−1

2
cos 16θ + t cos θ + (1 − α)θ + απ

]

+ 2

(α − 1)μα−1 . (B14)

For the dust case, we have α = 7/3 and the divergence is of
order 4/3.
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