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Background
Post-traumatic stress disorder (PTSD) is a prevalent anxiety disorder that can develop 
after exposure to a traumatic event. Motor vehicle accidents have been regarded as the 
common cause of PTSD (Silove et al. 2006). PTSD patients often suffer from a number 
of symptoms, including intrusive recollections of the trauma, hyperarousal and hyper-
vigilance, and avoidance of trauma reminders (Blake et  al. 1995). Although the symp-
toms of PTSD are familiar and readily identifiable, the effective connectivity relationship 
between brain regions underlying PTSD remains unclear.

Recently, resting-state functional magnetic resonance imaging (fMRI) has been con-
sidered to be an effective noninvasive technique for investigating pathophysiological 
basis of psychiatric and neurological disorders (Barkhof et  al. 2014). Although several 
previous fMRI studies have found disrupted functional connectivity between thalamus 
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and other brain regions in PTSD (Kennis et al. 2013; Yin et al. 2011), the directionality of 
the influence between separate brain regions remains unclear.

Exploration on directed pathways of information transfer between brain regions is a 
key issue and helps to advance our understanding of the abnormal brain function in psy-
chiatric and neurological disorder. Granger causality (GC) was initially used to assess 
causal relationship between two time series of the economic sciences (Granger 1969). 
In our study, we applied GC method to fMRI data to investigate directed dynamical 
connectivity, which can provide novel information toward demonstrating the effective 
connectivity relationship between brain areas. It is a method based on multiple linear 
regression for exploring whether one time series could correctly predict another (Ste-
phan and Roebroeck 2012). Compared with functional connectivity method that calcu-
lates intrinsic connections between spatially distinct brain regions, the GC method has 
the advantage of revealing both the direction and the strength of the information flow in 
brain circuits.

In the present study, we used the voxel-wise GC method and selected bilateral thala-
mus as seed regions to evaluate altered directional connectivity patterns from and to the 
thalamus in the resting-state in PTSD patients. In addition, we used the machine learn-
ing approach to examine brain-based predictors of PTSD patients. We hypothesized 
that effective connectivity networks of thalamus were disrupted in PTSD patients. These 
findings may have important implications for understanding of the pathophysiological 
basis underlying PTSD and provide the new evidence for the abnormal connectivity in 
this disorder.

Methods
Participants

Twenty PTSD patients with motor vehicle accidents and twenty age-, sex-, and edu-
cation-matched healthy controls (HCs) were recruited (age 32.92  ±  8.48  years and 
31.53 ± 7.43 years, respectively; gender 13 male/7 female and 14 male/6 female, respec-
tively; education 11.20 ± 3.80 years and 13.00 ± 2.20 years, respectively). PTSD diagno-
sis was made using the Clinician-Administered PTSD Scale for DSM-IV (CAPS-DX). All 
participants had no history of psychiatric, neurological disorders and head injury.

MRI data acquisition

All images were obtained by a 3.0 T Siemens MRI scanner (Trio; Siemens Medical, 
Erlangen, Germany). Resting-state fMRI data were acquired using the echo-planar imag-
ing (EPI) sequence with the following protocols: repetition time (TR) = 2000 ms, echo 
time (TE) = 30 ms, flip angle (FA) = 90°, matrix = 64 × 64, slice thickness = 3 mm, 
transverse slices = 36, and field of view (FOV) = 220 mm × 220 mm.

Data preprocessing

All fMRI data were preprocessed using Data Processing Assistant for Resting-State fMRI 
(DPARSF) (Yan and Zang 2010). The first ten volumes were discarded for equilibrium. 
Then slice-timing correction and realignment for head motion correction were per-
formed. No translation or rotation parameters in any participants exceeded 3 mm or 3°. 
In addition, the imagings were further spatially normalized to the Montreal Neurological 
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Institute EPI template image, and each voxel was resampled to 3 × 3 × 3 mm3. Then, the 
data were spatially smoothed using Gaussian kernel of 6 mm FWHW and detrended to 
abandon linear trend. After this, several sources of spurious variance were then removed 
from the data using linear regression, including Friston-24 head motion parameters, 
white matter signal, and cerebrospinal fluid. Finally, the data were temporally band-pass 
filtered (0.01–0.08 Hz) to reduce the effects of low-frequency drift and high-frequency 
noise.

Granger causality method

The bilateral thalamus of the automated anatomical labeling template was selected as 
the region of interest for the effective connectivity analysis. GC was used to describe 
the effective connectivity analysis between the seed regions and all other brain regions. 
The averaged time series of the seed region was defined as the seed time series X, and 
the time series Y represents the time series of voxels within the whole brain. The linear 
direct effect of X on Y (Fx→y) and the linear direct effect of Y on X (Fy→x) were calculated 
voxel by voxel within the whole brain. Therefore, two GC maps for each participant were 
obtained.

The calculation of GC method value was based on the Geweke’s feedback model 
(Geweke 1982).

The autoregressive representation:

The joint regressive representation:

Finally,

(1)Yt =

p∑

k=1

bkY(t−k) + cZt + εt

(2)Xt =

p∑

k=1

b′kX(t−k) + c′Zt + ε′t .

(3)Yt =

p∑

k=1

AkX(t−k) +

p∑

k=1

BkY(t−k) + CZt + µt

(4)Xt =

p∑

k=1

A′

kY(t−k) +

p∑

k=1

B′

kX(t−k) + C ′Zt + µ′

t .

(5)Fx→y = ln
var(εt)

var(µt)

(6)Fy→x = ln
var(ε′t)

var(µ′

t)
,
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where Xt is the seed region signal and Yt is the other voxels signal, ɛt and ε′t are the resid-
uals of autoregression, µt and µ′

t are residuals, and Zt is the covariate. Fx→y represents 
directional influence from the time series X to Y. Fy→x represents directional influence 
from the time series from Y to X.

Statistical analysis

Mean values of Fx→y and Fy→x maps were calculated. The two-sample t test was con-
ducted on the GC method data in SPM8 to test the group differences between the 
PTSD patients and HCs. The multiple comparison correction was conducted using the 
AlphaSim program in the REST software (http://resting-fmri.sourceforge.net). The sig-
nificance levels were set at p < 0.05.

The pattern classification

Pattern classification was included to address the potential effects related to group dif-
ference in more detail. The support vector machine (SVM) was applied to the GC, which 
found significant difference through statistical analysis. Therefore, the SVM, based on 
the LIBSVM implementation with linear kernel and default parameter, was applied using 
a leave-one-out cross-validation procedure. Furthermore, the statistical significance of 
pattern classification was assessed using permutation testing.

Results
In the present study, the Fx→y represents strength of the directed information flow from 
the thalamus to the other brain regions. The Fy→x represents strength of the directed 
information flow from the other brain regions to the thalamus. We found altered Fx→y 
and Fy→x of bilateral thalamus in the PTSD patients relative to the HCs using the two-
sample t test.

Effective Connectivity from and to the Left Thalamus

Compared with HCs, PTSD patients exhibited significantly increased effective connec-
tivity from the left thalamus to left inferior frontal gyrus and insula (left thalamus with 
Fx→y), and increased effective connectivity from the medial prefrontal cortex (MPFC) to 
left thalamus (left thalamus with Fy→x) (p < 0.05, AlphaSim corrected) (shown in Table 1; 
Fig. 1).

Effective connectivity from and to the right thalamus

Compared with HCs, PTSD patients also exhibited significantly increased effective con-
nectivity from the right thalamus to left middle frontal gyrus and MPFC, (right thalamus 
with Fx→y) and significantly increased effective connectivity from the MPFC to right 
thalamus (right thalamus with Fy→x) (p < 0.05, AlphaSim corrected) (shown in Table 2; 
Fig. 2).

Overall classifier performance

The classification analysis showed a correct classification rate of 77.5% (p < 0.001) with 
sensitivity of 70.0% and specificity of 85.0%. Taking each subject’s discriminative score 
as a threshold, the receiver operating characteristic (ROC) curve of the classifier was 

http://resting-fmri.sourceforge.net
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Table 1 Altered effective connectivity from and to the left thalamus in PTSD patients

X, Y, Z, coordinates of primary peak locations in the MNI space

T statistical value of peak voxel showing effective connectivity differences

PTSD post‑traumatic stress disorder, HCs Healthy controls, BA Brodmann’s area, MNI Montreal Neurological Institute

All the clusters survived p < 0.05, AlphaSim corrected

Regions BA Cluster size T value MNI coordinates

X Y Z

PTSD > HCs

 Outflow from the left thalamus

  Left inferior frontal gyrus 47/13 244 3.82 −48 21 24

  Left insula −38 9 2

 Inflow to the left thalamus

  Left medial prefrontal gyrus 8 225 3.48 −6 30 39

Fig. 1 Between-group differences of effective connectivity from and to the left thalamus. a represents the 
effective connectivity from the left thalamus to other brain regions. b represents the effective connectivity 
from other brain regions to left thalamus. The red color represents the brain regions that show significantly 
increased effective connectivity

Table 2 Altered effective connectivity from and to the right thalamus in PTSD patients

X, Y, Z, coordinates of primary peak locations in the MNI space

T statistical value of peak voxel showing effective connectivity differences

PTSD post‑traumatic stress disorder, HCs Healthy controls, BA Brodmann’s area, MNI Montreal Neurological Institute

All the clusters survived p < 0.05, AlphaSim corrected

Regions BA Cluster size T value MNI coordinates

X Y Z

PTSD > HCs

 Outflow from the right thalamus

  Left middle frontal gyrus 6/8 540 3.57 −6 27 51

  Left medial prefrontal gyrus 0 26 50

 Inflow to the right thalamus

  Left medial prefrontal gyrus 8 439 3.53 −6 39 42
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yielded (Fig. 3). The area under the ROC curve (AUC) was 0.895, indicating a good clas-
sification power.

Discussion
To the best of our knowledge, this is the first study using GC method to examine effec-
tive connectivity network associated with the thalamus in PTSD patients. We found 
that PTSD patients exhibited abnormal directionality of influence both from and to the 
thalamus.

GC method is a valuable tool to explore effective functional connectivity in psychiat-
ric and neurological disorders, and it can supply information about the dynamics and 

Fig. 2 Between-group differences of effective connectivity from and to the right thalamus. a represents the 
effective connectivity from the right thalamus to other brain regions. b represents the effective connectivity 
from other brain regions to right thalamus. The red color represents the brain regions that show significantly 
increased effective connectivity

Fig. 3 ROC for differentiating PTSD patients from healthy controls. ROC receiver operating characteristic 
curves, AUC area under the ROC curve
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directionality of BOLD (blood oxygenation level-dependent) signal in brain circuits. In 
the present study, an autoregressive model was applied for data analyzing. We used F 
value based on the decrease of the variance of residual to explore effective connectivity 
in participants. Using the GC method, we can detect the abnormalities in directional 
flow of the influence in PTSD patients. We found increased influence from the left 
thalamus to the left inferior frontal gyrus and insula, from the right thalamus to the 
left middle frontal gyrus, and mutual increased influences between MPFC and thala-
mus. The prefrontal cortex has been thought to be involved in encoding and retrieval 
of memories and emotional processing (Etkin et al. 2011). The insula plays a key role 
in emotional processing and cognitional processing (Gu et al. 2013; Menon and Uddin 
2010). Thus, the findings in our study may suggest the abnormal emotional processing 
and cognitive processing in PTSD patients. One limitation is that the small sample 
size in our study should be noticed. Future studies will require larger sample size and 
divide the patients into subgroups according to their illness duration to confirm our 
findings.

Conclusion
In this study, we firstly found abnormal effective connectives in several thalamus-related 
pathways, which were involved in emotional processing and cognitive processing. In 
addition, employing the machine learning approach, we found that the abnormal func-
tional measurements could differentiate PTSD patients from HCs. Our findings added 
important insights into understanding the effective connectivity networks and neural 
circuitry underlying PTSD.
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