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Abstract
Background: As a variety of functional genomic and proteomic techniques become available,
there is an increasing need for functional analysis methodologies that integrate heterogeneous data
sources.

Methods: In this paper, we address this issue by proposing a general framework for gene function
prediction based on the k-nearest-neighbor (KNN) algorithm. The choice of KNN is motivated by
its simplicity, flexibility to incorporate different data types and adaptability to irregular feature
spaces. A weakness of traditional KNN methods, especially when handling heterogeneous data, is
that performance is subject to the often ad hoc choice of similarity metric. To address this
weakness, we apply regression methods to infer a similarity metric as a weighted combination of a
set of base similarity measures, which helps to locate the neighbors that are most likely to be in
the same class as the target gene. We also suggest a novel voting scheme to generate confidence
scores that estimate the accuracy of predictions. The method gracefully extends to multi-way
classification problems.

Results: We apply this technique to gene function prediction according to three well-known
Escherichia coli classification schemes suggested by biologists, using information derived from
microarray and genome sequencing data. We demonstrate that our algorithm dramatically
outperforms the naive KNN methods and is competitive with support vector machine (SVM)
algorithms for integrating heterogenous data. We also show that by combining different data
sources, prediction accuracy can improve significantly.

Conclusion: Our extension of KNN with automatic feature weighting, multi-class prediction, and
probabilistic inference, enhance prediction accuracy significantly while remaining efficient, intuitive
and flexible. This general framework can also be applied to similar classification problems involving
heterogeneous datasets.

1 Background
With the exponential growth of genomic sequence data in
the past decade, a major goal in the post-genomic era is to
understand the biological functionality of genes and gene
products. Computational methods have been proposed to

infer functional annotation based on relevant biological
information.

Methods based on sequence homology, such as BLAST,
have been used for decades for effective gene annotation
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in newly sequenced genomes. More recently, a variety of
additional biological information sources have been used
for functional prediction, such as gene co-evolution pro-
files [1], protein-domain fusion events [2], microarray
expression data [3,4], protein interaction [5-7] and pro-
tein complex information [8]. However, even with the
availability of the complete genomes of hundreds of
organisms, application of any of these methods in isola-
tion still leaves a large fraction of genes unannotated.

An important next step is to combine different data
sources for functional prediction. Several statistical meth-
ods have been proposed as general frameworks to inte-
grate heterogeneous datasets. Deng et al. [9] use a
maximum likelihood method based on Markov random
field (MRF) theory to predict protein function based on
physical interactions, genetic interactions and gene
expression. They found that the use of different sources of
information indeed improved prediction accuracy when
compared to using only one type of data. In application to
yeast protein function prediction based on the MIPS clas-
sification scheme, they achieved 87% sensitivity at 57%
specificity. One limitation of their technique is that the
model is based on binary pairwise relations only. For con-
tinuous data such as gene expression measurements, there
might be a loss of information due to discretization. Sup-
port vector machines (SVM) have also been extended to
support heterogeneous data sets. Pavlidis et al. [10] sug-
gest three ways to combine the data sets for SVM: early
integration concatenates the feature vectors from each
data source, intermediate integration adds the corre-
sponding kernel matrices, and late integration adds the
discriminant values from the SVM learned from each data
source. More recent work by Lanckriet et al. [11] suggests
a method that combines multiple kernels in an optimal
fashion. They formulate the problem of combining ker-
nels as a convex optimization problem that can be solved
using semi-definite programming. Compared to the MRF
method, they showed an improvement of ROC score from
0.715 to 0.851.

In this study, we suggest K-nearest-neighbor (KNN) meth-
ods as an alternative to solve this problem. In spite of their
simplicity, KNN methods are among the best performers
in a large number of classification problems. Because
KNN methods do not make any assumption about the
underlying data, they are especially successful when the
decision boundaries are irregular, or a class has multiple
prototypes. The flexibility of KNN is of great advantage for
gene function classification problems, wherein the class
boundaries are inherently vague, and many classes can
not be categorized by a simple model.

The main idea of the classical KNN is the following: First
design a set of numerical features to describe each data

point, and select a metric, e.g. Euclidean distance, to
measure the similarity of data points based on all features.
Then for a target point, find its k closest points in the train-
ing samples based on the similarity metric, and assign it
to a class by majority vote of its neighbors. A main weak-
ness of this technique is that performance is subject to the
often ad hoc choice of similarity metric, especially for het-
erogeneous datasets from which the derived features are
of different types and scales, and are correlated. In addi-
tion, the standard KNN methods suffer from the curse of
dimensionality. The neighborhood of a given point
becomes very sparse in a high dimensional space, result-
ing in high variance.

Our proposed approach modifies the standard paradigm.
Instead of building a single "global" similarity metric
from all data sources, we design several "base" similarity
measures between pairs of data points, one measure from
each data source. Then we aim to estimate the likelihood
of a pair being in the same class given the base similarities.
In this formulation, the likelihood estimation can be
approached as a classical regression problem. (See Equa-
tion 1 in section 2.1). The estimated likelihood function
serves as the global similarity measure to choose the k
nearest neighbors as before.

A key benefit of above approach is that heterogeneous
data sources are weighted, and their correlation is taken
care of automatically by regression, so that one can design
one similarity measure at a time from a single data source
and ignore the relationship among them. Our method is
in a sense similar to the method of combining kernels due
to Lanckriet et al. [11]. Each similarity measure in KNN
corresponds to an SVM kernel, except that the former does
not need to be semi-definite, thus allows greater design
flexibility. In Lanckriet's method, the kernel weighting is
integrated with the goal of maximizing SVM classification
margin. In our framework, the base similarity measures
are weighted to locate the "best" k nearest neighbors,
which are mostly likely to share the same class as the tar-
get point, providing the most accurate prediction. This
technique also helps to alleviate the curse of dimensional-
ity by shrinking the unimportant dimensions of the fea-
ture space, bringing more relevant neighbors close to the
target point.

Additionally, the probabilistic interpretation of the
inferred similarity measure suggests a new voting scheme
that facilitates multi-way classification and statistical
inference. Instead of producing a single "best guess" for
each gene, our voting scheme (see Equation 2 in section
2.2) generates a ranked list of all possible predictions with
corresponding confidence scores, which provide good
estimates of expected accuracy.
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In summary, we propose a conceptually simple, computa-
tionally efficient method for integrating heterogeneous
data sets for gene function prediction. We applied this
method to the problem of gene function prediction in E.
coli using information extracted from gene microarray
expression data and sequence data. Results show that this
technique significantly outperforms the naive KNN
method, and combining all the data sources yields consid-
erable improvement compared to using each data source
alone. When compared to the SVM algorithm for integrat-
ing heterogeneous data, we achieved very competitive
results (66.8% sensitivity at 50% accuracy and ROC score
of 0.884 as compared to SVM with 67.6% sensitivity at
50% accuracy and ROC score of 0.915). Even though our
method is slightly worse in terms of ROC score, it per-
forms almost identically to SVM at low false positive rates.
Similar conclusions apply to the classification results
based on COG and Multifun classification schemes.

2 Methods and Data
Our algorithm can be briefly summarized as follows: In
the training phase, we compute the base similarity meas-
ures from all genes in the training set, and combine them
into a global similarity measure using a regression
method. In the classification phase, for a gene with
unknown functional classes, we choose its k nearest
neighbors in the training set according to the trained sim-
ilarity measure, and then use a customized voting scheme
to generate a list of predictions with confidence scores.
The details of the two major components of our algorithm
– the similarity metric and voting scheme – are described
below.

2.1 Regression Derived Similarity Metrics
The goal of the training phase is to construct a similarity
metric that helps to locate the "best" neighbors -the neigh-
bors that are most likely to be in the same class as the tar-
get. We do this as follows:

For every gene pair p = (gi, gj) in the training set, we com-

pute the value of the base similarity measure  from the

kth data source. For example, fk can be the correlation of

expression profiles of two genes:

 = correlation(gi.expr,gj.expr)

We define a class sharing indicator C for each gene pair p,
such that Cp = 1 if the two genes in p are in the same func-
tional class, otherwise Cp = 0. The core of the algorithm is
to find a function h such that

In other words, we try to estimate the likelihood a pair of
genes being in the same class as a function of a set of base
similarity measures, which serves as the global similarity
metric to choose the nearest neighbors. In the ideal world,
this metric would assign value 1 for all pairs in the same
class, and value 0 for pairs in different classes. Based on
this metric, the nearest neighbors would be in the same
class as the target gene, providing accurate predictions. In
practice, however, due to the limitations of both data and
methods to fit the function h, the learned likelihood func-
tion is only an estimate. Nevertheless, it integrates the
base similarity measures in a way that is optimal in the
KNN framework. Fitting function h falls into the realm of
classical regression problems. We have applied two regres-
sion algorithms – logistic regression and local regression,
to solve this problem.

Logistic regression is targeted at classification problems
with binary or categorical response [12]. Let

 be the feature vector, corresponding

to the base similarity measures in our framework. The
logistic model is described as the following:

where β is the weight vector, and α is a constant. Maxi-
mum likelihood estimates of α and β can be computed
efficiently since the log likelihood function is concave.
The learned weight vector β indicates the relative impor-
tance of each feature, and the probability function is used
as the similarity metric. The linear model can be extended
to quadratic functions, possibly with interaction terms to
capture correlations between the features.

Local regression is another option to solve this problem
[13]. In a nutshell, this technique estimates the regression
function by fitting a different but simple model (e.g. a pol-
ynomial function) separately at each target point. Only
the observations that are close to the target point are used
to fit the model, and are weighted by their distances to the
target point. Compared to logistic regression, local regres-
sion models provide greater flexibility, as the regression
curve can approximate any smooth function. This method
can also capture the correlation between the features nat-
urally by fitting each model in a local region defined
jointly by all the features. On the other hand, local regres-
sion is more computationally expensive, and less scalable.
To fit local models, it requires a relatively dense neighbor-
hood at every sample point. Local regression may also
have troubles with discrete features and boundary data
points.
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We used the Splus [14] implementation of regression
methods. The "glm" method was used for logistic regres-
sion with "family" parameter set to "binomial". By
default, we used quadratic model with interaction terms,
but the results based on linear model are very similar. For
local regression, we used the "loess" method using quad-
ratic functions and default span parameter.

2.2 Voting Scheme
A gene can belong to multiple function classes. Therefore,
it is not sufficient to choose the maximum weighted pre-
diction for a target gene, but rather, we need to assess the
likelihood of all predictions. Our voting scheme is
designed to provide a probabilistic measurement of the
prediction quality.

Given the trained similarity metric, we can select the k
nearest neighbors for a target gene gi to form its neighbor-
hood N(gi). Let gj be a gene in N(gi), Cj a set of its function
classes, and Pij the similarity score between gi and gj, which
estimate the probability that a prediction of gi suggested
by gj is correct. To integrate the predictions suggested by
all neighbors, we define the score for a prediction of func-
tion class C for gi as the following:

We refer to the above score as the confidence score, which
estimates the likelihood that the prediction is correct.
Intuitively, if we assume the independent correctness of
all predictions, then the confidence score computes the
probability that at least one of the predictions suggested
by neighbors of gi with class C is correct, which is 1 minus
the probability that all such predictions are wrong. The
independence assumption is clearly inaccurate, thus we
refer to this measure as a score instead of a probability.

Nevertheless, in practice, we found it quite satisfactory,
assigning higher scores to predictions suggested by more
neighbors, or neighbors with higher credibility. As we will
show in the Results section, the confidence score is closely
correlated with prediction accuracy.

The neighborhood size we chose is 10. Our experiments
showed that the performance is stable with varying neigh-
borhood size from 5–15, and degrades when the neigh-
borhood size is too small or too large. When the
neighborhood is too small, close neighbors with similar
scores have to compete with each other to be selected. If
the neighborhood is too large, confidence scores tend to
inflate due to irrelevant neighbors.

2.3 Data
We tested the performance of the RB-KNN methods on
three functional classification schemes for E. coli. They are
KEGG (Kyoto Encyclopedia of Genes and Genomes [15]),
COG (Clusters of Orthologous Genes [16]), and MultiFun
[17]. For KEGG and COG, we used the top level classifica-
tions, which include 19 and 18 classes respectively. Multi-
Fun is a multi-dimensional classification schemes in
which a gene belongs to multiple functional classes
according to different classification criteria. For clarity, we
selected the category "Metabolism", and used 8 functional
classes within this category. In the results discussion, most
analyses are based on KEGG, while the conclusions are
generally applicable to COG and MultiFun (See supple-
mentary website [18] for details). The KEGG functional
classes are described in Table 1. We chose four base simi-
larity measures based on microarray expression data and
genomic sequence information. The details are described
below:

1. Expression correlation
We compiled data from 106 two-color DNA microarray
hybridization experiments performed on E. coli. 56 of
them are from the Stanford SMD database [19], and 50
are from the Wisconsin ASAP database [20]. The data are
briefly described in Table 2. The gene expression data con-
sist of log transformed expression level ratios. We chose
genes that are included in all experiments, and missing
values were estimated by KNN imputation [21]. We nor-
malized the data so that the mean of measurements from
each array is 0, and standard deviation is 1.
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Table 1: KEGG Functional Categories. Top level KEGG 
functional classes, with the number of genes in each class.
(Jan. 2004)

Index Class name Size

1 Carbohydrate Metabolism 245
2 Energy Metabolism 163
3 Lipid Metabolism 45
4 Nucleotide Metabolism 114
5 Amino Acid Metabolism 231
6 Lipid Metabolism 67
7 Metabolism of Complex Carbohydrates 96
8 Metabolism of Complex Lipids 59
9 Metabolism of Cofactors and Vitamins 169
10 Biosynthesis of Secondary Metabolites 24
11 Biodegradation of Xenobiotics 50
12 Transcription 73
13 Translation 106
14 Folding, Sorting and Degradation 51
15 Replication and Repair 87
16 Membrane Transport 409
17 Signal Transduction 92
19 Immune System 4
20 Cell Motility 59
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For each pair of genes, we calculated the Pearson correla-
tion of their expression profiles. The relationship between
the expression correlation of a pair of gene and the likeli-
hood that they are in the same KEGG function class is
shown in Figure 1. When expression correlation is below
0.6, the likelihood of a gene pair being in the same class is
close to random chance. As the expression correlation
increases above 0.6, the fraction of gene pairs in the same
class increases dramatically. When correlation is greater
than .9, about 83% of the gene pairs are in the same class.

2. Chromosomal distance
Chromosomal proximity information has been utilized to
discover putative functional linkages between genes for
Prokaryotes. When two genes appear near each other in
the genomes of several distantly related organisms, it sug-
gests the possibility that two genes might be functionally
related [22]. In this study, we have not incorporated com-
parative genomic information. Nevertheless, we found
that, about 70% of adjacent gene pairs on the chromo-
some of E. coli are in the same KEGG functional class. We
define the chromosomal distance between a pair of genes
to be the number of intermediate genes between them.
Another distance metric we tried is the number of nucleo-
tides between a gene pair, and we achieved similar results.
To infer the regression model, we used the log of chromo-
somal distance.

3. Block indicator
Genes in the same operon tend to be involved in the same
biological process. Thus operon structure provides
another type of information that can be used for function
prediction. Since operon information available at public
data sources are usually not complete, constantly
updated, and some are predicted computationally, we
decided to introduce a similarity measure that is stable,
and can be easily obtained even for a newly sequenced
organism. We define "block" to be a maximal stretch of
contiguous genes transcribed in the same direction. For
each gene pair, we compute a "block indicator" which
specifies whether the two genes are in the same block. We

observed that of adjacent pairs of genes on the chromo-
some, about 80% of the pairs in the same block are in the
same KEGG functional class, while only 25% of the pairs
in different blocks are in the same class. This demonstrates
that the block indicator adds extra information about
gene functional relationships to chromosomal distance.

4. Paralog indicator
Liang et al. [23] showed that protein sequence similarity
within an organism provides insight into function cou-
pling. They clustered E. coli proteins into paralogous
groups, and showed that members of the same paralogous
group are usually functionally related. Protein sequences
are compared pairwise using a dynamic algorithm imple-
mented in the DARWIN [24] package. Protein pairs with
PAW (accepted point mutations) scores above some
threshold are chosen, and they are clustered by transitive
closure. The list of paralogous protein families are availa-
ble at [25]. According to this information, we introduced
a similarity measure as the number of paralogous groups
shared by a pair of genes. Note that a gene can belong to
multiple paralogous groups, so the paralog indicator can
be greater than 1, although it is mostly 0 or 1. We prefer
this metric to the raw PAW score because it considers the
cases in which proteins are indirectly related. Of 4666
pairs of paralogous proteins in this dataset, about 95% of
them are in the same KEGG functional class.

Expression Correlation AnalysisFigure 1
Expression Correlation Analysis. The expression corre-
lations of gene pairs are divided into 40 bins within the range 
of (-1,1) with width 0.05. The y axis shows the fraction of 
pairs in the same function class in each bin. The red horizon-
tal line shows the probability of a pair of genes being in the 
same class by chance (0.177).
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Table 2: Summary of Microarray Experiments. 106 microarray 
experiments of E. coli performed under different conditions. 
Experiments 1 56 were collected from Stanford SMD database, 
and 57 106 from WISC ASAP database.

Index Condition # Experiments

1 to 15 UV exposure 15
16 to 42 Trypophan metabolism 27
43 to 52 rng deletion / rne deletion 10
53 to 56 Irp regulation 4
57 to 106 WISC calibrated experiments 50
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2.4 Methods for Comparison
1. The naive KNN method
To evaluate the effectiveness of the regression methods for
feature weighting and the voting scheme, we imple-
mented a naive KNN method using Euclidean distance,
scaled so that distance based on each individual data
source has maximal value of 1. Given the k nearest neigh-
bors, the naive KNN method selects the functional class
that is voted for by the maximum number of neighbors.
To break ties between the classes with the same number of
votes, the one with minimum sum of distance from all
supporting neighbors is chosen. We also applied the naive
KNN method based on all combinations of data sources
and compared it to the RB-KNN methods.

2. The SVM method
To compare RB-KNN to other methods for integrating het-
erogeneous data, we tested the SVM algorithm proposed
in [10] on the same dataset. Among three strategies to
combine multiple datasets – concatenate feature vectors,
combine the kernels, or combine the discriminant values,
we chose the strategy to combine the kernels, which Pav-
lidis et al. found to produce the best performance [10].
This method is in fact an un-weighted version of the
method suggested in [11], which uses a semi-definite pro-
gramming algorithm to determine the weights of each ker-
nels. Even though the latter approach seems preferable,
the corresponding software is not publicly available cur-
rently. Fortunately, the un-weighted method is nearly as
effective as the weighted method in many cases, especially
if all selected kernels are of comparable predictive power
(personal communication, William Stafford Noble),
which is true in our case.

We used the Gist software package for all SVM classifica-
tions, using 2-norm soft margin that accounts for the dis-
parity in the number of positive and negative examples for
each class. For the other parameters, we used the Gist
default values. For details of Gist, see [26,27]. To perform
multiway classification, we used a one-against-all strategy,
training a SVM for each function class separately. We have
defined 3 kernels based on expression data, block indica-
tor and paralog indicator respectively. For expression data,

we used the kernel K(X, Y) = (X·Y/( )+1)3,

which was shown in [10,28] to produce good perform-
ance on yeast function prediction. In comparison to the
radial basis function (RBF) and linear kernel, this kernel
performs very similarly to RBF on our dataset, both of
which are significantly better than the linear kernel (The
performance analysis of the linear kernel and RBF is avail-
able at the supplementary website [18]). The block indica-
tor can be represented as the inner product of binary block
vectors that specify the block membership of genes, thus

it is a kernel itself. As with the block indicator, the paralog
indicator is also a kernel since it can be represented as the
inner product of the paralog vectors. To combine the three
kernels, we add them after dividing the expression kernel
by 8 so that all 3 kernels have similar scales. We did not
use the chromosomal distance for SVM due to a couple of
reasons. First, since the distance is defined on a circular
chromosome, it is not obvious what an appropriate kernel
is. We tried the empirical kernel map technique, using the
inner product of the distance matrix row vectors as a ker-
nel. However, the resulting SVM has very poor perform-
ance (ROC score = .581). Additionly, the test results for
the RBKNN methods (Table 3) suggest that chromosomal
distance is redundant given the other three data sources.
Thus the SVM is not penalized for excluding this informa-
tion.

3 Results
In this section, we will first compare the performance of
RB-KNN with the naive KNN methods to demonstrate the
strength of our techniques for feature weighting and vot-
ing. Second, we will compare our methods with a method
for integrating heterogeneous data using SVMs. Third, we
will give a performance analysis based on functional
classes. We also include a brief discussion for the correla-
tion between the confidence scores and prediction accu-
racy, and summary results based on all three classification
schemes.

Finally, we will discuss some challenges of this problem
based on analysis of the false predictions.

For convenience, all the KNN methods that we tested are
named first by the algorithms, which can be knn (naive
KNN method), glm (logistics regression based KNN) or

X X Y Y. .

Table 3: Prediction Accuracy of naive Knn methods and RB-KNN 
methods. A combination of data sources is represented by a 
binary string, in which each bit specifies whether a data source is 
included, in the order of expression correlation, chromosomal 
distance, block indicator, and paralog indicator. glm refers the 
RBKNN method based on logistic regression, and loess refers to 
the RBKNN method based on local regression, loess is not 
applicable to "0001" (paralog indicator) and "0010" (block 
indicator) since the only data source is binary.

Combination naive knn glm loess

0001 0.41 0.57 NA
0010 0.41 0.54 NA
0100 0.47 0.47 0.56
1000 0.40 0.44 0.52
1010 0.52 0.50 0.55
1011 0.61 0.68 0.68
1111 0.52 0.68 0.68
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loess (local regression based KNN), followed by a specifi-
cation of data sources. This specification is described as a
binary string, in which each bit specifies whether a data
source is included, in the order of expression correlation,
chromosomal distance, block indicator, and paralog
indicator. For example, loess.0001 means the local regres-
sion based KNN method using only the paralog indicator,
while knn.1111 means the naive KNN method using all
four data sources. We tested SVMs on the combined data
with the expression, block and paralog information,
which is referred to as "svm.comb". Since expression data
alone are widely used to functional classification, we also
tested SVMs in this case, named as "svm.exp". For each
test, we performed 5-fold cross validation and reported
overall performance.

3.1 Comparison of RB-KNN and the Naive KNN
To test the effectiveness of the RB-KNN methods for com-
bining the heterogeneous data sources using the proposed
feature weighting and voting techniques, we compared
them with the naive KNN method. We tested each
method using different combinations of data sources to
study the predictive power of each individual data source,
and whether combining more data sources improves the
performance. Unless specified otherwise, the default clas-
sification scheme is KEGG. We only focused on the genes
that are assigned to functional classes, 1603 in total. Each
gene can belong to multiple functional classes, and the
total number of function classifications is 2144.

The naive KNN method generates only one prediction for
each gene, so for the sake of fair comparison, we also pick
the single best prediction for each gene for RB-KNN meth-
ods. We noticed that the performance of the naive KNN is
quite sensitive to k, the size of the neighborhood, and it
generally favors small k.

Using all data sources, naive KNN has prediction accuracy
of 52%, 50%, 46% and 40% for k = 1,3, 5,10 respectively.
RB-KNN methods, however, are quite robust to the size of
neighborhood. For example, the prediction accuracy for
glm.1111 is 65%, 67.5%, 67.2% and 67.9% respectively
for k = 1, 5,10,15. The prediction accuracies of naive KNN
and RB-KNN methods are summarized in Table 3, with k
= 1 for naive-KNN, and k = 10 for RB-KNN. Here, we only
present the results for a few combinations of data sources.
See Additional file 3 for the complete results. Table 3

shows that RB-KNN methods in general have better per-
formance than naive KNN using the same data sources.
Even based on a single data source, RB-KNN out-performs
naive KNN because of the effectiveness of the voting
scheme, which is better at combining predictions from the
neighbors. The relative prediction power of each data
source seems quite comparable. We also observed that
using more data sources in the RB-KNN methods is
almost always beneficial. In all our experiments, data set
"1011" produces the best performance, which suggests
that chromosomal distance is a redundant data source for
functional prediction given the other three. By down-
weighting the redundant information, RB-KNN methods
have almost the same performance for data set "1111".
Table 4 shows the weights for each data source in
glm.1111. For naive KNN, however, adding chromosomal
distance to the other three data sources results in signifi-
cant decrease of performance. In general, the performance
of loess is better than that of glm when only one or two
data sources are used, but the difference in performance of
the two methods becomes negligible as more data sources
are used.

3.2 ROC Analysis of RB-KNN and SVM
We used the receiver operating characteristics (ROC) to
compare the performance of RB-KNN and SVM algo-
rithms. A ROC curve is a plot of false positive rate vs. sen-
sitivity with variation of a threshold parameter. Since this
is a multi-way classification problem, the total number of
predictions is the product of the number of genes and the
number of classes, which is 1603 * 18 = 28854 for KEGG.
Each such prediction has an associated score, i.e., the con-
fidence score in RBKNN, or the discriminate value in SVM.

All 28854 predictions are ranked based on their scores,
and the predictions above a certain threshold are used to
compute the false positive rate and senstivity for one
point on the ROC curve. (One potential pitfall of using
discriminant values to rank predictions is that they may
not be comparable among different classes, as a distinct
SVM is trained for each class. Plausibly, a preferable solu-
tion is to fit a probabilistic sigmoid function based on dis-
criminant values for each class separately. We expected the
resulting scores to be more comparable among different
classes and produce better ranking, but the corresponding
ROC score is actually worse, only 0.81 as compared to
0.91 of the former approach, so we did not take this

Table 4: Weights for each data sources computed by the RB-KNN method (glm.1111). The mean and standard deviations of weights of 
base similarity measures are presented based on the 5-old cross validation. For the ease of presentation, these weights are computed 
using the linear model, whose performance is slightly worse than the default quadratic model (accuracy of 0.65 as compared to 0.68).

Data sources Expression correlation Chromosomal distance Block indicator Paralog indicator

Weights 1.87 ± 0.12 0 1.68 ± 0.08 4.63 ± 0.13
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approach.) Figure 2 shows the ROC curves of some of the
algorithms we tested. Note that in this classification prob-
lem, the total number of false classifications is about an
order of magnitude greater than the number of true classi-
fications. Thus, even though the ROC scores of the algo-
rithms are very close, in practice we are only interested in
the region of these ROC curves where false positive rate is
low. Within this region, the algorithms perform quite dif-
ferently. The ROC curves show again that the predictive
powers of all the data sources are quite comparable,
ranked from the best to the worst in the order of paralog
indicator, chromosomal distance, block indicator and
expression correlation. Among the methods based on
expression data, glm.1000 and svm.exp have very similar
performance, and loess.1000 is significantly better. Simi-
larly, loess.0100 has better performance than glm.0100
(data not shown) due to greater model flexibility.

Combining all four data sources results in significant
improvement. At 50% accuracy, the sensitivities for
glm.1111, glm.0001, glm.0010, loess.0100, loess.1000
are 66.8%, 55.1%, 46.9%, 50.4%, 41.3% respectively.
Among all the methods that have been tested, svm.comb
has the best performance with ROC score of 0.915. How-
ever, when the number of false positives is smaller than
the number of true positives, as required by most applica-
tions, svm.comb has very similar performance as
glm.1111. Its sensitivity at 50% accuracy is 67.6%, almost
indistinguishable from the 66.8% of glm.1111.

3.3 Performance Analysis Based on Functional Classes
Figure 3 shows the sensitivities of four methods (svm.exp,
loess.1000, glm.1111, svm.comb) at 50% accuracy for all
functional classes. For each method, we divided all predic-
tions based on the true functional classes of genes. Then
for each class, we selected the predictions above a thresh-
old that yields 50% accuracy, and calculated the percent-
age of genes that have been correctly predicted. We
observed that for all classes except class 15, loess.1000
outperforms svm.exp quite dramatically. This is especially
true in class 17, in which the sensitivity at the chosen
threshold is 8.7% for svm.exp, and 71.7% for loess.1000.
The SVMs based on linear or radial kernel perform poorly
as well (0%, 10.9% sensitivity respectively).

This suggests that the decision boundary of class 17 has a
particular structure that can not be captured by the chosen
kernels for SVM, but can be by the RB-KNN methods.
Across all functional classes, glm.1111 has very similar
performance to svm.comb, both of which have superior
performance compared to the methods based on expres-
sion data only. Class 20 (Cell Motility) and class 13
(Translation) are two classes with very good prediction
accuracy using all 4 algorithms. The ROC scores of
glm.1111 for these two classes are 0.97, and 0.96 respec-

tively. The good classification results for these two classes
can be attributed to the fact that most genes in these two
classes are known to be co-regulated and many are tran-
scribed in operons. Many members of Class 17 (Signal
Transduction) and 16 (Membrane Transport) exhibit sim-
ilar protein domain structure, thus the paralog indicator is
very informative for both classes. The sensitivity of
glm.0001 for these two classes is 80% and 76% respec-
tively. In class 17, the use of paralog information by
svm.comb helps to alleviate the poor performance of SVM
based on the expression data, and its sensitivity reaches
84%, slightly worse than glm.1111.

3.4 Accuracy vs. confidence score
To study whether confidence score is a good estimate of
prediction accuracy, we binned the confidence scores in
range [0,1] into 20 intervals with width of 0.05, and com-
puted the fraction of correct predictions in each interval.
As shown in Figure 4, prediction accuracy is positively cor-
related with confidence scores, but the relationship is not
linear. The non-linearity is due to the fact that in our vot-
ing scheme, the combined support from multiple neigh-
bors is overestimated. Among 1116 predictions with

Comparison of ROC curvesFigure 2
Comparison of ROC curves. The axis at the right side 
represents the number of true positives, and the axis at the 
top represents the number of false positives. The plot also 
shows the black straight line for TP = FP. The intersection of 
this line with each ROC curve indicates the corresponding 
sensitivity and false positive rate at 50% accuracy. We only 
plot the region where FP rate is less than 0.15.
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confidence score greater than 0.95, 80% (889) of them are
correct.

3.5 ROC scores comparison for all 3 classification schemes
The performance analysis using ROC scores based on all
three classification schemes are presented in Table 5. All
the algorithms we tested have relatively poor performance
on COG. COG is a classification scheme inferred by com-
parative genomic analysis, which is ignored in this study.
We expect better results if such information is incorpo-
rated into the model. For Multifunc, we only include 8
functional classes, and each class is quite large. This is
advantageous for an SVM, as it builds one model per class.
It might be beneficial for RBKNN to construct a regression
model from each class separately. (See Additional file 1, 2
for ROC curves for COG and Multifunc classification).

3.6 False predictions analysis
We analyzed a set of false predictions with high confi-
dence score. Many of them arise from the situation in
which genes belong to multiple functional classes. For
such genes, different classification schemes may focus on
different perspectives of their functional roles, and the
annotations may be incomplete. In addition, since all
genes interact with each other directly or indirectly, the
class boundaries are vague. For example, the distinction

between class 1 "Carbohydrate Metabolism" and class 7
"Metabolism of Complex Carbohydrate" is unclear. As
another example, many genes in signal transduction (class
17) pathways are also involved in membrane transport
(class 16).

We also analyzed the false negatives, i.e., true predictions
with low confidence scores. Many false negatives are due
to heterogeneous or small function classes. For example,
class 10 (Biosynthesis of Secondary Metabolites) includes
only 24 genes in our dataset, but it can be further catego-
rized into 9 subclasses. Such classes are inherently difficult
to categorize. Empty neighborhoods due to lack of infor-
mation is another major contributor to false negatives. In
KEGG, about 20% of genes have no neighbors with simi-
larity score greater than .5, which suggests that they have
no paralogs, co-expressed genes, or neighbors on the chro-
mosome that are functionally annotated. This issue can
only be resolved by adding more training data.

4 Conclusion and Discussion
The major contribution of this study is to propose a novel
mechanism for combining heterogeneous data in the
KNN framework, which includes two key components: a
regression based weighting technique and a probabilistic
voting scheme. The regression method determines the
weight of each data source by considering their relative
importance to function prediction and their correlations.
The voting scheme facilitates statistical inference by inte-
grating the function class nominations by the k nearest
neighbors, and produces a ranked list of predictions with
corresponding confidence scores. This technique also
allows classification of a gene into multiple function
classes. Our analysis showed that the local regression
method has better performance with one or two data
sources, presumably due to greater model flexibility, but

Confidence score vs. prediction accuracyFigure 4
Confidence score vs. prediction accuracy. The method 
used for prediction is glm.1111. We divide the confidence 
scores into intervals of 0.05, and compute the prediction 
accuracy within each interval.
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logistic regression is more robust and scalable. We have
demonstrated that using all four data sources yields the
best performance. Compared to the Support Vector
Machine algorithm that combines heterogeneous data, we
achieved very competitive results. At accuracy greater than
50%, their ROC curves are almost identical. SVM tends to
perform better for the genes that reside close to the class
boundaries, but at the cost of a large number of false pos-
itives. At the same level of performance, RB-KNN methods
have the advantage of simplicity: SVM requires kernel
functions, which need to be semi-definite, while RBKNN
accepts arbitrary pairwise relations. In addition, RBKNN
produces supplementary information (e.g., the nearest
neighbors with corresponding similarity values) to help
interpretation of the results during post-processing.

Our classifier is based on microarray data and sequence
data only, which are almost indispensable for any func-
tional analysis. Therefore, our algorithm can be easily
applied to other prokaryotes. For example, for a poorly
annotated genome, we can apply comparative genomic
methods such as BLAST to annotate the genes with
homologs in other species, then apply RB-KNN to predict
the function of the rest of the genes. For eukaryotes, oper-
ons are absent or rare, and chromosomal proximity tends
to be less informative for functional coupling, therefore
we would need to choose a different set of data sources.

Our methods can be improved in a number of ways. In
this study, we built a single regression model for all sam-
ples in the training set. However, prediction power of each
data source may vary from class to class, and they could be
weighted differently. One advantage of our current
approach is the abundance of training samples; one draw-
back is obviously the lack of descriptive power. The oppo-
site is true of a one-class-one-model approach. An
intermediate approach is to build class specific models for
classes with large populations.

When features are highly correlated, the regression model
can be very unstable. Principle component decomposi-
tion or regulated regression techniques such as lasso [29]
or ridge regression [30] can be applied to generate more
robust models. Another possible extension is to use more

elaborate regression models. For example, we only
extracted one base similarity measure, expression correla-
tion, from 106 microarray experiments. However, some
arrays maybe more informative than the others, and the
correlation can vary significantly based on different sets of
experiments. Such information is ignored by using Pear-
son correlation based on of all 106 experiments. One
solution is to partition the experiments into several sub-
sets, and derive a base similarity measure from each subset
of experiments. They can be integrated directly with other
data sources such as chromosomal proximity, or they can
be merged by regression methods, which in turn can be
integrated with other information. The benefit of a hierar-
chical model is that each regression involves only a few
terms, so it is more robust than the fiat model which
includes all the features.

We have shown that confidence scores are positively cor-
related with prediction accuracy, but the relationship is
not linear, and the scores are inflated as the neighborhood
size increases. For better quality control, we would prefer
a scoring system that is more consistent with accuracy.

Finally we would like to incorporate more biological
information such as evolutionary history and protein
interaction into the model and apply it to other organ-
isms. Our initial experiments showed good results on this
difficult problem even with the most basic biological
information, and we believe that RB-KNN is a good
framework to tackle similar classification problems
involving heterogeneous datasets.
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Table 5: ROC scores comparison based on three classification schemes

Methods KEGG COG Multifun

loess.1000 0.821 0.794 0.837
loess.0100 0.858 0.791 0.842
glm.0010 0.851 0.784 0.842
glm.0001 0.86 0.766 0.809
glm.1111 0.884 0.807 0.863
svm.comb 0.915 0.829 0.889
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plot the region where FP rate is smaller than 0.15.
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Comparison of ROC curves for Multifunc. The axis at the right side rep-
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plot the region where FP rate is smaller than 0.20.
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