
Park and Shin Advances in Difference Equations 2012, 2012:123
http://www.advancesindifferenceequations.com/content/2012/1/123

RESEARCH Open Access

Functional equations in paranormed spaces
Choonkil Park1 and Dong Yun Shin2*

*Correspondence: dyshin@uos.ac.kr
2Department of Mathematics,
University of Seoul, Seoul, 130-743,
Korea
Full list of author information is
available at the end of the article

Abstract
In this paper, we prove the Hyers-Ulam stability of various functional equations in
paranormed spaces.
MSC: Primary 35A17; 39B52; 39B72

Keywords: Hyers-Ulam stability; paranormed space; functional equation

1 Introduction and preliminaries
The concept of statistical convergence for sequences of real numbers was introduced by
Fast [] and Steinhaus [] independently, and since then several generalizations and appli-
cations of this notion have been investigated by various authors (see [–]). This notion
was defined in normed spaces by Kolk [].
We recall some basic facts concerning Fréchet spaces.

Definition . ([]) Let X be a vector space. A paranorm P : X → [,∞) is a function on
X such that
() P() = ;
() P(–x) = P(x);
() P(x + y) ≤ P(x) + P(y) (triangle inequality);
() If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P(xn – x)→ , then

P(tnxn – tx) →  (continuity of multiplication).

The pair (X,P) is called a paranormed space if P is a paranorm on X.
The paranorm is called total if, in addition, we have
() P(x) =  implies x = .
A Fréchet space is a total and complete paranormed space.
The stability problem of functional equations originated from a question of Ulam []

concerning the stability of group homomorphisms. Hyers [] gave a first affirmative par-
tial answer to the question of Ulam for Banach spaces. Hyers’ Theoremwas generalized by
Aoki [] for additive mappings and by Th. M. Rassias [] for linear mappings by consid-
ering an unbounded Cauchy difference. A generalization of the Th. M. Rassias’ theorem
was obtained by Găvruta [] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Th. M. Rassias’ approach.
In  during the th International Symposium on Functional Equations, Th.M. Ras-

sias [] asked the question whether such a theorem can also be proved for p≥ . In 
Gajda [], following the same approach as in Th. M. Rassias [], gave an affirmative so-
lution to this question for p > . It was shown by Gajda [], as well as by Th. M. Rassias
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and Šemrl [] that one cannot prove a Th. M. Rassias’ type theorem when p =  (cf. the
books of P. Czerwik [], D. H. Hyers, G. Isac and Th. M. Rassias []).
In  J. M. Rassias [] followed the innovative approach of the Th. M. Rassias’ theo-

rem [] inwhich he replaced the factor ‖x‖p+‖y‖p by ‖x‖p ·‖y‖q for p,q ∈Rwith p+q 	= .
Găvruta [] provided a further generalization of Th. M. Rassias’ theorem.
The functional equation

f (x + y) + f (x – y) = f (x) + f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik
[] proved the Hyers-Ulam stability of the quadratic functional equation. The stability
problems of several functional equations have been extensively investigated by a number
of authors and there are many interesting results concerning this problem (see [–]).
In [], Jun and Kim considered the following cubic functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x). (.)

It is easy to show that the function f (x) = x satisfies the functional equation (.), which
is called a cubic functional equation and every solution of the cubic functional equation is
said to be a cubic mapping.
In [], Lee et al. considered the following quartic functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (y). (.)

It is easy to show that the function f (x) = x satisfies the functional equation (.), which is
called a quartic functional equation, and every solution of the quartic functional equation
is said to be a quartic mapping.
Throughout this paper, assume that (X,P) is a Fréchet space and that (Y ,‖·‖) is a Banach

space.
In this paper, we prove the Hyers-Ulam stability of the Cauchy additive functional equa-

tion, the quadratic functional equation, the cubic functional equation (.) and the quartic
functional equation (.) in paranormed spaces.

2 Hyers-Ulam stability of the Cauchy additive functional equation
In this section, we prove the Hyers-Ulam stability of the Cauchy additive functional equa-
tion in paranormed spaces.
Note that P(x) ≤ P(x) for all x ∈ Y .

Theorem . Let r, θ be positive real numbers with r > , and let f : Y → X be an odd
mapping such that

P
(
f (x + y) – f (x) – f (y)

) ≤ θ
(‖x‖r + ‖y‖r) (.)

http://www.advancesindifferenceequations.com/content/2012/1/123
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for all x, y ∈ Y . Then there exists a unique Cauchy additive mapping A : Y → X such that

P
(
f (x) –A(x)

) ≤ θ
r – 

‖x‖r (.)

for all x ∈ Y .

Proof Letting y = x in (.), we get

P
(
f (x) – f (x)

) ≤ θ‖x‖r

for all x ∈ Y . So

P
(
f (x) – f

(
x


))
≤ 

r
θ‖x‖r

for all x ∈ Y . Hence

P
(
lf

(
x
l

)
– mf

(
x
m

))
≤

m–∑
j=l

P
(
jf

(
x
j

)
– j+f

(
x
j+

))

≤ 
r

m–∑
j=l

j

rj
θ‖x‖r (.)

for all nonnegative integersm and l withm > l and all x ∈ Y . It follows from (.) that the
sequence {nf ( x

n )} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence
{nf ( x

n )} converges. So one can define the mapping A : Y → X by

A(x) := lim
n→∞nf

(
x
n

)

for all x ∈ Y . Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

P
(
A(x + y) –A(x) –A(y)

)
= lim

n→∞P
(
n

(
f
(
x + y
n

)
– f

(
x
n

)
– f

(
y
n

)))

≤ lim
n→∞nP

(
f
(
x + y
n

)
– f

(
x
n

)
– f

(
y
n

))

≤ lim
n→∞

nθ
nr

(‖x‖r + ‖y‖r) = 

for all x, y ∈ Y . Hence A(x + y) = A(x) +A(y) for all x, y ∈ Y and so the mapping A : Y → X
is Cauchy additive.
Now, let T : Y → X be another Cauchy additive mapping satisfying (.). Then we have

P
(
A(x) – T(x)

)
= P

(
n

(
A

(
x
n

)
– T

(
x
n

)))

≤ nP
(
A

(
x
n

)
– T

(
x
n

))
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≤ n
(
P
(
A

(
x
n

)
– f

(
x
n

))
+ P

(
T

(
x
n

)
– f

(
x
n

)))

≤  · n
(r – )nr

θ‖x‖r ,

which tends to zero as n → ∞ for all x ∈ Y . So we can conclude that A(x) = T(x) for all
x ∈ Y . This proves the uniqueness of A. Thus the mapping A : Y → X is a unique Cauchy
additive mapping satisfying (.). �

Theorem . Let r be a positive real number with r < , and let f : X → Y be an odd
mapping such that

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ P(x)r + P(y)r (.)

for all x, y ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

 – r
P(x)r (.)

for all x ∈ X.

Proof Letting y = x in (.), we get

∥∥f (x) – f (x)
∥∥ ≤ P(x)r

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ P(x)r

for all x ∈ X. Hence

∥∥∥∥ 
l
f
(
lx

)
–


m

f
(
mx

)∥∥∥∥ ≤
m–∑
j=l

∥∥∥∥ 
j
f
(
jx

)
–


j+

f
(
j+x

)∥∥∥∥

≤
m–∑
j=l

rj

j
P(x)r (.)

for all nonnegative integersm and l withm > l and all x ∈ X. It follows from (.) that the
sequence { 

n f (
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 
n f (

nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞


n

f
(
nx

)

for all x ∈ X. Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

∥∥A(x + y) –A(x) –A(y)
∥∥ = lim

n→∞

n

∥∥f (n(x + y)
)
– f

(
nx

)
– f

(
ny

)∥∥

≤ lim
n→∞

nr

n
(
P(x)r + P(y)r

)
= 
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for all x, y ∈ X. Thus A(x+ y) = A(x) +A(y) for all x, y ∈ X and so the mapping A : X → Y is
Cauchy additive.
Now, let T : X → Y be another Cauchy additive mapping satisfying (.). Then we have

∥∥A(x) – T(x)
∥∥ =


n

∥∥A(
nx

)
– T

(
nx

)∥∥

≤ 
n

(∥∥A(
nx

)
– f

(
nx

)∥∥ +
∥∥T(

nx
)
– f

(
nx

)∥∥)

≤  · nr
( – r)n

P(x)r ,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that A(x) = T(x) for all
x ∈ X. This proves the uniqueness of A. Thus the mapping A : X → Y is a unique Cauchy
additive mapping satisfying (.). �

3 Hyers-Ulam stability of the quadratic functional equation
In this section, we prove the Hyers-Ulam stability of the quadratic functional equation in
paranormed spaces.
Note that P(x) ≤ P(x) for all x ∈ Y .

Theorem . Let r, θ be positive real numbers with r > , and let f : Y → X be a mapping
satisfying f () =  and

P
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ θ
(‖x‖r + ‖y‖r) (.)

for all x, y ∈ Y . Then there exists a unique quadratic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ θ
r – 

‖x‖r (.)

for all x ∈ Y .

Proof Letting y = x in (.), we get

P
(
f (x) – f (x)

) ≤ θ‖x‖r

for all x ∈ Y . So

P
(
f (x) – f

(
x


))
≤ 

r
θ‖x‖r

for all x ∈ Y . Hence

P
(
lf

(
x
l

)
– mf

(
x
m

))
≤

m–∑
j=l

P
(
jf

(
x
j

)
– j+f

(
x
j+

))

≤ 
r

m–∑
j=l

j

rj
θ‖x‖r (.)
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for all nonnegative integersm and l withm > l and all x ∈ Y . It follows from (.) that the
sequence {nf ( x

n )} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence
{nf ( x

n )} converges. So one can define the mapping Q : Y → X by

Q(x) := lim
n→∞nf

(
x
n

)

for all x ∈ Y . Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

P
(
Q(x + y) +Q(x – y) – Q(x) – Q(y)

)

= lim
n→∞P

(
n

(
f
(
x + y
n

)
+ f

(
x – y
n

)
– f

(
x
n

)
– f

(
y
n

)))

≤ lim
n→∞nP

(
f
(
x + y
n

)
+ f

(
x – y
n

)
– f

(
x
n

)
– f

(
y
n

))

≤ lim
n→∞

nθ
nr

(‖x‖r + ‖y‖r) = 

for all x, y ∈ Y . Hence Q(x + y) + Q(x – y) = Q(x) + Q(y) for all x, y ∈ Y and so the
mapping Q : Y → X is quadratic.
Now, let T : Y → X be another quadratic mapping satisfying (.). Then we have

P
(
Q(x) – T(x)

)
= P

(
n

(
Q

(
x
n

)
– T

(
x
n

)))

≤ nP
(
Q

(
x
n

)
– T

(
x
n

))

≤ n
(
P
(
Q

(
x
n

)
– f

(
x
n

))
+ P

(
T

(
x
n

)
– f

(
x
n

)))

≤  · n
(r – )nr

θ‖x‖r ,

which tends to zero as n → ∞ for all x ∈ Y . So we can conclude that Q(x) = T(x) for
all x ∈ Y . This proves the uniqueness of Q. Thus the mapping Q : Y → X is a unique
quadratic mapping satisfying (.). �

Theorem . Let r be a positive real number with r < , and let f : X → Y be a mapping
satisfying f () =  and

∥∥f (x + y) + f (x – y) – f (x) – f (y)
∥∥ ≤ P(x)r + P(y)r (.)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 

 – r
P(x)r (.)

for all x ∈ X.
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Proof Letting y = x in (.), we get

∥∥f (x) – f (x)
∥∥ ≤ P(x)r

and so

∥∥∥∥f (x) – 

f (x)

∥∥∥∥ ≤ 

P(x)r

for all x ∈ X. Hence

∥∥∥∥ 
l
f
(
lx

)
–


m

f
(
mx

)∥∥∥∥ ≤
m–∑
j=l

∥∥∥∥ 
j
f
(
jx

)
–


j+

f
(
j+x

)∥∥∥∥

≤ 


m–∑
j=l

rj

j
P(x)r (.)

for all nonnegative integersm and l withm > l and all x ∈ X. It follows from (.) that the
sequence { 

n f (
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 
n f (

nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞


n

f
(
nx

)

for all x ∈ X. Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

∥∥Q(x + y) +Q(x – y) – Q(x) – Q(y)
∥∥

= lim
n→∞


n

∥∥f (n(x + y)
)
+ f

(
n(x – y)

)
– f

(
nx

)
– f

(
ny

)∥∥

≤ lim
n→∞

nr

n
(
P(x)r + P(y)r

)
= 

for all x, y ∈ X. Thus Q(x + y) + Q(x – y) = Q(x) + Q(y) for all x, y ∈ X and so the
mapping Q : X → Y is quadratic.
Now, let T : X → Y be another quadratic mapping satisfying (.). Then we have

∥∥Q(x) – T(x)
∥∥ =


n

∥∥Q
(
nx

)
– T

(
nx

)∥∥

≤ 
n

(∥∥Q
(
nx

)
– f

(
nx

)∥∥ +
∥∥T(

nx
)
– f

(
nx

)∥∥)

≤  · nr
( – r)n

P(x)r ,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that Q(x) = T(x) for
all x ∈ X. This proves the uniqueness of Q. Thus the mapping Q : X → Y is a unique
quadratic mapping satisfying (.). �

http://www.advancesindifferenceequations.com/content/2012/1/123


Park and Shin Advances in Difference Equations 2012, 2012:123 Page 8 of 14
http://www.advancesindifferenceequations.com/content/2012/1/123

4 Hyers-Ulam stability of the cubic functional equation
In this section, we prove theHyers-Ulam stability of the cubic functional equation in para-
normed spaces.
Note that P(x) ≤ P(x) for all x ∈ Y .

Theorem . Let r, θ be positive real numbers with r > , and let f : Y → X be a mapping
such that

P
(


f (x + y) +



f (x – y) – f (x + y) – f (x – y) – f (x)

)
≤ θ

(‖x‖r + ‖y‖r) (.)

for all x, y ∈ Y . Then there exists a unique cubic mapping C : Y → X such that

P
(
f (x) –C(x)

) ≤ θ

r – 
‖x‖r (.)

for all x ∈ Y .

Proof Letting y =  in (.), we get

P
(
f (x) – f (x)

) ≤ θ‖x‖r

for all x ∈ Y . So

P
(
f (x) – f

(
x


))
≤ 

r
θ‖x‖r

for all x ∈ Y . Hence

P
(
lf

(
x
l

)
– mf

(
x
m

))
≤

m–∑
j=l

P
(
jf

(
x
j

)
– j+f

(
x
j+

))

≤ 
r

m–∑
j=l

j

rj
θ‖x‖r (.)

for all nonnegative integersm and l withm > l and all x ∈ Y . It follows from (.) that the
sequence {nf ( x

n )} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence
{nf ( x

n )} converges. So one can define the mapping C : Y → X by

C(x) := lim
n→∞nf

(
x
n

)

for all x ∈ Y . Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

P
(


C(x + y) +



C(x – y) –C(x + y) –C(x – y) – C(x)

)

= lim
n→∞P

(
n

(


f
(
x + y
n

)
+


f
(
x – y
n

)
– f

(
x + y
n

)
– f

(
x – y
n

)
– f

(
x
n

)))
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≤ lim
n→∞nP

(


f
(
x + y
n

)
+


f
(
x – y
n

)
– f

(
x + y
n

)
– f

(
x – y
n

)
– f

(
x
n

))

≤ lim
n→∞

nθ
nr

(‖x‖r + ‖y‖r) = 

for all x, y ∈ Y . Hence



C(x + y) +



C(x – y) = C(x + y) +C(x – y) + C(x)

for all x, y ∈ Y and so the mapping C : Y → X is cubic.
Now, let T : Y → X be another cubic mapping satisfying (.). Then we have

P
(
C(x) – T(x)

)
= P

(
n

(
C

(
x
n

)
– T

(
x
n

)))

≤ nP
(
C

(
x
n

)
– T

(
x
n

))

≤ n
(
P
(
C

(
x
n

)
– f

(
x
n

))
+ P

(
T

(
x
n

)
– f

(
x
n

)))

≤  · n
(r – )nr

θ‖x‖r ,

which tends to zero as n → ∞ for all x ∈ Y . So we can conclude that C(x) = T(x) for all
x ∈ Y . This proves the uniqueness of C. Thus the mapping C : Y → X is a unique cubic
mapping satisfying (.). �

Theorem . Let r be a positive real number with r < , and let f : X → Y be a mapping
such that

∥∥∥∥  f (x + y) +


f (x – y) – f (x + y) – f (x – y) – f (x)

∥∥∥∥ ≤ P(x)r + P(y)r (.)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

∥∥f (x) –C(x)
∥∥ ≤ 

 – r
P(x)r (.)

for all x ∈ X.

Proof Letting y =  in (.), we get

∥∥f (x) – f (x)
∥∥ ≤ P(x)r

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 

P(x)r

for all x ∈ X. Hence

∥∥∥∥ 
l
f
(
lx

)
–


m

f
(
mx

)∥∥∥∥ ≤
m–∑
j=l

∥∥∥∥ 
j
f
(
jx

)
–


j+

f
(
j+x

)∥∥∥∥ ≤ 


m–∑
j=l

rj

j
P(x)r (.)
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for all nonnegative integersm and l withm > l and all x ∈ X. It follows from (.) that the
sequence { 

n f (
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 
n f (

nx)} converges. So one can define the mapping C : X → Y by

C(x) := lim
n→∞


n

f
(
nx

)

for all x ∈ X. Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

∥∥∥∥ C(x + y) +


C(x – y) –C(x + y) –C(x – y) – C(x)

∥∥∥∥
= lim

n→∞

n

∥∥∥∥  f
(
n(x + y)

)
+


f
(
n(x – y)

)

– f
(
n(x + y)

)
– f

(
n(x – y)

)
– f

(
nx

)∥∥∥∥
≤ lim

n→∞
nr

n
(
P(x)r + P(y)r

)
= 

for all x, y ∈ X. Thus



C(x + y) +



C(x – y) = C(x + y) +C(x – y) + C(x)

for all x, y ∈ X and so the mapping C : X → Y is cubic.
Now, let T : X → Y be another cubic mapping satisfying (.). Then we have

∥∥C(x) – T(x)
∥∥ =


n

∥∥C(
nx

)
– T

(
nx

)∥∥

≤ 
n

(∥∥C(
nx

)
– f

(
nx

)∥∥ +
∥∥T(

nx
)
– f

(
nx

)∥∥)

≤  · nr
( – r)n

P(x)r ,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that C(x) = T(x) for all
x ∈ X. This proves the uniqueness of C. Thus the mapping C : X → Y is a unique cubic
mapping satisfying (.). �

5 Hyers-Ulam stability of the quartic functional equation
In this section, we prove the Hyers-Ulam stability of the quartic functional equation in
paranormed spaces.
Note that P(x) ≤ P(x) for all x ∈ Y .

Theorem . Let r, θ be positive real numbers with r > , and let f : Y → X be a mapping
satisfying f () =  and

P
(


f (x + y) +



f (x – y) – f (x + y) – f (x – y) – f (x) + f (y)

)

≤ θ
(‖x‖r + ‖y‖r) (.)

http://www.advancesindifferenceequations.com/content/2012/1/123
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for all x, y ∈ Y . Then there exists a unique quartic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ θ

r – 
‖x‖r (.)

for all x ∈ Y .

Proof Letting y =  in (.), we get

P
(
f (x) – f (x)

) ≤ θ‖x‖r

for all x ∈ Y . So

P
(
f (x) – f

(
x


))
≤ 

r
θ‖x‖r

for all x ∈ Y . Hence

P
(
lf

(
x
l

)
– mf

(
x
m

))

≤
m–∑
j=l

P
(
jf

(
x
j

)
– j+f

(
x
j+

))

≤ 
r

m–∑
j=l

j

rj
θ‖x‖r (.)

for all nonnegative integers m and l withm > l and all x ∈ Y . It follows from (.) that the
sequence {nf ( x

n )} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence
{nf ( x

n )} converges. So one can define the mapping Q : Y → X by

Q(x) := lim
n→∞ nf

(
x
n

)

for all x ∈ Y . Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

P
(


Q(x + y) +



Q(x – y) – Q(x + y) – Q(x – y) – Q(x) + Q(y)

)

= lim
n→∞P

(
n

(


f
(
x + y
n

)
+


f
(
x – y
n

)
– f

(
x + y
n

)

– f
(
x – y
n

)
– f

(
x
n

)
+ f

(
y
n

)))

≤ lim
n→∞ nP

(


f
(
x + y
n

)
+


f
(
x – y
n

)
– f

(
x + y
n

)

– f
(
x – y
n

)
– f

(
x
n

)
+ f

(
y
n

))

≤ lim
n→∞

nθ
nr

(‖x‖r + ‖y‖r) = 

http://www.advancesindifferenceequations.com/content/2012/1/123
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for all x, y ∈ Y . Hence



Q(x + y) +



Q(x – y) = Q(x + y) + Q(x – y) + Q(x) – Q(y)

for all x, y ∈ Y and so the mapping Q : Y → X is quartic.
Now, let T : Y → X be another quartic mapping satisfying (.). Then we have

P
(
Q(x) – T(x)

)
= P

(
n

(
Q

(
x
n

)
– T

(
x
n

)))

≤ nP
(
Q

(
x
n

)
– T

(
x
n

))

≤ n
(
P
(
Q

(
x
n

)
– f

(
x
n

))
+ P

(
T

(
x
n

)
– f

(
x
n

)))

≤  · n
(r – )nr

θ‖x‖r ,

which tends to zero as n → ∞ for all x ∈ Y . So we can conclude that Q(x) = T(x) for all
x ∈ Y . This proves the uniqueness ofQ. Thus themappingQ : Y → X is a unique quartic
mapping satisfying (.). �

Theorem . Let r be a positive real number with r < , and let f : X → Y be a mapping
satisfying f () =  and

∥∥∥∥  f (x + y) +


f (x – y) – f (x + y) – f (x – y) – f (x) + f (y)

∥∥∥∥
≤ P(x)r + P(y)r (.)

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 

 – r
P(x)r (.)

for all x ∈ X.

Proof Letting y =  in (.), we get

∥∥f (x) – f (x)
∥∥ ≤ P(x)r

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 


P(x)r

for all x ∈ X. Hence

∥∥∥∥ 
l

f
(
lx

)
–


m

f
(
mx

)∥∥∥∥ ≤
m–∑
j=l

∥∥∥∥ 
j

f
(
jx

)
–


j+

f
(
j+x

)∥∥∥∥ ≤ 


m–∑
j=l

rj

j
P(x)r (.)

http://www.advancesindifferenceequations.com/content/2012/1/123
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for all nonnegative integersm and l withm > l and all x ∈ X. It follows from (.) that the
sequence { 

n f (
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 
n f (

nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞


n

f
(
nx

)

for all x ∈ X. Moreover, letting l =  and passing the limitm → ∞ in (.), we get (.).
It follows from (.) that

∥∥∥∥ Q(x + y) +


Q(x – y) – Q(x + y) – Q(x – y) – Q(x) + Q(y)

∥∥∥∥
= lim

n→∞

n

∥∥∥∥  f
(
n(x + y)

)
+


f
(
n(x – y)

)
– f

(
n(x + y)

)

– f
(
n(x – y)

)
– f

(
nx

)
+ f

(
ny

)∥∥∥∥
≤ lim

n→∞
nr

n
(
P(x)r + P(y)r

)
= 

for all x, y ∈ X. Thus



Q(x + y) +



Q(x – y) = Q(x + y) + Q(x – y) + Q(x) – Q(y)

for all x, y ∈ X and so the mapping Q : X → Y is quartic.
Now, let T : X → Y be another quartic mapping satisfying (.). Then we have

∥∥Q(x) – T(x)
∥∥ =


n

∥∥Q
(
nx

)
– T

(
nx

)∥∥

≤ 
n

(∥∥Q
(
nx

)
– f

(
nx

)∥∥ +
∥∥T(

nx
)
– f

(
nx

)∥∥)

≤  · nr
( – r)n

P(x)r ,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that Q(x) = T(x) for all
x ∈ X. This proves the uniqueness ofQ. Thus themappingQ : X → Y is a unique quartic
mapping satisfying (.). �
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